// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2011 The Chromium OS Authors. * * Patched for AX88772B by Antmicro Ltd */ #include #include #include #include #include #include #include #include "usb_ether.h" /* ASIX AX8817X based USB 2.0 Ethernet Devices */ #define AX_CMD_SET_SW_MII 0x06 #define AX_CMD_READ_MII_REG 0x07 #define AX_CMD_WRITE_MII_REG 0x08 #define AX_CMD_SET_HW_MII 0x0a #define AX_CMD_READ_EEPROM 0x0b #define AX_CMD_READ_RX_CTL 0x0f #define AX_CMD_WRITE_RX_CTL 0x10 #define AX_CMD_WRITE_IPG0 0x12 #define AX_CMD_READ_NODE_ID 0x13 #define AX_CMD_WRITE_NODE_ID 0x14 #define AX_CMD_READ_PHY_ID 0x19 #define AX_CMD_WRITE_MEDIUM_MODE 0x1b #define AX_CMD_WRITE_GPIOS 0x1f #define AX_CMD_SW_RESET 0x20 #define AX_CMD_SW_PHY_SELECT 0x22 #define AX_SWRESET_CLEAR 0x00 #define AX_SWRESET_PRTE 0x04 #define AX_SWRESET_PRL 0x08 #define AX_SWRESET_IPRL 0x20 #define AX_SWRESET_IPPD 0x40 #define AX88772_IPG0_DEFAULT 0x15 #define AX88772_IPG1_DEFAULT 0x0c #define AX88772_IPG2_DEFAULT 0x12 /* AX88772 & AX88178 Medium Mode Register */ #define AX_MEDIUM_PF 0x0080 #define AX_MEDIUM_JFE 0x0040 #define AX_MEDIUM_TFC 0x0020 #define AX_MEDIUM_RFC 0x0010 #define AX_MEDIUM_ENCK 0x0008 #define AX_MEDIUM_AC 0x0004 #define AX_MEDIUM_FD 0x0002 #define AX_MEDIUM_GM 0x0001 #define AX_MEDIUM_SM 0x1000 #define AX_MEDIUM_SBP 0x0800 #define AX_MEDIUM_PS 0x0200 #define AX_MEDIUM_RE 0x0100 #define AX88178_MEDIUM_DEFAULT \ (AX_MEDIUM_PS | AX_MEDIUM_FD | AX_MEDIUM_AC | \ AX_MEDIUM_RFC | AX_MEDIUM_TFC | AX_MEDIUM_JFE | \ AX_MEDIUM_RE) #define AX88772_MEDIUM_DEFAULT \ (AX_MEDIUM_FD | AX_MEDIUM_RFC | \ AX_MEDIUM_TFC | AX_MEDIUM_PS | \ AX_MEDIUM_AC | AX_MEDIUM_RE) /* AX88772 & AX88178 RX_CTL values */ #define AX_RX_CTL_SO 0x0080 #define AX_RX_CTL_AB 0x0008 #define AX_DEFAULT_RX_CTL \ (AX_RX_CTL_SO | AX_RX_CTL_AB) /* GPIO 2 toggles */ #define AX_GPIO_GPO2EN 0x10 /* GPIO2 Output enable */ #define AX_GPIO_GPO_2 0x20 /* GPIO2 Output value */ #define AX_GPIO_RSE 0x80 /* Reload serial EEPROM */ /* local defines */ #define ASIX_BASE_NAME "asx" #define USB_CTRL_SET_TIMEOUT 5000 #define USB_CTRL_GET_TIMEOUT 5000 #define USB_BULK_SEND_TIMEOUT 5000 #define USB_BULK_RECV_TIMEOUT 5000 #define AX_RX_URB_SIZE 2048 #define PHY_CONNECT_TIMEOUT 5000 /* asix_flags defines */ #define FLAG_NONE 0 #define FLAG_TYPE_AX88172 (1U << 0) #define FLAG_TYPE_AX88772 (1U << 1) #define FLAG_TYPE_AX88772B (1U << 2) #define FLAG_EEPROM_MAC (1U << 3) /* initial mac address in eeprom */ /* driver private */ struct asix_private { int flags; #ifdef CONFIG_DM_ETH struct ueth_data ueth; #endif }; #ifndef CONFIG_DM_ETH /* local vars */ static int curr_eth_dev; /* index for name of next device detected */ #endif /* * Asix infrastructure commands */ static int asix_write_cmd(struct ueth_data *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { int len; debug("asix_write_cmd() cmd=0x%02x value=0x%04x index=0x%04x " "size=%d\n", cmd, value, index, size); len = usb_control_msg( dev->pusb_dev, usb_sndctrlpipe(dev->pusb_dev, 0), cmd, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, index, data, size, USB_CTRL_SET_TIMEOUT); return len == size ? 0 : -1; } static int asix_read_cmd(struct ueth_data *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { int len; debug("asix_read_cmd() cmd=0x%02x value=0x%04x index=0x%04x size=%d\n", cmd, value, index, size); len = usb_control_msg( dev->pusb_dev, usb_rcvctrlpipe(dev->pusb_dev, 0), cmd, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, index, data, size, USB_CTRL_GET_TIMEOUT); return len == size ? 0 : -1; } static inline int asix_set_sw_mii(struct ueth_data *dev) { int ret; ret = asix_write_cmd(dev, AX_CMD_SET_SW_MII, 0x0000, 0, 0, NULL); if (ret < 0) debug("Failed to enable software MII access\n"); return ret; } static inline int asix_set_hw_mii(struct ueth_data *dev) { int ret; ret = asix_write_cmd(dev, AX_CMD_SET_HW_MII, 0x0000, 0, 0, NULL); if (ret < 0) debug("Failed to enable hardware MII access\n"); return ret; } static int asix_mdio_read(struct ueth_data *dev, int phy_id, int loc) { ALLOC_CACHE_ALIGN_BUFFER(__le16, res, 1); asix_set_sw_mii(dev); asix_read_cmd(dev, AX_CMD_READ_MII_REG, phy_id, (__u16)loc, 2, res); asix_set_hw_mii(dev); debug("asix_mdio_read() phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n", phy_id, loc, le16_to_cpu(*res)); return le16_to_cpu(*res); } static void asix_mdio_write(struct ueth_data *dev, int phy_id, int loc, int val) { ALLOC_CACHE_ALIGN_BUFFER(__le16, res, 1); *res = cpu_to_le16(val); debug("asix_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x\n", phy_id, loc, val); asix_set_sw_mii(dev); asix_write_cmd(dev, AX_CMD_WRITE_MII_REG, phy_id, (__u16)loc, 2, res); asix_set_hw_mii(dev); } /* * Asix "high level" commands */ static int asix_sw_reset(struct ueth_data *dev, u8 flags) { int ret; ret = asix_write_cmd(dev, AX_CMD_SW_RESET, flags, 0, 0, NULL); if (ret < 0) debug("Failed to send software reset: %02x\n", ret); else udelay(150 * 1000); return ret; } static inline int asix_get_phy_addr(struct ueth_data *dev) { ALLOC_CACHE_ALIGN_BUFFER(u8, buf, 2); int ret = asix_read_cmd(dev, AX_CMD_READ_PHY_ID, 0, 0, 2, buf); debug("asix_get_phy_addr()\n"); if (ret < 0) { debug("Error reading PHYID register: %02x\n", ret); goto out; } debug("asix_get_phy_addr() returning 0x%02x%02x\n", buf[0], buf[1]); ret = buf[1]; out: return ret; } static int asix_write_medium_mode(struct ueth_data *dev, u16 mode) { int ret; debug("asix_write_medium_mode() - mode = 0x%04x\n", mode); ret = asix_write_cmd(dev, AX_CMD_WRITE_MEDIUM_MODE, mode, 0, 0, NULL); if (ret < 0) { debug("Failed to write Medium Mode mode to 0x%04x: %02x\n", mode, ret); } return ret; } static u16 asix_read_rx_ctl(struct ueth_data *dev) { ALLOC_CACHE_ALIGN_BUFFER(__le16, v, 1); int ret = asix_read_cmd(dev, AX_CMD_READ_RX_CTL, 0, 0, 2, v); if (ret < 0) debug("Error reading RX_CTL register: %02x\n", ret); else ret = le16_to_cpu(*v); return ret; } static int asix_write_rx_ctl(struct ueth_data *dev, u16 mode) { int ret; debug("asix_write_rx_ctl() - mode = 0x%04x\n", mode); ret = asix_write_cmd(dev, AX_CMD_WRITE_RX_CTL, mode, 0, 0, NULL); if (ret < 0) { debug("Failed to write RX_CTL mode to 0x%04x: %02x\n", mode, ret); } return ret; } static int asix_write_gpio(struct ueth_data *dev, u16 value, int sleep) { int ret; debug("asix_write_gpio() - value = 0x%04x\n", value); ret = asix_write_cmd(dev, AX_CMD_WRITE_GPIOS, value, 0, 0, NULL); if (ret < 0) { debug("Failed to write GPIO value 0x%04x: %02x\n", value, ret); } if (sleep) udelay(sleep * 1000); return ret; } static int asix_write_hwaddr_common(struct ueth_data *dev, uint8_t *enetaddr) { int ret; ALLOC_CACHE_ALIGN_BUFFER(unsigned char, buf, ETH_ALEN); memcpy(buf, enetaddr, ETH_ALEN); ret = asix_write_cmd(dev, AX_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN, buf); if (ret < 0) debug("Failed to set MAC address: %02x\n", ret); return ret; } /* * mii commands */ /* * mii_nway_restart - restart NWay (autonegotiation) for this interface * * Returns 0 on success, negative on error. */ static int mii_nway_restart(struct ueth_data *dev) { int bmcr; int r = -1; /* if autoneg is off, it's an error */ bmcr = asix_mdio_read(dev, dev->phy_id, MII_BMCR); if (bmcr & BMCR_ANENABLE) { bmcr |= BMCR_ANRESTART; asix_mdio_write(dev, dev->phy_id, MII_BMCR, bmcr); r = 0; } return r; } static int asix_read_mac_common(struct ueth_data *dev, struct asix_private *priv, uint8_t *enetaddr) { ALLOC_CACHE_ALIGN_BUFFER(unsigned char, buf, ETH_ALEN); int i; if (priv->flags & FLAG_EEPROM_MAC) { for (i = 0; i < (ETH_ALEN >> 1); i++) { if (asix_read_cmd(dev, AX_CMD_READ_EEPROM, 0x04 + i, 0, 2, buf) < 0) { debug("Failed to read SROM address 04h.\n"); return -1; } memcpy(enetaddr + i * 2, buf, 2); } } else { if (asix_read_cmd(dev, AX_CMD_READ_NODE_ID, 0, 0, ETH_ALEN, buf) < 0) { debug("Failed to read MAC address.\n"); return -1; } memcpy(enetaddr, buf, ETH_ALEN); } return 0; } static int asix_basic_reset(struct ueth_data *dev) { int embd_phy; u16 rx_ctl; if (asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_2 | AX_GPIO_GPO2EN, 5) < 0) return -1; /* 0x10 is the phy id of the embedded 10/100 ethernet phy */ embd_phy = ((asix_get_phy_addr(dev) & 0x1f) == 0x10 ? 1 : 0); if (asix_write_cmd(dev, AX_CMD_SW_PHY_SELECT, embd_phy, 0, 0, NULL) < 0) { debug("Select PHY #1 failed\n"); return -1; } if (asix_sw_reset(dev, AX_SWRESET_IPPD | AX_SWRESET_PRL) < 0) return -1; if (asix_sw_reset(dev, AX_SWRESET_CLEAR) < 0) return -1; if (embd_phy) { if (asix_sw_reset(dev, AX_SWRESET_IPRL) < 0) return -1; } else { if (asix_sw_reset(dev, AX_SWRESET_PRTE) < 0) return -1; } rx_ctl = asix_read_rx_ctl(dev); debug("RX_CTL is 0x%04x after software reset\n", rx_ctl); if (asix_write_rx_ctl(dev, 0x0000) < 0) return -1; rx_ctl = asix_read_rx_ctl(dev); debug("RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl); dev->phy_id = asix_get_phy_addr(dev); if (dev->phy_id < 0) debug("Failed to read phy id\n"); asix_mdio_write(dev, dev->phy_id, MII_BMCR, BMCR_RESET); asix_mdio_write(dev, dev->phy_id, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_CSMA); mii_nway_restart(dev); if (asix_write_medium_mode(dev, AX88772_MEDIUM_DEFAULT) < 0) return -1; if (asix_write_cmd(dev, AX_CMD_WRITE_IPG0, AX88772_IPG0_DEFAULT | AX88772_IPG1_DEFAULT, AX88772_IPG2_DEFAULT, 0, NULL) < 0) { debug("Write IPG,IPG1,IPG2 failed\n"); return -1; } return 0; } static int asix_init_common(struct ueth_data *dev, uint8_t *enetaddr) { int timeout = 0; #define TIMEOUT_RESOLUTION 50 /* ms */ int link_detected; debug("** %s()\n", __func__); if (asix_write_rx_ctl(dev, AX_DEFAULT_RX_CTL) < 0) goto out_err; if (asix_write_hwaddr_common(dev, enetaddr) < 0) goto out_err; do { link_detected = asix_mdio_read(dev, dev->phy_id, MII_BMSR) & BMSR_LSTATUS; if (!link_detected) { if (timeout == 0) printf("Waiting for Ethernet connection... "); udelay(TIMEOUT_RESOLUTION * 1000); timeout += TIMEOUT_RESOLUTION; } } while (!link_detected && timeout < PHY_CONNECT_TIMEOUT); if (link_detected) { if (timeout != 0) printf("done.\n"); } else { printf("unable to connect.\n"); goto out_err; } /* * Wait some more to avoid timeout on first transfer * (e.g. EHCI timed out on TD - token=0x8008d80) */ mdelay(25); return 0; out_err: return -1; } static int asix_send_common(struct ueth_data *dev, void *packet, int length) { int err; u32 packet_len; int actual_len; ALLOC_CACHE_ALIGN_BUFFER(unsigned char, msg, PKTSIZE + sizeof(packet_len)); debug("** %s(), len %d\n", __func__, length); packet_len = (((length) ^ 0x0000ffff) << 16) + (length); cpu_to_le32s(&packet_len); memcpy(msg, &packet_len, sizeof(packet_len)); memcpy(msg + sizeof(packet_len), (void *)packet, length); err = usb_bulk_msg(dev->pusb_dev, usb_sndbulkpipe(dev->pusb_dev, dev->ep_out), (void *)msg, length + sizeof(packet_len), &actual_len, USB_BULK_SEND_TIMEOUT); debug("Tx: len = %zu, actual = %u, err = %d\n", length + sizeof(packet_len), actual_len, err); return err; } #ifndef CONFIG_DM_ETH /* * Asix callbacks */ static int asix_init(struct eth_device *eth, bd_t *bd) { struct ueth_data *dev = (struct ueth_data *)eth->priv; return asix_init_common(dev, eth->enetaddr); } static int asix_send(struct eth_device *eth, void *packet, int length) { struct ueth_data *dev = (struct ueth_data *)eth->priv; return asix_send_common(dev, packet, length); } static int asix_recv(struct eth_device *eth) { struct ueth_data *dev = (struct ueth_data *)eth->priv; ALLOC_CACHE_ALIGN_BUFFER(unsigned char, recv_buf, AX_RX_URB_SIZE); unsigned char *buf_ptr; int err; int actual_len; u32 packet_len; debug("** %s()\n", __func__); err = usb_bulk_msg(dev->pusb_dev, usb_rcvbulkpipe(dev->pusb_dev, dev->ep_in), (void *)recv_buf, AX_RX_URB_SIZE, &actual_len, USB_BULK_RECV_TIMEOUT); debug("Rx: len = %u, actual = %u, err = %d\n", AX_RX_URB_SIZE, actual_len, err); if (err != 0) { debug("Rx: failed to receive\n"); return -1; } if (actual_len > AX_RX_URB_SIZE) { debug("Rx: received too many bytes %d\n", actual_len); return -1; } buf_ptr = recv_buf; while (actual_len > 0) { /* * 1st 4 bytes contain the length of the actual data as two * complementary 16-bit words. Extract the length of the data. */ if (actual_len < sizeof(packet_len)) { debug("Rx: incomplete packet length\n"); return -1; } memcpy(&packet_len, buf_ptr, sizeof(packet_len)); le32_to_cpus(&packet_len); if (((~packet_len >> 16) & 0x7ff) != (packet_len & 0x7ff)) { debug("Rx: malformed packet length: %#x (%#x:%#x)\n", packet_len, (~packet_len >> 16) & 0x7ff, packet_len & 0x7ff); return -1; } packet_len = packet_len & 0x7ff; if (packet_len > actual_len - sizeof(packet_len)) { debug("Rx: too large packet: %d\n", packet_len); return -1; } /* Notify net stack */ net_process_received_packet(buf_ptr + sizeof(packet_len), packet_len); /* Adjust for next iteration. Packets are padded to 16-bits */ if (packet_len & 1) packet_len++; actual_len -= sizeof(packet_len) + packet_len; buf_ptr += sizeof(packet_len) + packet_len; } return err; } static void asix_halt(struct eth_device *eth) { debug("** %s()\n", __func__); } static int asix_write_hwaddr(struct eth_device *eth) { struct ueth_data *dev = (struct ueth_data *)eth->priv; return asix_write_hwaddr_common(dev, eth->enetaddr); } /* * Asix probing functions */ void asix_eth_before_probe(void) { curr_eth_dev = 0; } struct asix_dongle { unsigned short vendor; unsigned short product; int flags; }; static const struct asix_dongle asix_dongles[] = { { 0x05ac, 0x1402, FLAG_TYPE_AX88772 }, /* Apple USB Ethernet Adapter */ { 0x07d1, 0x3c05, FLAG_TYPE_AX88772 }, /* D-Link DUB-E100 H/W Ver B1 */ { 0x2001, 0x1a02, FLAG_TYPE_AX88772 }, /* D-Link DUB-E100 H/W Ver C1 */ /* Cables-to-Go USB Ethernet Adapter */ { 0x0b95, 0x772a, FLAG_TYPE_AX88772 }, { 0x0b95, 0x7720, FLAG_TYPE_AX88772 }, /* Trendnet TU2-ET100 V3.0R */ { 0x0b95, 0x1720, FLAG_TYPE_AX88172 }, /* SMC */ { 0x0db0, 0xa877, FLAG_TYPE_AX88772 }, /* MSI - ASIX 88772a */ { 0x13b1, 0x0018, FLAG_TYPE_AX88172 }, /* Linksys 200M v2.1 */ { 0x1557, 0x7720, FLAG_TYPE_AX88772 }, /* 0Q0 cable ethernet */ /* DLink DUB-E100 H/W Ver B1 Alternate */ { 0x2001, 0x3c05, FLAG_TYPE_AX88772 }, /* ASIX 88772B */ { 0x0b95, 0x772b, FLAG_TYPE_AX88772B | FLAG_EEPROM_MAC }, { 0x0b95, 0x7e2b, FLAG_TYPE_AX88772B }, { 0x0000, 0x0000, FLAG_NONE } /* END - Do not remove */ }; /* Probe to see if a new device is actually an asix device */ int asix_eth_probe(struct usb_device *dev, unsigned int ifnum, struct ueth_data *ss) { struct usb_interface *iface; struct usb_interface_descriptor *iface_desc; int ep_in_found = 0, ep_out_found = 0; int i; /* let's examine the device now */ iface = &dev->config.if_desc[ifnum]; iface_desc = &dev->config.if_desc[ifnum].desc; for (i = 0; asix_dongles[i].vendor != 0; i++) { if (dev->descriptor.idVendor == asix_dongles[i].vendor && dev->descriptor.idProduct == asix_dongles[i].product) /* Found a supported dongle */ break; } if (asix_dongles[i].vendor == 0) return 0; memset(ss, 0, sizeof(struct ueth_data)); /* At this point, we know we've got a live one */ debug("\n\nUSB Ethernet device detected: %#04x:%#04x\n", dev->descriptor.idVendor, dev->descriptor.idProduct); /* Initialize the ueth_data structure with some useful info */ ss->ifnum = ifnum; ss->pusb_dev = dev; ss->subclass = iface_desc->bInterfaceSubClass; ss->protocol = iface_desc->bInterfaceProtocol; /* alloc driver private */ ss->dev_priv = calloc(1, sizeof(struct asix_private)); if (!ss->dev_priv) return 0; ((struct asix_private *)ss->dev_priv)->flags = asix_dongles[i].flags; /* * We are expecting a minimum of 3 endpoints - in, out (bulk), and * int. We will ignore any others. */ for (i = 0; i < iface_desc->bNumEndpoints; i++) { /* is it an BULK endpoint? */ if ((iface->ep_desc[i].bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK) { u8 ep_addr = iface->ep_desc[i].bEndpointAddress; if (ep_addr & USB_DIR_IN) { if (!ep_in_found) { ss->ep_in = ep_addr & USB_ENDPOINT_NUMBER_MASK; ep_in_found = 1; } } else { if (!ep_out_found) { ss->ep_out = ep_addr & USB_ENDPOINT_NUMBER_MASK; ep_out_found = 1; } } } /* is it an interrupt endpoint? */ if ((iface->ep_desc[i].bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) { ss->ep_int = iface->ep_desc[i].bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; ss->irqinterval = iface->ep_desc[i].bInterval; } } debug("Endpoints In %d Out %d Int %d\n", ss->ep_in, ss->ep_out, ss->ep_int); /* Do some basic sanity checks, and bail if we find a problem */ if (usb_set_interface(dev, iface_desc->bInterfaceNumber, 0) || !ss->ep_in || !ss->ep_out || !ss->ep_int) { debug("Problems with device\n"); return 0; } dev->privptr = (void *)ss; return 1; } int asix_eth_get_info(struct usb_device *dev, struct ueth_data *ss, struct eth_device *eth) { struct asix_private *priv = (struct asix_private *)ss->dev_priv; if (!eth) { debug("%s: missing parameter.\n", __func__); return 0; } sprintf(eth->name, "%s%d", ASIX_BASE_NAME, curr_eth_dev++); eth->init = asix_init; eth->send = asix_send; eth->recv = asix_recv; eth->halt = asix_halt; if (!(priv->flags & FLAG_TYPE_AX88172)) eth->write_hwaddr = asix_write_hwaddr; eth->priv = ss; if (asix_basic_reset(ss)) return 0; /* Get the MAC address */ if (asix_read_mac_common(ss, priv, eth->enetaddr)) return 0; debug("MAC %pM\n", eth->enetaddr); return 1; } #endif #ifdef CONFIG_DM_ETH static int asix_eth_start(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct asix_private *priv = dev_get_priv(dev); return asix_init_common(&priv->ueth, pdata->enetaddr); } void asix_eth_stop(struct udevice *dev) { debug("** %s()\n", __func__); } int asix_eth_send(struct udevice *dev, void *packet, int length) { struct asix_private *priv = dev_get_priv(dev); return asix_send_common(&priv->ueth, packet, length); } int asix_eth_recv(struct udevice *dev, int flags, uchar **packetp) { struct asix_private *priv = dev_get_priv(dev); struct ueth_data *ueth = &priv->ueth; uint8_t *ptr; int ret, len; u32 packet_len; len = usb_ether_get_rx_bytes(ueth, &ptr); debug("%s: first try, len=%d\n", __func__, len); if (!len) { if (!(flags & ETH_RECV_CHECK_DEVICE)) return -EAGAIN; ret = usb_ether_receive(ueth, AX_RX_URB_SIZE); if (ret == -EAGAIN) return ret; len = usb_ether_get_rx_bytes(ueth, &ptr); debug("%s: second try, len=%d\n", __func__, len); } /* * 1st 4 bytes contain the length of the actual data as two * complementary 16-bit words. Extract the length of the data. */ if (len < sizeof(packet_len)) { debug("Rx: incomplete packet length\n"); goto err; } memcpy(&packet_len, ptr, sizeof(packet_len)); le32_to_cpus(&packet_len); if (((~packet_len >> 16) & 0x7ff) != (packet_len & 0x7ff)) { debug("Rx: malformed packet length: %#x (%#x:%#x)\n", packet_len, (~packet_len >> 16) & 0x7ff, packet_len & 0x7ff); goto err; } packet_len = packet_len & 0x7ff; if (packet_len > len - sizeof(packet_len)) { debug("Rx: too large packet: %d\n", packet_len); goto err; } *packetp = ptr + sizeof(packet_len); return packet_len; err: usb_ether_advance_rxbuf(ueth, -1); return -EINVAL; } static int asix_free_pkt(struct udevice *dev, uchar *packet, int packet_len) { struct asix_private *priv = dev_get_priv(dev); if (packet_len & 1) packet_len++; usb_ether_advance_rxbuf(&priv->ueth, sizeof(u32) + packet_len); return 0; } int asix_write_hwaddr(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct asix_private *priv = dev_get_priv(dev); if (priv->flags & FLAG_TYPE_AX88172) return -ENOSYS; return asix_write_hwaddr_common(&priv->ueth, pdata->enetaddr); } static int asix_eth_probe(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct asix_private *priv = dev_get_priv(dev); struct ueth_data *ss = &priv->ueth; int ret; priv->flags = dev->driver_data; ret = usb_ether_register(dev, ss, AX_RX_URB_SIZE); if (ret) return ret; ret = asix_basic_reset(ss); if (ret) goto err; /* Get the MAC address */ ret = asix_read_mac_common(ss, priv, pdata->enetaddr); if (ret) goto err; debug("MAC %pM\n", pdata->enetaddr); return 0; err: return usb_ether_deregister(ss); } static const struct eth_ops asix_eth_ops = { .start = asix_eth_start, .send = asix_eth_send, .recv = asix_eth_recv, .free_pkt = asix_free_pkt, .stop = asix_eth_stop, .write_hwaddr = asix_write_hwaddr, }; U_BOOT_DRIVER(asix_eth) = { .name = "asix_eth", .id = UCLASS_ETH, .probe = asix_eth_probe, .ops = &asix_eth_ops, .priv_auto_alloc_size = sizeof(struct asix_private), .platdata_auto_alloc_size = sizeof(struct eth_pdata), }; static const struct usb_device_id asix_eth_id_table[] = { /* Apple USB Ethernet Adapter */ { USB_DEVICE(0x05ac, 0x1402), .driver_info = FLAG_TYPE_AX88772 }, /* D-Link DUB-E100 H/W Ver B1 */ { USB_DEVICE(0x07d1, 0x3c05), .driver_info = FLAG_TYPE_AX88772 }, /* D-Link DUB-E100 H/W Ver C1 */ { USB_DEVICE(0x2001, 0x1a02), .driver_info = FLAG_TYPE_AX88772 }, /* Cables-to-Go USB Ethernet Adapter */ { USB_DEVICE(0x0b95, 0x772a), .driver_info = FLAG_TYPE_AX88772 }, /* Trendnet TU2-ET100 V3.0R */ { USB_DEVICE(0x0b95, 0x7720), .driver_info = FLAG_TYPE_AX88772 }, /* SMC */ { USB_DEVICE(0x0b95, 0x1720), .driver_info = FLAG_TYPE_AX88172 }, /* MSI - ASIX 88772a */ { USB_DEVICE(0x0db0, 0xa877), .driver_info = FLAG_TYPE_AX88772 }, /* Linksys 200M v2.1 */ { USB_DEVICE(0x13b1, 0x0018), .driver_info = FLAG_TYPE_AX88172 }, /* 0Q0 cable ethernet */ { USB_DEVICE(0x1557, 0x7720), .driver_info = FLAG_TYPE_AX88772 }, /* DLink DUB-E100 H/W Ver B1 Alternate */ { USB_DEVICE(0x2001, 0x3c05), .driver_info = FLAG_TYPE_AX88772 }, /* ASIX 88772B */ { USB_DEVICE(0x0b95, 0x772b), .driver_info = FLAG_TYPE_AX88772B | FLAG_EEPROM_MAC }, { USB_DEVICE(0x0b95, 0x7e2b), .driver_info = FLAG_TYPE_AX88772B }, { } /* Terminating entry */ }; U_BOOT_USB_DEVICE(asix_eth, asix_eth_id_table); #endif