/* * (C) Copyright 2013 Xilinx, Inc. * (C) Copyright 2015 Jagan Teki <jteki@openedev.com> * * Xilinx Zynq PS SPI controller driver (master mode only) * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <dm.h> #include <malloc.h> #include <spi.h> #include <asm/io.h> DECLARE_GLOBAL_DATA_PTR; /* zynq spi register bit masks ZYNQ_SPI_<REG>_<BIT>_MASK */ #define ZYNQ_SPI_CR_MSA_MASK BIT(15) /* Manual start enb */ #define ZYNQ_SPI_CR_MCS_MASK BIT(14) /* Manual chip select */ #define ZYNQ_SPI_CR_CS_MASK GENMASK(13, 10) /* Chip select */ #define ZYNQ_SPI_CR_BAUD_MASK GENMASK(5, 3) /* Baud rate div */ #define ZYNQ_SPI_CR_CPHA_MASK BIT(2) /* Clock phase */ #define ZYNQ_SPI_CR_CPOL_MASK BIT(1) /* Clock polarity */ #define ZYNQ_SPI_CR_MSTREN_MASK BIT(0) /* Mode select */ #define ZYNQ_SPI_IXR_RXNEMPTY_MASK BIT(4) /* RX_FIFO_not_empty */ #define ZYNQ_SPI_IXR_TXOW_MASK BIT(2) /* TX_FIFO_not_full */ #define ZYNQ_SPI_IXR_ALL_MASK GENMASK(6, 0) /* All IXR bits */ #define ZYNQ_SPI_ENR_SPI_EN_MASK BIT(0) /* SPI Enable */ #define ZYNQ_SPI_CR_BAUD_MAX 8 /* Baud rate divisor max val */ #define ZYNQ_SPI_CR_BAUD_SHIFT 3 /* Baud rate divisor shift */ #define ZYNQ_SPI_CR_SS_SHIFT 10 /* Slave select shift */ #define ZYNQ_SPI_FIFO_DEPTH 128 #ifndef CONFIG_SYS_ZYNQ_SPI_WAIT #define CONFIG_SYS_ZYNQ_SPI_WAIT (CONFIG_SYS_HZ/100) /* 10 ms */ #endif /* zynq spi register set */ struct zynq_spi_regs { u32 cr; /* 0x00 */ u32 isr; /* 0x04 */ u32 ier; /* 0x08 */ u32 idr; /* 0x0C */ u32 imr; /* 0x10 */ u32 enr; /* 0x14 */ u32 dr; /* 0x18 */ u32 txdr; /* 0x1C */ u32 rxdr; /* 0x20 */ }; /* zynq spi platform data */ struct zynq_spi_platdata { struct zynq_spi_regs *regs; u32 frequency; /* input frequency */ u32 speed_hz; }; /* zynq spi priv */ struct zynq_spi_priv { struct zynq_spi_regs *regs; u8 cs; u8 mode; u8 fifo_depth; u32 freq; /* required frequency */ }; static int zynq_spi_ofdata_to_platdata(struct udevice *bus) { struct zynq_spi_platdata *plat = bus->platdata; const void *blob = gd->fdt_blob; int node = bus->of_offset; plat->regs = (struct zynq_spi_regs *)dev_get_addr(bus); /* FIXME: Use 250MHz as a suitable default */ plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency", 250000000); plat->speed_hz = plat->frequency / 2; debug("%s: regs=%p max-frequency=%d\n", __func__, plat->regs, plat->frequency); return 0; } static void zynq_spi_init_hw(struct zynq_spi_priv *priv) { struct zynq_spi_regs *regs = priv->regs; u32 confr; /* Disable SPI */ writel(~ZYNQ_SPI_ENR_SPI_EN_MASK, ®s->enr); /* Disable Interrupts */ writel(ZYNQ_SPI_IXR_ALL_MASK, ®s->idr); /* Clear RX FIFO */ while (readl(®s->isr) & ZYNQ_SPI_IXR_RXNEMPTY_MASK) readl(®s->rxdr); /* Clear Interrupts */ writel(ZYNQ_SPI_IXR_ALL_MASK, ®s->isr); /* Manual slave select and Auto start */ confr = ZYNQ_SPI_CR_MCS_MASK | ZYNQ_SPI_CR_CS_MASK | ZYNQ_SPI_CR_MSTREN_MASK; confr &= ~ZYNQ_SPI_CR_MSA_MASK; writel(confr, ®s->cr); /* Enable SPI */ writel(ZYNQ_SPI_ENR_SPI_EN_MASK, ®s->enr); } static int zynq_spi_probe(struct udevice *bus) { struct zynq_spi_platdata *plat = dev_get_platdata(bus); struct zynq_spi_priv *priv = dev_get_priv(bus); priv->regs = plat->regs; priv->fifo_depth = ZYNQ_SPI_FIFO_DEPTH; /* init the zynq spi hw */ zynq_spi_init_hw(priv); return 0; } static void spi_cs_activate(struct udevice *dev) { struct udevice *bus = dev->parent; struct zynq_spi_priv *priv = dev_get_priv(bus); struct zynq_spi_regs *regs = priv->regs; u32 cr; clrbits_le32(®s->cr, ZYNQ_SPI_CR_CS_MASK); cr = readl(®s->cr); /* * CS cal logic: CS[13:10] * xxx0 - cs0 * xx01 - cs1 * x011 - cs2 */ cr |= (~(1 << priv->cs) << ZYNQ_SPI_CR_SS_SHIFT) & ZYNQ_SPI_CR_CS_MASK; writel(cr, ®s->cr); } static void spi_cs_deactivate(struct udevice *dev) { struct udevice *bus = dev->parent; struct zynq_spi_priv *priv = dev_get_priv(bus); struct zynq_spi_regs *regs = priv->regs; setbits_le32(®s->cr, ZYNQ_SPI_CR_CS_MASK); } static int zynq_spi_claim_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct zynq_spi_priv *priv = dev_get_priv(bus); struct zynq_spi_regs *regs = priv->regs; writel(ZYNQ_SPI_ENR_SPI_EN_MASK, ®s->enr); return 0; } static int zynq_spi_release_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct zynq_spi_priv *priv = dev_get_priv(bus); struct zynq_spi_regs *regs = priv->regs; writel(~ZYNQ_SPI_ENR_SPI_EN_MASK, ®s->enr); return 0; } static int zynq_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev->parent; struct zynq_spi_priv *priv = dev_get_priv(bus); struct zynq_spi_regs *regs = priv->regs; struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev); u32 len = bitlen / 8; u32 tx_len = len, rx_len = len, tx_tvl; const u8 *tx_buf = dout; u8 *rx_buf = din, buf; u32 ts, status; debug("spi_xfer: bus:%i cs:%i bitlen:%i len:%i flags:%lx\n", bus->seq, slave_plat->cs, bitlen, len, flags); if (bitlen % 8) { debug("spi_xfer: Non byte aligned SPI transfer\n"); return -1; } priv->cs = slave_plat->cs; if (flags & SPI_XFER_BEGIN) spi_cs_activate(dev); while (rx_len > 0) { /* Write the data into TX FIFO - tx threshold is fifo_depth */ tx_tvl = 0; while ((tx_tvl < priv->fifo_depth) && tx_len) { if (tx_buf) buf = *tx_buf++; else buf = 0; writel(buf, ®s->txdr); tx_len--; tx_tvl++; } /* Check TX FIFO completion */ ts = get_timer(0); status = readl(®s->isr); while (!(status & ZYNQ_SPI_IXR_TXOW_MASK)) { if (get_timer(ts) > CONFIG_SYS_ZYNQ_SPI_WAIT) { printf("spi_xfer: Timeout! TX FIFO not full\n"); return -1; } status = readl(®s->isr); } /* Read the data from RX FIFO */ status = readl(®s->isr); while (status & ZYNQ_SPI_IXR_RXNEMPTY_MASK) { buf = readl(®s->rxdr); if (rx_buf) *rx_buf++ = buf; status = readl(®s->isr); rx_len--; } } if (flags & SPI_XFER_END) spi_cs_deactivate(dev); return 0; } static int zynq_spi_set_speed(struct udevice *bus, uint speed) { struct zynq_spi_platdata *plat = bus->platdata; struct zynq_spi_priv *priv = dev_get_priv(bus); struct zynq_spi_regs *regs = priv->regs; uint32_t confr; u8 baud_rate_val = 0; if (speed > plat->frequency) speed = plat->frequency; /* Set the clock frequency */ confr = readl(®s->cr); if (speed == 0) { /* Set baudrate x8, if the freq is 0 */ baud_rate_val = 0x2; } else if (plat->speed_hz != speed) { while ((baud_rate_val < ZYNQ_SPI_CR_BAUD_MAX) && ((plat->frequency / (2 << baud_rate_val)) > speed)) baud_rate_val++; plat->speed_hz = speed / (2 << baud_rate_val); } confr &= ~ZYNQ_SPI_CR_BAUD_MASK; confr |= (baud_rate_val << ZYNQ_SPI_CR_BAUD_SHIFT); writel(confr, ®s->cr); priv->freq = speed; debug("zynq_spi_set_speed: regs=%p, speed=%d\n", priv->regs, priv->freq); return 0; } static int zynq_spi_set_mode(struct udevice *bus, uint mode) { struct zynq_spi_priv *priv = dev_get_priv(bus); struct zynq_spi_regs *regs = priv->regs; uint32_t confr; /* Set the SPI Clock phase and polarities */ confr = readl(®s->cr); confr &= ~(ZYNQ_SPI_CR_CPHA_MASK | ZYNQ_SPI_CR_CPOL_MASK); if (mode & SPI_CPHA) confr |= ZYNQ_SPI_CR_CPHA_MASK; if (mode & SPI_CPOL) confr |= ZYNQ_SPI_CR_CPOL_MASK; writel(confr, ®s->cr); priv->mode = mode; debug("zynq_spi_set_mode: regs=%p, mode=%d\n", priv->regs, priv->mode); return 0; } static const struct dm_spi_ops zynq_spi_ops = { .claim_bus = zynq_spi_claim_bus, .release_bus = zynq_spi_release_bus, .xfer = zynq_spi_xfer, .set_speed = zynq_spi_set_speed, .set_mode = zynq_spi_set_mode, }; static const struct udevice_id zynq_spi_ids[] = { { .compatible = "xlnx,zynq-spi-r1p6" }, { .compatible = "cdns,spi-r1p6" }, { } }; U_BOOT_DRIVER(zynq_spi) = { .name = "zynq_spi", .id = UCLASS_SPI, .of_match = zynq_spi_ids, .ops = &zynq_spi_ops, .ofdata_to_platdata = zynq_spi_ofdata_to_platdata, .platdata_auto_alloc_size = sizeof(struct zynq_spi_platdata), .priv_auto_alloc_size = sizeof(struct zynq_spi_priv), .probe = zynq_spi_probe, };