/* * Porting to u-boot: * * (C) Copyright 2010 * Stefano Babic, DENX Software Engineering, sbabic@denx.de * * Linux IPU driver for MX51: * * (C) Copyright 2005-2010 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ /* #define DEBUG */ #include <common.h> #include <linux/types.h> #include <linux/err.h> #include <asm/io.h> #include <asm/errno.h> #include <asm/arch/imx-regs.h> #include <asm/arch/crm_regs.h> #include "ipu.h" #include "ipu_regs.h" extern struct mxc_ccm_reg *mxc_ccm; extern u32 *ipu_cpmem_base; struct ipu_ch_param_word { uint32_t data[5]; uint32_t res[3]; }; struct ipu_ch_param { struct ipu_ch_param_word word[2]; }; #define ipu_ch_param_addr(ch) (((struct ipu_ch_param *)ipu_cpmem_base) + (ch)) #define _param_word(base, w) \ (((struct ipu_ch_param *)(base))->word[(w)].data) #define ipu_ch_param_set_field(base, w, bit, size, v) { \ int i = (bit) / 32; \ int off = (bit) % 32; \ _param_word(base, w)[i] |= (v) << off; \ if (((bit) + (size) - 1) / 32 > i) { \ _param_word(base, w)[i + 1] |= (v) >> (off ? (32 - off) : 0); \ } \ } #define ipu_ch_param_mod_field(base, w, bit, size, v) { \ int i = (bit) / 32; \ int off = (bit) % 32; \ u32 mask = (1UL << size) - 1; \ u32 temp = _param_word(base, w)[i]; \ temp &= ~(mask << off); \ _param_word(base, w)[i] = temp | (v) << off; \ if (((bit) + (size) - 1) / 32 > i) { \ temp = _param_word(base, w)[i + 1]; \ temp &= ~(mask >> (32 - off)); \ _param_word(base, w)[i + 1] = \ temp | ((v) >> (off ? (32 - off) : 0)); \ } \ } #define ipu_ch_param_read_field(base, w, bit, size) ({ \ u32 temp2; \ int i = (bit) / 32; \ int off = (bit) % 32; \ u32 mask = (1UL << size) - 1; \ u32 temp1 = _param_word(base, w)[i]; \ temp1 = mask & (temp1 >> off); \ if (((bit)+(size) - 1) / 32 > i) { \ temp2 = _param_word(base, w)[i + 1]; \ temp2 &= mask >> (off ? (32 - off) : 0); \ temp1 |= temp2 << (off ? (32 - off) : 0); \ } \ temp1; \ }) #define IPU_SW_RST_TOUT_USEC (10000) void clk_enable(struct clk *clk) { if (clk) { if (clk->usecount++ == 0) { clk->enable(clk); } } } void clk_disable(struct clk *clk) { if (clk) { if (!(--clk->usecount)) { if (clk->disable) clk->disable(clk); } } } int clk_get_usecount(struct clk *clk) { if (clk == NULL) return 0; return clk->usecount; } u32 clk_get_rate(struct clk *clk) { if (!clk) return 0; return clk->rate; } struct clk *clk_get_parent(struct clk *clk) { if (!clk) return 0; return clk->parent; } int clk_set_rate(struct clk *clk, unsigned long rate) { if (clk && clk->set_rate) clk->set_rate(clk, rate); return clk->rate; } long clk_round_rate(struct clk *clk, unsigned long rate) { if (clk == NULL || !clk->round_rate) return 0; return clk->round_rate(clk, rate); } int clk_set_parent(struct clk *clk, struct clk *parent) { clk->parent = parent; if (clk->set_parent) return clk->set_parent(clk, parent); return 0; } static int clk_ipu_enable(struct clk *clk) { u32 reg; reg = __raw_readl(clk->enable_reg); reg |= MXC_CCM_CCGR_CG_MASK << clk->enable_shift; __raw_writel(reg, clk->enable_reg); #if defined(CONFIG_MX51) || defined(CONFIG_MX53) /* Handshake with IPU when certain clock rates are changed. */ reg = __raw_readl(&mxc_ccm->ccdr); reg &= ~MXC_CCM_CCDR_IPU_HS_MASK; __raw_writel(reg, &mxc_ccm->ccdr); /* Handshake with IPU when LPM is entered as its enabled. */ reg = __raw_readl(&mxc_ccm->clpcr); reg &= ~MXC_CCM_CLPCR_BYPASS_IPU_LPM_HS; __raw_writel(reg, &mxc_ccm->clpcr); #endif return 0; } static void clk_ipu_disable(struct clk *clk) { u32 reg; reg = __raw_readl(clk->enable_reg); reg &= ~(MXC_CCM_CCGR_CG_MASK << clk->enable_shift); __raw_writel(reg, clk->enable_reg); #if defined(CONFIG_MX51) || defined(CONFIG_MX53) /* * No handshake with IPU whe dividers are changed * as its not enabled. */ reg = __raw_readl(&mxc_ccm->ccdr); reg |= MXC_CCM_CCDR_IPU_HS_MASK; __raw_writel(reg, &mxc_ccm->ccdr); /* No handshake with IPU when LPM is entered as its not enabled. */ reg = __raw_readl(&mxc_ccm->clpcr); reg |= MXC_CCM_CLPCR_BYPASS_IPU_LPM_HS; __raw_writel(reg, &mxc_ccm->clpcr); #endif } static struct clk ipu_clk = { .name = "ipu_clk", .rate = CONFIG_IPUV3_CLK, #if defined(CONFIG_MX51) || defined(CONFIG_MX53) .enable_reg = (u32 *)(CCM_BASE_ADDR + offsetof(struct mxc_ccm_reg, CCGR5)), .enable_shift = MXC_CCM_CCGR5_IPU_OFFSET, #else .enable_reg = (u32 *)(CCM_BASE_ADDR + offsetof(struct mxc_ccm_reg, CCGR3)), .enable_shift = MXC_CCM_CCGR3_IPU1_IPU_DI0_OFFSET, #endif .enable = clk_ipu_enable, .disable = clk_ipu_disable, .usecount = 0, }; #if !defined CONFIG_SYS_LDB_CLOCK #define CONFIG_SYS_LDB_CLOCK 65000000 #endif static struct clk ldb_clk = { .name = "ldb_clk", .rate = CONFIG_SYS_LDB_CLOCK, .usecount = 0, }; /* Globals */ struct clk *g_ipu_clk; struct clk *g_ldb_clk; unsigned char g_ipu_clk_enabled; struct clk *g_di_clk[2]; struct clk *g_pixel_clk[2]; unsigned char g_dc_di_assignment[10]; uint32_t g_channel_init_mask; uint32_t g_channel_enable_mask; static int ipu_dc_use_count; static int ipu_dp_use_count; static int ipu_dmfc_use_count; static int ipu_di_use_count[2]; u32 *ipu_cpmem_base; u32 *ipu_dc_tmpl_reg; /* Static functions */ static inline void ipu_ch_param_set_high_priority(uint32_t ch) { ipu_ch_param_mod_field(ipu_ch_param_addr(ch), 1, 93, 2, 1); }; static inline uint32_t channel_2_dma(ipu_channel_t ch, ipu_buffer_t type) { return ((uint32_t) ch >> (6 * type)) & 0x3F; }; /* Either DP BG or DP FG can be graphic window */ static inline int ipu_is_dp_graphic_chan(uint32_t dma_chan) { return (dma_chan == 23 || dma_chan == 27); } static inline int ipu_is_dmfc_chan(uint32_t dma_chan) { return ((dma_chan >= 23) && (dma_chan <= 29)); } static inline void ipu_ch_param_set_buffer(uint32_t ch, int bufNum, dma_addr_t phyaddr) { ipu_ch_param_mod_field(ipu_ch_param_addr(ch), 1, 29 * bufNum, 29, phyaddr / 8); }; #define idma_is_valid(ch) (ch != NO_DMA) #define idma_mask(ch) (idma_is_valid(ch) ? (1UL << (ch & 0x1F)) : 0) #define idma_is_set(reg, dma) (__raw_readl(reg(dma)) & idma_mask(dma)) static void ipu_pixel_clk_recalc(struct clk *clk) { u32 div = __raw_readl(DI_BS_CLKGEN0(clk->id)); if (div == 0) clk->rate = 0; else clk->rate = (clk->parent->rate * 16) / div; } static unsigned long ipu_pixel_clk_round_rate(struct clk *clk, unsigned long rate) { u32 div, div1; u32 tmp; /* * Calculate divider * Fractional part is 4 bits, * so simply multiply by 2^4 to get fractional part. */ tmp = (clk->parent->rate * 16); div = tmp / rate; if (div < 0x10) /* Min DI disp clock divider is 1 */ div = 0x10; if (div & ~0xFEF) div &= 0xFF8; else { div1 = div & 0xFE0; if ((tmp/div1 - tmp/div) < rate / 4) div = div1; else div &= 0xFF8; } return (clk->parent->rate * 16) / div; } static int ipu_pixel_clk_set_rate(struct clk *clk, unsigned long rate) { u32 div = (clk->parent->rate * 16) / rate; __raw_writel(div, DI_BS_CLKGEN0(clk->id)); /* Setup pixel clock timing */ __raw_writel((div / 16) << 16, DI_BS_CLKGEN1(clk->id)); clk->rate = (clk->parent->rate * 16) / div; return 0; } static int ipu_pixel_clk_enable(struct clk *clk) { u32 disp_gen = __raw_readl(IPU_DISP_GEN); disp_gen |= clk->id ? DI1_COUNTER_RELEASE : DI0_COUNTER_RELEASE; __raw_writel(disp_gen, IPU_DISP_GEN); return 0; } static void ipu_pixel_clk_disable(struct clk *clk) { u32 disp_gen = __raw_readl(IPU_DISP_GEN); disp_gen &= clk->id ? ~DI1_COUNTER_RELEASE : ~DI0_COUNTER_RELEASE; __raw_writel(disp_gen, IPU_DISP_GEN); } static int ipu_pixel_clk_set_parent(struct clk *clk, struct clk *parent) { u32 di_gen = __raw_readl(DI_GENERAL(clk->id)); if (parent == g_ipu_clk) di_gen &= ~DI_GEN_DI_CLK_EXT; else if (!IS_ERR(g_di_clk[clk->id]) && parent == g_ldb_clk) di_gen |= DI_GEN_DI_CLK_EXT; else return -EINVAL; __raw_writel(di_gen, DI_GENERAL(clk->id)); ipu_pixel_clk_recalc(clk); return 0; } static struct clk pixel_clk[] = { { .name = "pixel_clk", .id = 0, .recalc = ipu_pixel_clk_recalc, .set_rate = ipu_pixel_clk_set_rate, .round_rate = ipu_pixel_clk_round_rate, .set_parent = ipu_pixel_clk_set_parent, .enable = ipu_pixel_clk_enable, .disable = ipu_pixel_clk_disable, .usecount = 0, }, { .name = "pixel_clk", .id = 1, .recalc = ipu_pixel_clk_recalc, .set_rate = ipu_pixel_clk_set_rate, .round_rate = ipu_pixel_clk_round_rate, .set_parent = ipu_pixel_clk_set_parent, .enable = ipu_pixel_clk_enable, .disable = ipu_pixel_clk_disable, .usecount = 0, }, }; /* * This function resets IPU */ static void ipu_reset(void) { u32 *reg; u32 value; int timeout = IPU_SW_RST_TOUT_USEC; reg = (u32 *)SRC_BASE_ADDR; value = __raw_readl(reg); value = value | SW_IPU_RST; __raw_writel(value, reg); while (__raw_readl(reg) & SW_IPU_RST) { udelay(1); if (!(timeout--)) { printf("ipu software reset timeout\n"); break; } }; } /* * This function is called by the driver framework to initialize the IPU * hardware. * * @param dev The device structure for the IPU passed in by the * driver framework. * * @return Returns 0 on success or negative error code on error */ int ipu_probe(void) { unsigned long ipu_base; #if defined CONFIG_MX51 u32 temp; u32 *reg_hsc_mcd = (u32 *)MIPI_HSC_BASE_ADDR; u32 *reg_hsc_mxt_conf = (u32 *)(MIPI_HSC_BASE_ADDR + 0x800); __raw_writel(0xF00, reg_hsc_mcd); /* CSI mode reserved*/ temp = __raw_readl(reg_hsc_mxt_conf); __raw_writel(temp | 0x0FF, reg_hsc_mxt_conf); temp = __raw_readl(reg_hsc_mxt_conf); __raw_writel(temp | 0x10000, reg_hsc_mxt_conf); #endif ipu_base = IPU_CTRL_BASE_ADDR; ipu_cpmem_base = (u32 *)(ipu_base + IPU_CPMEM_REG_BASE); ipu_dc_tmpl_reg = (u32 *)(ipu_base + IPU_DC_TMPL_REG_BASE); g_pixel_clk[0] = &pixel_clk[0]; g_pixel_clk[1] = &pixel_clk[1]; g_ipu_clk = &ipu_clk; debug("ipu_clk = %u\n", clk_get_rate(g_ipu_clk)); g_ldb_clk = &ldb_clk; debug("ldb_clk = %u\n", clk_get_rate(g_ldb_clk)); ipu_reset(); clk_set_parent(g_pixel_clk[0], g_ipu_clk); clk_set_parent(g_pixel_clk[1], g_ipu_clk); clk_enable(g_ipu_clk); g_di_clk[0] = NULL; g_di_clk[1] = NULL; __raw_writel(0x807FFFFF, IPU_MEM_RST); while (__raw_readl(IPU_MEM_RST) & 0x80000000) ; ipu_init_dc_mappings(); __raw_writel(0, IPU_INT_CTRL(5)); __raw_writel(0, IPU_INT_CTRL(6)); __raw_writel(0, IPU_INT_CTRL(9)); __raw_writel(0, IPU_INT_CTRL(10)); /* DMFC Init */ ipu_dmfc_init(DMFC_NORMAL, 1); /* Set sync refresh channels as high priority */ __raw_writel(0x18800000L, IDMAC_CHA_PRI(0)); /* Set MCU_T to divide MCU access window into 2 */ __raw_writel(0x00400000L | (IPU_MCU_T_DEFAULT << 18), IPU_DISP_GEN); clk_disable(g_ipu_clk); return 0; } void ipu_dump_registers(void) { debug("IPU_CONF = \t0x%08X\n", __raw_readl(IPU_CONF)); debug("IDMAC_CONF = \t0x%08X\n", __raw_readl(IDMAC_CONF)); debug("IDMAC_CHA_EN1 = \t0x%08X\n", __raw_readl(IDMAC_CHA_EN(0))); debug("IDMAC_CHA_EN2 = \t0x%08X\n", __raw_readl(IDMAC_CHA_EN(32))); debug("IDMAC_CHA_PRI1 = \t0x%08X\n", __raw_readl(IDMAC_CHA_PRI(0))); debug("IDMAC_CHA_PRI2 = \t0x%08X\n", __raw_readl(IDMAC_CHA_PRI(32))); debug("IPU_CHA_DB_MODE_SEL0 = \t0x%08X\n", __raw_readl(IPU_CHA_DB_MODE_SEL(0))); debug("IPU_CHA_DB_MODE_SEL1 = \t0x%08X\n", __raw_readl(IPU_CHA_DB_MODE_SEL(32))); debug("DMFC_WR_CHAN = \t0x%08X\n", __raw_readl(DMFC_WR_CHAN)); debug("DMFC_WR_CHAN_DEF = \t0x%08X\n", __raw_readl(DMFC_WR_CHAN_DEF)); debug("DMFC_DP_CHAN = \t0x%08X\n", __raw_readl(DMFC_DP_CHAN)); debug("DMFC_DP_CHAN_DEF = \t0x%08X\n", __raw_readl(DMFC_DP_CHAN_DEF)); debug("DMFC_IC_CTRL = \t0x%08X\n", __raw_readl(DMFC_IC_CTRL)); debug("IPU_FS_PROC_FLOW1 = \t0x%08X\n", __raw_readl(IPU_FS_PROC_FLOW1)); debug("IPU_FS_PROC_FLOW2 = \t0x%08X\n", __raw_readl(IPU_FS_PROC_FLOW2)); debug("IPU_FS_PROC_FLOW3 = \t0x%08X\n", __raw_readl(IPU_FS_PROC_FLOW3)); debug("IPU_FS_DISP_FLOW1 = \t0x%08X\n", __raw_readl(IPU_FS_DISP_FLOW1)); } /* * This function is called to initialize a logical IPU channel. * * @param channel Input parameter for the logical channel ID to init. * * @param params Input parameter containing union of channel * initialization parameters. * * @return Returns 0 on success or negative error code on fail */ int32_t ipu_init_channel(ipu_channel_t channel, ipu_channel_params_t *params) { int ret = 0; uint32_t ipu_conf; debug("init channel = %d\n", IPU_CHAN_ID(channel)); if (g_ipu_clk_enabled == 0) { g_ipu_clk_enabled = 1; clk_enable(g_ipu_clk); } if (g_channel_init_mask & (1L << IPU_CHAN_ID(channel))) { printf("Warning: channel already initialized %d\n", IPU_CHAN_ID(channel)); } ipu_conf = __raw_readl(IPU_CONF); switch (channel) { case MEM_DC_SYNC: if (params->mem_dc_sync.di > 1) { ret = -EINVAL; goto err; } g_dc_di_assignment[1] = params->mem_dc_sync.di; ipu_dc_init(1, params->mem_dc_sync.di, params->mem_dc_sync.interlaced); ipu_di_use_count[params->mem_dc_sync.di]++; ipu_dc_use_count++; ipu_dmfc_use_count++; break; case MEM_BG_SYNC: if (params->mem_dp_bg_sync.di > 1) { ret = -EINVAL; goto err; } g_dc_di_assignment[5] = params->mem_dp_bg_sync.di; ipu_dp_init(channel, params->mem_dp_bg_sync.in_pixel_fmt, params->mem_dp_bg_sync.out_pixel_fmt); ipu_dc_init(5, params->mem_dp_bg_sync.di, params->mem_dp_bg_sync.interlaced); ipu_di_use_count[params->mem_dp_bg_sync.di]++; ipu_dc_use_count++; ipu_dp_use_count++; ipu_dmfc_use_count++; break; case MEM_FG_SYNC: ipu_dp_init(channel, params->mem_dp_fg_sync.in_pixel_fmt, params->mem_dp_fg_sync.out_pixel_fmt); ipu_dc_use_count++; ipu_dp_use_count++; ipu_dmfc_use_count++; break; default: printf("Missing channel initialization\n"); break; } /* Enable IPU sub module */ g_channel_init_mask |= 1L << IPU_CHAN_ID(channel); if (ipu_dc_use_count == 1) ipu_conf |= IPU_CONF_DC_EN; if (ipu_dp_use_count == 1) ipu_conf |= IPU_CONF_DP_EN; if (ipu_dmfc_use_count == 1) ipu_conf |= IPU_CONF_DMFC_EN; if (ipu_di_use_count[0] == 1) { ipu_conf |= IPU_CONF_DI0_EN; } if (ipu_di_use_count[1] == 1) { ipu_conf |= IPU_CONF_DI1_EN; } __raw_writel(ipu_conf, IPU_CONF); err: return ret; } /* * This function is called to uninitialize a logical IPU channel. * * @param channel Input parameter for the logical channel ID to uninit. */ void ipu_uninit_channel(ipu_channel_t channel) { uint32_t reg; uint32_t in_dma, out_dma = 0; uint32_t ipu_conf; if ((g_channel_init_mask & (1L << IPU_CHAN_ID(channel))) == 0) { debug("Channel already uninitialized %d\n", IPU_CHAN_ID(channel)); return; } /* * Make sure channel is disabled * Get input and output dma channels */ in_dma = channel_2_dma(channel, IPU_OUTPUT_BUFFER); out_dma = channel_2_dma(channel, IPU_VIDEO_IN_BUFFER); if (idma_is_set(IDMAC_CHA_EN, in_dma) || idma_is_set(IDMAC_CHA_EN, out_dma)) { printf( "Channel %d is not disabled, disable first\n", IPU_CHAN_ID(channel)); return; } ipu_conf = __raw_readl(IPU_CONF); /* Reset the double buffer */ reg = __raw_readl(IPU_CHA_DB_MODE_SEL(in_dma)); __raw_writel(reg & ~idma_mask(in_dma), IPU_CHA_DB_MODE_SEL(in_dma)); reg = __raw_readl(IPU_CHA_DB_MODE_SEL(out_dma)); __raw_writel(reg & ~idma_mask(out_dma), IPU_CHA_DB_MODE_SEL(out_dma)); switch (channel) { case MEM_DC_SYNC: ipu_dc_uninit(1); ipu_di_use_count[g_dc_di_assignment[1]]--; ipu_dc_use_count--; ipu_dmfc_use_count--; break; case MEM_BG_SYNC: ipu_dp_uninit(channel); ipu_dc_uninit(5); ipu_di_use_count[g_dc_di_assignment[5]]--; ipu_dc_use_count--; ipu_dp_use_count--; ipu_dmfc_use_count--; break; case MEM_FG_SYNC: ipu_dp_uninit(channel); ipu_dc_use_count--; ipu_dp_use_count--; ipu_dmfc_use_count--; break; default: break; } g_channel_init_mask &= ~(1L << IPU_CHAN_ID(channel)); if (ipu_dc_use_count == 0) ipu_conf &= ~IPU_CONF_DC_EN; if (ipu_dp_use_count == 0) ipu_conf &= ~IPU_CONF_DP_EN; if (ipu_dmfc_use_count == 0) ipu_conf &= ~IPU_CONF_DMFC_EN; if (ipu_di_use_count[0] == 0) { ipu_conf &= ~IPU_CONF_DI0_EN; } if (ipu_di_use_count[1] == 0) { ipu_conf &= ~IPU_CONF_DI1_EN; } __raw_writel(ipu_conf, IPU_CONF); if (ipu_conf == 0) { clk_disable(g_ipu_clk); g_ipu_clk_enabled = 0; } } static inline void ipu_ch_param_dump(int ch) { #ifdef DEBUG struct ipu_ch_param *p = ipu_ch_param_addr(ch); debug("ch %d word 0 - %08X %08X %08X %08X %08X\n", ch, p->word[0].data[0], p->word[0].data[1], p->word[0].data[2], p->word[0].data[3], p->word[0].data[4]); debug("ch %d word 1 - %08X %08X %08X %08X %08X\n", ch, p->word[1].data[0], p->word[1].data[1], p->word[1].data[2], p->word[1].data[3], p->word[1].data[4]); debug("PFS 0x%x, ", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 85, 4)); debug("BPP 0x%x, ", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 0, 107, 3)); debug("NPB 0x%x\n", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 78, 7)); debug("FW %d, ", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 0, 125, 13)); debug("FH %d, ", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 0, 138, 12)); debug("Stride %d\n", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 102, 14)); debug("Width0 %d+1, ", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 116, 3)); debug("Width1 %d+1, ", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 119, 3)); debug("Width2 %d+1, ", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 122, 3)); debug("Width3 %d+1, ", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 125, 3)); debug("Offset0 %d, ", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 128, 5)); debug("Offset1 %d, ", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 133, 5)); debug("Offset2 %d, ", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 138, 5)); debug("Offset3 %d\n", ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 143, 5)); #endif } static inline void ipu_ch_params_set_packing(struct ipu_ch_param *p, int red_width, int red_offset, int green_width, int green_offset, int blue_width, int blue_offset, int alpha_width, int alpha_offset) { /* Setup red width and offset */ ipu_ch_param_set_field(p, 1, 116, 3, red_width - 1); ipu_ch_param_set_field(p, 1, 128, 5, red_offset); /* Setup green width and offset */ ipu_ch_param_set_field(p, 1, 119, 3, green_width - 1); ipu_ch_param_set_field(p, 1, 133, 5, green_offset); /* Setup blue width and offset */ ipu_ch_param_set_field(p, 1, 122, 3, blue_width - 1); ipu_ch_param_set_field(p, 1, 138, 5, blue_offset); /* Setup alpha width and offset */ ipu_ch_param_set_field(p, 1, 125, 3, alpha_width - 1); ipu_ch_param_set_field(p, 1, 143, 5, alpha_offset); } static void ipu_ch_param_init(int ch, uint32_t pixel_fmt, uint32_t width, uint32_t height, uint32_t stride, uint32_t u, uint32_t v, uint32_t uv_stride, dma_addr_t addr0, dma_addr_t addr1) { uint32_t u_offset = 0; uint32_t v_offset = 0; struct ipu_ch_param params; memset(¶ms, 0, sizeof(params)); ipu_ch_param_set_field(¶ms, 0, 125, 13, width - 1); if ((ch == 8) || (ch == 9) || (ch == 10)) { ipu_ch_param_set_field(¶ms, 0, 138, 12, (height / 2) - 1); ipu_ch_param_set_field(¶ms, 1, 102, 14, (stride * 2) - 1); } else { ipu_ch_param_set_field(¶ms, 0, 138, 12, height - 1); ipu_ch_param_set_field(¶ms, 1, 102, 14, stride - 1); } ipu_ch_param_set_field(¶ms, 1, 0, 29, addr0 >> 3); ipu_ch_param_set_field(¶ms, 1, 29, 29, addr1 >> 3); switch (pixel_fmt) { case IPU_PIX_FMT_GENERIC: /*Represents 8-bit Generic data */ ipu_ch_param_set_field(¶ms, 0, 107, 3, 5); /* bits/pixel */ ipu_ch_param_set_field(¶ms, 1, 85, 4, 6); /* pix format */ ipu_ch_param_set_field(¶ms, 1, 78, 7, 63); /* burst size */ break; case IPU_PIX_FMT_GENERIC_32: /*Represents 32-bit Generic data */ break; case IPU_PIX_FMT_RGB565: ipu_ch_param_set_field(¶ms, 0, 107, 3, 3); /* bits/pixel */ ipu_ch_param_set_field(¶ms, 1, 85, 4, 7); /* pix format */ ipu_ch_param_set_field(¶ms, 1, 78, 7, 15); /* burst size */ ipu_ch_params_set_packing(¶ms, 5, 0, 6, 5, 5, 11, 8, 16); break; case IPU_PIX_FMT_BGR24: ipu_ch_param_set_field(¶ms, 0, 107, 3, 1); /* bits/pixel */ ipu_ch_param_set_field(¶ms, 1, 85, 4, 7); /* pix format */ ipu_ch_param_set_field(¶ms, 1, 78, 7, 19); /* burst size */ ipu_ch_params_set_packing(¶ms, 8, 0, 8, 8, 8, 16, 8, 24); break; case IPU_PIX_FMT_RGB24: case IPU_PIX_FMT_YUV444: ipu_ch_param_set_field(¶ms, 0, 107, 3, 1); /* bits/pixel */ ipu_ch_param_set_field(¶ms, 1, 85, 4, 7); /* pix format */ ipu_ch_param_set_field(¶ms, 1, 78, 7, 19); /* burst size */ ipu_ch_params_set_packing(¶ms, 8, 16, 8, 8, 8, 0, 8, 24); break; case IPU_PIX_FMT_BGRA32: case IPU_PIX_FMT_BGR32: ipu_ch_param_set_field(¶ms, 0, 107, 3, 0); /* bits/pixel */ ipu_ch_param_set_field(¶ms, 1, 85, 4, 7); /* pix format */ ipu_ch_param_set_field(¶ms, 1, 78, 7, 15); /* burst size */ ipu_ch_params_set_packing(¶ms, 8, 8, 8, 16, 8, 24, 8, 0); break; case IPU_PIX_FMT_RGBA32: case IPU_PIX_FMT_RGB32: ipu_ch_param_set_field(¶ms, 0, 107, 3, 0); /* bits/pixel */ ipu_ch_param_set_field(¶ms, 1, 85, 4, 7); /* pix format */ ipu_ch_param_set_field(¶ms, 1, 78, 7, 15); /* burst size */ ipu_ch_params_set_packing(¶ms, 8, 24, 8, 16, 8, 8, 8, 0); break; case IPU_PIX_FMT_ABGR32: ipu_ch_param_set_field(¶ms, 0, 107, 3, 0); /* bits/pixel */ ipu_ch_param_set_field(¶ms, 1, 85, 4, 7); /* pix format */ ipu_ch_params_set_packing(¶ms, 8, 0, 8, 8, 8, 16, 8, 24); break; case IPU_PIX_FMT_UYVY: ipu_ch_param_set_field(¶ms, 0, 107, 3, 3); /* bits/pixel */ ipu_ch_param_set_field(¶ms, 1, 85, 4, 0xA); /* pix format */ ipu_ch_param_set_field(¶ms, 1, 78, 7, 15); /* burst size */ break; case IPU_PIX_FMT_YUYV: ipu_ch_param_set_field(¶ms, 0, 107, 3, 3); /* bits/pixel */ ipu_ch_param_set_field(¶ms, 1, 85, 4, 0x8); /* pix format */ ipu_ch_param_set_field(¶ms, 1, 78, 7, 31); /* burst size */ break; case IPU_PIX_FMT_YUV420P2: case IPU_PIX_FMT_YUV420P: ipu_ch_param_set_field(¶ms, 1, 85, 4, 2); /* pix format */ if (uv_stride < stride / 2) uv_stride = stride / 2; u_offset = stride * height; v_offset = u_offset + (uv_stride * height / 2); /* burst size */ if ((ch == 8) || (ch == 9) || (ch == 10)) { ipu_ch_param_set_field(¶ms, 1, 78, 7, 15); uv_stride = uv_stride*2; } else { ipu_ch_param_set_field(¶ms, 1, 78, 7, 31); } break; case IPU_PIX_FMT_YVU422P: /* BPP & pixel format */ ipu_ch_param_set_field(¶ms, 1, 85, 4, 1); /* pix format */ ipu_ch_param_set_field(¶ms, 1, 78, 7, 31); /* burst size */ if (uv_stride < stride / 2) uv_stride = stride / 2; v_offset = (v == 0) ? stride * height : v; u_offset = (u == 0) ? v_offset + v_offset / 2 : u; break; case IPU_PIX_FMT_YUV422P: /* BPP & pixel format */ ipu_ch_param_set_field(¶ms, 1, 85, 4, 1); /* pix format */ ipu_ch_param_set_field(¶ms, 1, 78, 7, 31); /* burst size */ if (uv_stride < stride / 2) uv_stride = stride / 2; u_offset = (u == 0) ? stride * height : u; v_offset = (v == 0) ? u_offset + u_offset / 2 : v; break; case IPU_PIX_FMT_NV12: /* BPP & pixel format */ ipu_ch_param_set_field(¶ms, 1, 85, 4, 4); /* pix format */ ipu_ch_param_set_field(¶ms, 1, 78, 7, 31); /* burst size */ uv_stride = stride; u_offset = (u == 0) ? stride * height : u; break; default: puts("mxc ipu: unimplemented pixel format\n"); break; } if (uv_stride) ipu_ch_param_set_field(¶ms, 1, 128, 14, uv_stride - 1); /* Get the uv offset from user when need cropping */ if (u || v) { u_offset = u; v_offset = v; } /* UBO and VBO are 22-bit */ if (u_offset/8 > 0x3fffff) puts("The value of U offset exceeds IPU limitation\n"); if (v_offset/8 > 0x3fffff) puts("The value of V offset exceeds IPU limitation\n"); ipu_ch_param_set_field(¶ms, 0, 46, 22, u_offset / 8); ipu_ch_param_set_field(¶ms, 0, 68, 22, v_offset / 8); debug("initializing idma ch %d @ %p\n", ch, ipu_ch_param_addr(ch)); memcpy(ipu_ch_param_addr(ch), ¶ms, sizeof(params)); }; /* * This function is called to initialize a buffer for logical IPU channel. * * @param channel Input parameter for the logical channel ID. * * @param type Input parameter which buffer to initialize. * * @param pixel_fmt Input parameter for pixel format of buffer. * Pixel format is a FOURCC ASCII code. * * @param width Input parameter for width of buffer in pixels. * * @param height Input parameter for height of buffer in pixels. * * @param stride Input parameter for stride length of buffer * in pixels. * * @param phyaddr_0 Input parameter buffer 0 physical address. * * @param phyaddr_1 Input parameter buffer 1 physical address. * Setting this to a value other than NULL enables * double buffering mode. * * @param u private u offset for additional cropping, * zero if not used. * * @param v private v offset for additional cropping, * zero if not used. * * @return Returns 0 on success or negative error code on fail */ int32_t ipu_init_channel_buffer(ipu_channel_t channel, ipu_buffer_t type, uint32_t pixel_fmt, uint16_t width, uint16_t height, uint32_t stride, dma_addr_t phyaddr_0, dma_addr_t phyaddr_1, uint32_t u, uint32_t v) { uint32_t reg; uint32_t dma_chan; dma_chan = channel_2_dma(channel, type); if (!idma_is_valid(dma_chan)) return -EINVAL; if (stride < width * bytes_per_pixel(pixel_fmt)) stride = width * bytes_per_pixel(pixel_fmt); if (stride % 4) { printf( "Stride not 32-bit aligned, stride = %d\n", stride); return -EINVAL; } /* Build parameter memory data for DMA channel */ ipu_ch_param_init(dma_chan, pixel_fmt, width, height, stride, u, v, 0, phyaddr_0, phyaddr_1); if (ipu_is_dmfc_chan(dma_chan)) { ipu_dmfc_set_wait4eot(dma_chan, width); } if (idma_is_set(IDMAC_CHA_PRI, dma_chan)) ipu_ch_param_set_high_priority(dma_chan); ipu_ch_param_dump(dma_chan); reg = __raw_readl(IPU_CHA_DB_MODE_SEL(dma_chan)); if (phyaddr_1) reg |= idma_mask(dma_chan); else reg &= ~idma_mask(dma_chan); __raw_writel(reg, IPU_CHA_DB_MODE_SEL(dma_chan)); /* Reset to buffer 0 */ __raw_writel(idma_mask(dma_chan), IPU_CHA_CUR_BUF(dma_chan)); return 0; } /* * This function enables a logical channel. * * @param channel Input parameter for the logical channel ID. * * @return This function returns 0 on success or negative error code on * fail. */ int32_t ipu_enable_channel(ipu_channel_t channel) { uint32_t reg; uint32_t in_dma; uint32_t out_dma; if (g_channel_enable_mask & (1L << IPU_CHAN_ID(channel))) { printf("Warning: channel already enabled %d\n", IPU_CHAN_ID(channel)); } /* Get input and output dma channels */ out_dma = channel_2_dma(channel, IPU_OUTPUT_BUFFER); in_dma = channel_2_dma(channel, IPU_VIDEO_IN_BUFFER); if (idma_is_valid(in_dma)) { reg = __raw_readl(IDMAC_CHA_EN(in_dma)); __raw_writel(reg | idma_mask(in_dma), IDMAC_CHA_EN(in_dma)); } if (idma_is_valid(out_dma)) { reg = __raw_readl(IDMAC_CHA_EN(out_dma)); __raw_writel(reg | idma_mask(out_dma), IDMAC_CHA_EN(out_dma)); } if ((channel == MEM_DC_SYNC) || (channel == MEM_BG_SYNC) || (channel == MEM_FG_SYNC)) ipu_dp_dc_enable(channel); g_channel_enable_mask |= 1L << IPU_CHAN_ID(channel); return 0; } /* * This function clear buffer ready for a logical channel. * * @param channel Input parameter for the logical channel ID. * * @param type Input parameter which buffer to clear. * * @param bufNum Input parameter for which buffer number clear * ready state. * */ void ipu_clear_buffer_ready(ipu_channel_t channel, ipu_buffer_t type, uint32_t bufNum) { uint32_t dma_ch = channel_2_dma(channel, type); if (!idma_is_valid(dma_ch)) return; __raw_writel(0xF0000000, IPU_GPR); /* write one to clear */ if (bufNum == 0) { if (idma_is_set(IPU_CHA_BUF0_RDY, dma_ch)) { __raw_writel(idma_mask(dma_ch), IPU_CHA_BUF0_RDY(dma_ch)); } } else { if (idma_is_set(IPU_CHA_BUF1_RDY, dma_ch)) { __raw_writel(idma_mask(dma_ch), IPU_CHA_BUF1_RDY(dma_ch)); } } __raw_writel(0x0, IPU_GPR); /* write one to set */ } /* * This function disables a logical channel. * * @param channel Input parameter for the logical channel ID. * * @param wait_for_stop Flag to set whether to wait for channel end * of frame or return immediately. * * @return This function returns 0 on success or negative error code on * fail. */ int32_t ipu_disable_channel(ipu_channel_t channel) { uint32_t reg; uint32_t in_dma; uint32_t out_dma; if ((g_channel_enable_mask & (1L << IPU_CHAN_ID(channel))) == 0) { debug("Channel already disabled %d\n", IPU_CHAN_ID(channel)); return 0; } /* Get input and output dma channels */ out_dma = channel_2_dma(channel, IPU_OUTPUT_BUFFER); in_dma = channel_2_dma(channel, IPU_VIDEO_IN_BUFFER); if ((idma_is_valid(in_dma) && !idma_is_set(IDMAC_CHA_EN, in_dma)) && (idma_is_valid(out_dma) && !idma_is_set(IDMAC_CHA_EN, out_dma))) return -EINVAL; if ((channel == MEM_BG_SYNC) || (channel == MEM_FG_SYNC) || (channel == MEM_DC_SYNC)) { ipu_dp_dc_disable(channel, 0); } /* Disable DMA channel(s) */ if (idma_is_valid(in_dma)) { reg = __raw_readl(IDMAC_CHA_EN(in_dma)); __raw_writel(reg & ~idma_mask(in_dma), IDMAC_CHA_EN(in_dma)); __raw_writel(idma_mask(in_dma), IPU_CHA_CUR_BUF(in_dma)); } if (idma_is_valid(out_dma)) { reg = __raw_readl(IDMAC_CHA_EN(out_dma)); __raw_writel(reg & ~idma_mask(out_dma), IDMAC_CHA_EN(out_dma)); __raw_writel(idma_mask(out_dma), IPU_CHA_CUR_BUF(out_dma)); } g_channel_enable_mask &= ~(1L << IPU_CHAN_ID(channel)); /* Set channel buffers NOT to be ready */ if (idma_is_valid(in_dma)) { ipu_clear_buffer_ready(channel, IPU_VIDEO_IN_BUFFER, 0); ipu_clear_buffer_ready(channel, IPU_VIDEO_IN_BUFFER, 1); } if (idma_is_valid(out_dma)) { ipu_clear_buffer_ready(channel, IPU_OUTPUT_BUFFER, 0); ipu_clear_buffer_ready(channel, IPU_OUTPUT_BUFFER, 1); } return 0; } uint32_t bytes_per_pixel(uint32_t fmt) { switch (fmt) { case IPU_PIX_FMT_GENERIC: /*generic data */ case IPU_PIX_FMT_RGB332: case IPU_PIX_FMT_YUV420P: case IPU_PIX_FMT_YUV422P: return 1; break; case IPU_PIX_FMT_RGB565: case IPU_PIX_FMT_YUYV: case IPU_PIX_FMT_UYVY: return 2; break; case IPU_PIX_FMT_BGR24: case IPU_PIX_FMT_RGB24: return 3; break; case IPU_PIX_FMT_GENERIC_32: /*generic data */ case IPU_PIX_FMT_BGR32: case IPU_PIX_FMT_BGRA32: case IPU_PIX_FMT_RGB32: case IPU_PIX_FMT_RGBA32: case IPU_PIX_FMT_ABGR32: return 4; break; default: return 1; break; } return 0; } ipu_color_space_t format_to_colorspace(uint32_t fmt) { switch (fmt) { case IPU_PIX_FMT_RGB666: case IPU_PIX_FMT_RGB565: case IPU_PIX_FMT_BGR24: case IPU_PIX_FMT_RGB24: case IPU_PIX_FMT_BGR32: case IPU_PIX_FMT_BGRA32: case IPU_PIX_FMT_RGB32: case IPU_PIX_FMT_RGBA32: case IPU_PIX_FMT_ABGR32: case IPU_PIX_FMT_LVDS666: case IPU_PIX_FMT_LVDS888: return RGB; break; default: return YCbCr; break; } return RGB; } /* should be removed when clk framework is availiable */ int ipu_set_ldb_clock(int rate) { ldb_clk.rate = rate; return 0; }