/* * Copyright 2000-2002 by Hans Reiser, licensing governed by reiserfs/README * * GRUB -- GRand Unified Bootloader * Copyright (C) 2000, 2001 Free Software Foundation, Inc. * * (C) Copyright 2003 - 2004 * Sysgo AG, <www.elinos.com>, Pavel Bartusek <pba@sysgo.com> * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* An implementation for the ReiserFS filesystem ported from GRUB. * Some parts of this code (mainly the structures and defines) are * from the original reiser fs code, as found in the linux kernel. */ #include <common.h> #include <malloc.h> #include <linux/ctype.h> #include <linux/time.h> #include <asm/byteorder.h> #include <reiserfs.h> #include "reiserfs_private.h" #undef REISERDEBUG /* Some parts of this code (mainly the structures and defines) are * from the original reiser fs code, as found in the linux kernel. */ static char fsys_buf[FSYS_BUFLEN]; static reiserfs_error_t errnum = ERR_NONE; static int print_possibilities; static unsigned int filepos, filemax; static int substring (const char *s1, const char *s2) { while (*s1 == *s2) { /* The strings match exactly. */ if (! *(s1++)) return 0; s2 ++; } /* S1 is a substring of S2. */ if (*s1 == 0) return -1; /* S1 isn't a substring. */ return 1; } static void sd_print_item (struct item_head * ih, char * item) { char filetime[30]; time_t ttime; if (stat_data_v1 (ih)) { struct stat_data_v1 * sd = (struct stat_data_v1 *)item; ttime = sd_v1_mtime(sd); ctime_r(&ttime, filetime); printf ("%-10s %4hd %6d %6d %9d %24.24s", bb_mode_string(sd_v1_mode(sd)), sd_v1_nlink(sd),sd_v1_uid(sd), sd_v1_gid(sd), sd_v1_size(sd), filetime); } else { struct stat_data * sd = (struct stat_data *)item; ttime = sd_v2_mtime(sd); ctime_r(&ttime, filetime); printf ("%-10s %4d %6d %6d %9d %24.24s", bb_mode_string(sd_v2_mode(sd)), sd_v2_nlink(sd),sd_v2_uid(sd),sd_v2_gid(sd), (__u32) sd_v2_size(sd), filetime); } } static int journal_read (int block, int len, char *buffer) { return reiserfs_devread ((INFO->journal_block + block) << INFO->blocksize_shift, 0, len, buffer); } /* Read a block from ReiserFS file system, taking the journal into * account. If the block nr is in the journal, the block from the * journal taken. */ static int block_read (unsigned int blockNr, int start, int len, char *buffer) { int transactions = INFO->journal_transactions; int desc_block = INFO->journal_first_desc; int journal_mask = INFO->journal_block_count - 1; int translatedNr = blockNr; __u32 *journal_table = JOURNAL_START; while (transactions-- > 0) { int i = 0; int j_len; if (__le32_to_cpu(*journal_table) != 0xffffffff) { /* Search for the blockNr in cached journal */ j_len = __le32_to_cpu(*journal_table++); while (i++ < j_len) { if (__le32_to_cpu(*journal_table++) == blockNr) { journal_table += j_len - i; goto found; } } } else { /* This is the end of cached journal marker. The remaining * transactions are still on disk. */ struct reiserfs_journal_desc desc; struct reiserfs_journal_commit commit; if (! journal_read (desc_block, sizeof (desc), (char *) &desc)) return 0; j_len = __le32_to_cpu(desc.j_len); while (i < j_len && i < JOURNAL_TRANS_HALF) if (__le32_to_cpu(desc.j_realblock[i++]) == blockNr) goto found; if (j_len >= JOURNAL_TRANS_HALF) { int commit_block = (desc_block + 1 + j_len) & journal_mask; if (! journal_read (commit_block, sizeof (commit), (char *) &commit)) return 0; while (i < j_len) if (__le32_to_cpu(commit.j_realblock[i++ - JOURNAL_TRANS_HALF]) == blockNr) goto found; } } goto not_found; found: translatedNr = INFO->journal_block + ((desc_block + i) & journal_mask); #ifdef REISERDEBUG printf ("block_read: block %d is mapped to journal block %d.\n", blockNr, translatedNr - INFO->journal_block); #endif /* We must continue the search, as this block may be overwritten * in later transactions. */ not_found: desc_block = (desc_block + 2 + j_len) & journal_mask; } return reiserfs_devread (translatedNr << INFO->blocksize_shift, start, len, buffer); } /* Init the journal data structure. We try to cache as much as * possible in the JOURNAL_START-JOURNAL_END space, but if it is full * we can still read the rest from the disk on demand. * * The first number of valid transactions and the descriptor block of the * first valid transaction are held in INFO. The transactions are all * adjacent, but we must take care of the journal wrap around. */ static int journal_init (void) { unsigned int block_count = INFO->journal_block_count; unsigned int desc_block; unsigned int commit_block; unsigned int next_trans_id; struct reiserfs_journal_header header; struct reiserfs_journal_desc desc; struct reiserfs_journal_commit commit; __u32 *journal_table = JOURNAL_START; journal_read (block_count, sizeof (header), (char *) &header); desc_block = __le32_to_cpu(header.j_first_unflushed_offset); if (desc_block >= block_count) return 0; INFO->journal_first_desc = desc_block; next_trans_id = __le32_to_cpu(header.j_last_flush_trans_id) + 1; #ifdef REISERDEBUG printf ("journal_init: last flushed %d\n", __le32_to_cpu(header.j_last_flush_trans_id)); #endif while (1) { journal_read (desc_block, sizeof (desc), (char *) &desc); if (substring (JOURNAL_DESC_MAGIC, desc.j_magic) > 0 || __le32_to_cpu(desc.j_trans_id) != next_trans_id || __le32_to_cpu(desc.j_mount_id) != __le32_to_cpu(header.j_mount_id)) /* no more valid transactions */ break; commit_block = (desc_block + __le32_to_cpu(desc.j_len) + 1) & (block_count - 1); journal_read (commit_block, sizeof (commit), (char *) &commit); if (__le32_to_cpu(desc.j_trans_id) != commit.j_trans_id || __le32_to_cpu(desc.j_len) != __le32_to_cpu(commit.j_len)) /* no more valid transactions */ break; #ifdef REISERDEBUG printf ("Found valid transaction %d/%d at %d.\n", __le32_to_cpu(desc.j_trans_id), __le32_to_cpu(desc.j_mount_id), desc_block); #endif next_trans_id++; if (journal_table < JOURNAL_END) { if ((journal_table + 1 + __le32_to_cpu(desc.j_len)) >= JOURNAL_END) { /* The table is almost full; mark the end of the cached * journal.*/ *journal_table = __cpu_to_le32(0xffffffff); journal_table = JOURNAL_END; } else { unsigned int i; /* Cache the length and the realblock numbers in the table. * The block number of descriptor can easily be computed. * and need not to be stored here. */ /* both are in the little endian format */ *journal_table++ = desc.j_len; for (i = 0; i < __le32_to_cpu(desc.j_len) && i < JOURNAL_TRANS_HALF; i++) { /* both are in the little endian format */ *journal_table++ = desc.j_realblock[i]; #ifdef REISERDEBUG printf ("block %d is in journal %d.\n", __le32_to_cpu(desc.j_realblock[i]), desc_block); #endif } for ( ; i < __le32_to_cpu(desc.j_len); i++) { /* both are in the little endian format */ *journal_table++ = commit.j_realblock[i-JOURNAL_TRANS_HALF]; #ifdef REISERDEBUG printf ("block %d is in journal %d.\n", __le32_to_cpu(commit.j_realblock[i-JOURNAL_TRANS_HALF]), desc_block); #endif } } } desc_block = (commit_block + 1) & (block_count - 1); } #ifdef REISERDEBUG printf ("Transaction %d/%d at %d isn't valid.\n", __le32_to_cpu(desc.j_trans_id), __le32_to_cpu(desc.j_mount_id), desc_block); #endif INFO->journal_transactions = next_trans_id - __le32_to_cpu(header.j_last_flush_trans_id) - 1; return errnum == 0; } /* check filesystem types and read superblock into memory buffer */ int reiserfs_mount (unsigned part_length) { struct reiserfs_super_block super; int superblock = REISERFS_DISK_OFFSET_IN_BYTES >> SECTOR_BITS; if (part_length < superblock + (sizeof (super) >> SECTOR_BITS) || ! reiserfs_devread (superblock, 0, sizeof (struct reiserfs_super_block), (char *) &super) || (substring (REISER3FS_SUPER_MAGIC_STRING, super.s_magic) > 0 && substring (REISER2FS_SUPER_MAGIC_STRING, super.s_magic) > 0 && substring (REISERFS_SUPER_MAGIC_STRING, super.s_magic) > 0) || (/* check that this is not a copy inside the journal log */ sb_journal_block(&super) * sb_blocksize(&super) <= REISERFS_DISK_OFFSET_IN_BYTES)) { /* Try old super block position */ superblock = REISERFS_OLD_DISK_OFFSET_IN_BYTES >> SECTOR_BITS; if (part_length < superblock + (sizeof (super) >> SECTOR_BITS) || ! reiserfs_devread (superblock, 0, sizeof (struct reiserfs_super_block), (char *) &super)) return 0; if (substring (REISER2FS_SUPER_MAGIC_STRING, super.s_magic) > 0 && substring (REISERFS_SUPER_MAGIC_STRING, super.s_magic) > 0) { /* pre journaling super block ? */ if (substring (REISERFS_SUPER_MAGIC_STRING, (char*) ((int) &super + 20)) > 0) return 0; set_sb_blocksize(&super, REISERFS_OLD_BLOCKSIZE); set_sb_journal_block(&super, 0); set_sb_version(&super, 0); } } /* check the version number. */ if (sb_version(&super) > REISERFS_MAX_SUPPORTED_VERSION) return 0; INFO->version = sb_version(&super); INFO->blocksize = sb_blocksize(&super); INFO->fullblocksize_shift = log2 (sb_blocksize(&super)); INFO->blocksize_shift = INFO->fullblocksize_shift - SECTOR_BITS; INFO->cached_slots = (FSYSREISER_CACHE_SIZE >> INFO->fullblocksize_shift) - 1; #ifdef REISERDEBUG printf ("reiserfs_mount: version=%d, blocksize=%d\n", INFO->version, INFO->blocksize); #endif /* REISERDEBUG */ /* Clear node cache. */ memset (INFO->blocks, 0, sizeof (INFO->blocks)); if (sb_blocksize(&super) < FSYSREISER_MIN_BLOCKSIZE || sb_blocksize(&super) > FSYSREISER_MAX_BLOCKSIZE || (SECTOR_SIZE << INFO->blocksize_shift) != sb_blocksize(&super)) return 0; /* Initialize journal code. If something fails we end with zero * journal_transactions, so we don't access the journal at all. */ INFO->journal_transactions = 0; if (sb_journal_block(&super) != 0 && super.s_journal_dev == 0) { INFO->journal_block = sb_journal_block(&super); INFO->journal_block_count = sb_journal_size(&super); if (is_power_of_two (INFO->journal_block_count)) journal_init (); /* Read in super block again, maybe it is in the journal */ block_read (superblock >> INFO->blocksize_shift, 0, sizeof (struct reiserfs_super_block), (char *) &super); } if (! block_read (sb_root_block(&super), 0, INFO->blocksize, (char*) ROOT)) return 0; INFO->tree_depth = __le16_to_cpu(BLOCKHEAD (ROOT)->blk_level); #ifdef REISERDEBUG printf ("root read_in: block=%d, depth=%d\n", sb_root_block(&super), INFO->tree_depth); #endif /* REISERDEBUG */ if (INFO->tree_depth >= MAX_HEIGHT) return 0; if (INFO->tree_depth == DISK_LEAF_NODE_LEVEL) { /* There is only one node in the whole filesystem, * which is simultanously leaf and root */ memcpy (LEAF, ROOT, INFO->blocksize); } return 1; } /***************** TREE ACCESSING METHODS *****************************/ /* I assume you are familiar with the ReiserFS tree, if not go to * http://www.namesys.com/content_table.html * * My tree node cache is organized as following * 0 ROOT node * 1 LEAF node (if the ROOT is also a LEAF it is copied here * 2-n other nodes on current path from bottom to top. * if there is not enough space in the cache, the top most are * omitted. * * I have only two methods to find a key in the tree: * search_stat(dir_id, objectid) searches for the stat entry (always * the first entry) of an object. * next_key() gets the next key in tree order. * * This means, that I can only sequential reads of files are * efficient, but this really doesn't hurt for grub. */ /* Read in the node at the current path and depth into the node cache. * You must set INFO->blocks[depth] before. */ static char * read_tree_node (unsigned int blockNr, int depth) { char* cache = CACHE(depth); int num_cached = INFO->cached_slots; if (depth < num_cached) { /* This is the cached part of the path. Check if same block is * needed. */ if (blockNr == INFO->blocks[depth]) return cache; } else cache = CACHE(num_cached); #ifdef REISERDEBUG printf (" next read_in: block=%d (depth=%d)\n", blockNr, depth); #endif /* REISERDEBUG */ if (! block_read (blockNr, 0, INFO->blocksize, cache)) return 0; /* Make sure it has the right node level */ if (__le16_to_cpu(BLOCKHEAD (cache)->blk_level) != depth) { errnum = ERR_FSYS_CORRUPT; return 0; } INFO->blocks[depth] = blockNr; return cache; } /* Get the next key, i.e. the key following the last retrieved key in * tree order. INFO->current_ih and * INFO->current_info are adapted accordingly. */ static int next_key (void) { int depth; struct item_head *ih = INFO->current_ih + 1; char *cache; #ifdef REISERDEBUG printf ("next_key:\n old ih: key %d:%d:%d:%d version:%d\n", __le32_to_cpu(INFO->current_ih->ih_key.k_dir_id), __le32_to_cpu(INFO->current_ih->ih_key.k_objectid), __le32_to_cpu(INFO->current_ih->ih_key.u.v1.k_offset), __le32_to_cpu(INFO->current_ih->ih_key.u.v1.k_uniqueness), __le16_to_cpu(INFO->current_ih->ih_version)); #endif /* REISERDEBUG */ if (ih == &ITEMHEAD[__le16_to_cpu(BLOCKHEAD (LEAF)->blk_nr_item)]) { depth = DISK_LEAF_NODE_LEVEL; /* The last item, was the last in the leaf node. * Read in the next block */ do { if (depth == INFO->tree_depth) { /* There are no more keys at all. * Return a dummy item with MAX_KEY */ ih = (struct item_head *) &BLOCKHEAD (LEAF)->blk_right_delim_key; goto found; } depth++; #ifdef REISERDEBUG printf (" depth=%d, i=%d\n", depth, INFO->next_key_nr[depth]); #endif /* REISERDEBUG */ } while (INFO->next_key_nr[depth] == 0); if (depth == INFO->tree_depth) cache = ROOT; else if (depth <= INFO->cached_slots) cache = CACHE (depth); else { cache = read_tree_node (INFO->blocks[depth], depth); if (! cache) return 0; } do { int nr_item = __le16_to_cpu(BLOCKHEAD (cache)->blk_nr_item); int key_nr = INFO->next_key_nr[depth]++; #ifdef REISERDEBUG printf (" depth=%d, i=%d/%d\n", depth, key_nr, nr_item); #endif /* REISERDEBUG */ if (key_nr == nr_item) /* This is the last item in this block, set the next_key_nr to 0 */ INFO->next_key_nr[depth] = 0; cache = read_tree_node (dc_block_number(&(DC (cache)[key_nr])), --depth); if (! cache) return 0; } while (depth > DISK_LEAF_NODE_LEVEL); ih = ITEMHEAD; } found: INFO->current_ih = ih; INFO->current_item = &LEAF[__le16_to_cpu(ih->ih_item_location)]; #ifdef REISERDEBUG printf (" new ih: key %d:%d:%d:%d version:%d\n", __le32_to_cpu(INFO->current_ih->ih_key.k_dir_id), __le32_to_cpu(INFO->current_ih->ih_key.k_objectid), __le32_to_cpu(INFO->current_ih->ih_key.u.v1.k_offset), __le32_to_cpu(INFO->current_ih->ih_key.u.v1.k_uniqueness), __le16_to_cpu(INFO->current_ih->ih_version)); #endif /* REISERDEBUG */ return 1; } /* preconditions: reiserfs_mount already executed, therefore * INFO block is valid * returns: 0 if error (errnum is set), * nonzero iff we were able to find the key successfully. * postconditions: on a nonzero return, the current_ih and * current_item fields describe the key that equals the * searched key. INFO->next_key contains the next key after * the searched key. * side effects: messes around with the cache. */ static int search_stat (__u32 dir_id, __u32 objectid) { char *cache; int depth; int nr_item; int i; struct item_head *ih; #ifdef REISERDEBUG printf ("search_stat:\n key %d:%d:0:0\n", dir_id, objectid); #endif /* REISERDEBUG */ depth = INFO->tree_depth; cache = ROOT; while (depth > DISK_LEAF_NODE_LEVEL) { struct key *key; nr_item = __le16_to_cpu(BLOCKHEAD (cache)->blk_nr_item); key = KEY (cache); for (i = 0; i < nr_item; i++) { if (__le32_to_cpu(key->k_dir_id) > dir_id || (__le32_to_cpu(key->k_dir_id) == dir_id && (__le32_to_cpu(key->k_objectid) > objectid || (__le32_to_cpu(key->k_objectid) == objectid && (__le32_to_cpu(key->u.v1.k_offset) | __le32_to_cpu(key->u.v1.k_uniqueness)) > 0)))) break; key++; } #ifdef REISERDEBUG printf (" depth=%d, i=%d/%d\n", depth, i, nr_item); #endif /* REISERDEBUG */ INFO->next_key_nr[depth] = (i == nr_item) ? 0 : i+1; cache = read_tree_node (dc_block_number(&(DC (cache)[i])), --depth); if (! cache) return 0; } /* cache == LEAF */ nr_item = __le16_to_cpu(BLOCKHEAD (LEAF)->blk_nr_item); ih = ITEMHEAD; for (i = 0; i < nr_item; i++) { if (__le32_to_cpu(ih->ih_key.k_dir_id) == dir_id && __le32_to_cpu(ih->ih_key.k_objectid) == objectid && __le32_to_cpu(ih->ih_key.u.v1.k_offset) == 0 && __le32_to_cpu(ih->ih_key.u.v1.k_uniqueness) == 0) { #ifdef REISERDEBUG printf (" depth=%d, i=%d/%d\n", depth, i, nr_item); #endif /* REISERDEBUG */ INFO->current_ih = ih; INFO->current_item = &LEAF[__le16_to_cpu(ih->ih_item_location)]; return 1; } ih++; } errnum = ERR_FSYS_CORRUPT; return 0; } int reiserfs_read (char *buf, unsigned len) { unsigned int blocksize; unsigned int offset; unsigned int to_read; char *prev_buf = buf; #ifdef REISERDEBUG printf ("reiserfs_read: filepos=%d len=%d, offset=%Lx\n", filepos, len, (__u64) IH_KEY_OFFSET (INFO->current_ih) - 1); #endif /* REISERDEBUG */ if (__le32_to_cpu(INFO->current_ih->ih_key.k_objectid) != INFO->fileinfo.k_objectid || IH_KEY_OFFSET (INFO->current_ih) > filepos + 1) { search_stat (INFO->fileinfo.k_dir_id, INFO->fileinfo.k_objectid); goto get_next_key; } while (! errnum) { if (__le32_to_cpu(INFO->current_ih->ih_key.k_objectid) != INFO->fileinfo.k_objectid) { break; } offset = filepos - IH_KEY_OFFSET (INFO->current_ih) + 1; blocksize = __le16_to_cpu(INFO->current_ih->ih_item_len); #ifdef REISERDEBUG printf (" loop: filepos=%d len=%d, offset=%d blocksize=%d\n", filepos, len, offset, blocksize); #endif /* REISERDEBUG */ if (IH_KEY_ISTYPE(INFO->current_ih, TYPE_DIRECT) && offset < blocksize) { #ifdef REISERDEBUG printf ("direct_read: offset=%d, blocksize=%d\n", offset, blocksize); #endif /* REISERDEBUG */ to_read = blocksize - offset; if (to_read > len) to_read = len; memcpy (buf, INFO->current_item + offset, to_read); goto update_buf_len; } else if (IH_KEY_ISTYPE(INFO->current_ih, TYPE_INDIRECT)) { blocksize = (blocksize >> 2) << INFO->fullblocksize_shift; #ifdef REISERDEBUG printf ("indirect_read: offset=%d, blocksize=%d\n", offset, blocksize); #endif /* REISERDEBUG */ while (offset < blocksize) { __u32 blocknr = __le32_to_cpu(((__u32 *) INFO->current_item) [offset >> INFO->fullblocksize_shift]); int blk_offset = offset & (INFO->blocksize-1); to_read = INFO->blocksize - blk_offset; if (to_read > len) to_read = len; /* Journal is only for meta data. Data blocks can be read * directly without using block_read */ reiserfs_devread (blocknr << INFO->blocksize_shift, blk_offset, to_read, buf); update_buf_len: len -= to_read; buf += to_read; offset += to_read; filepos += to_read; if (len == 0) goto done; } } get_next_key: next_key (); } done: return errnum ? 0 : buf - prev_buf; } /* preconditions: reiserfs_mount already executed, therefore * INFO block is valid * returns: 0 if error, nonzero iff we were able to find the file successfully * postconditions: on a nonzero return, INFO->fileinfo contains the info * of the file we were trying to look up, filepos is 0 and filemax is * the size of the file. */ static int reiserfs_dir (char *dirname) { struct reiserfs_de_head *de_head; char *rest, ch; __u32 dir_id, objectid, parent_dir_id = 0, parent_objectid = 0; #ifndef STAGE1_5 int do_possibilities = 0; #endif /* ! STAGE1_5 */ char linkbuf[PATH_MAX]; /* buffer for following symbolic links */ int link_count = 0; int mode; dir_id = REISERFS_ROOT_PARENT_OBJECTID; objectid = REISERFS_ROOT_OBJECTID; while (1) { #ifdef REISERDEBUG printf ("dirname=%s\n", dirname); #endif /* REISERDEBUG */ /* Search for the stat info first. */ if (! search_stat (dir_id, objectid)) return 0; #ifdef REISERDEBUG printf ("sd_mode=%x sd_size=%d\n", stat_data_v1(INFO->current_ih) ? sd_v1_mode((struct stat_data_v1 *) INFO->current_item) : sd_v2_mode((struct stat_data *) (INFO->current_item)), stat_data_v1(INFO->current_ih) ? sd_v1_size((struct stat_data_v1 *) INFO->current_item) : sd_v2_size((struct stat_data *) INFO->current_item) ); #endif /* REISERDEBUG */ mode = stat_data_v1(INFO->current_ih) ? sd_v1_mode((struct stat_data_v1 *) INFO->current_item) : sd_v2_mode((struct stat_data *) INFO->current_item); /* If we've got a symbolic link, then chase it. */ if (S_ISLNK (mode)) { unsigned int len; if (++link_count > MAX_LINK_COUNT) { errnum = ERR_SYMLINK_LOOP; return 0; } /* Get the symlink size. */ filemax = stat_data_v1(INFO->current_ih) ? sd_v1_size((struct stat_data_v1 *) INFO->current_item) : sd_v2_size((struct stat_data *) INFO->current_item); /* Find out how long our remaining name is. */ len = 0; while (dirname[len] && !isspace (dirname[len])) len++; if (filemax + len > sizeof (linkbuf) - 1) { errnum = ERR_FILELENGTH; return 0; } /* Copy the remaining name to the end of the symlink data. Note that DIRNAME and LINKBUF may overlap! */ memmove (linkbuf + filemax, dirname, len+1); INFO->fileinfo.k_dir_id = dir_id; INFO->fileinfo.k_objectid = objectid; filepos = 0; if (! next_key () || reiserfs_read (linkbuf, filemax) != filemax) { if (! errnum) errnum = ERR_FSYS_CORRUPT; return 0; } #ifdef REISERDEBUG printf ("symlink=%s\n", linkbuf); #endif /* REISERDEBUG */ dirname = linkbuf; if (*dirname == '/') { /* It's an absolute link, so look it up in root. */ dir_id = REISERFS_ROOT_PARENT_OBJECTID; objectid = REISERFS_ROOT_OBJECTID; } else { /* Relative, so look it up in our parent directory. */ dir_id = parent_dir_id; objectid = parent_objectid; } /* Now lookup the new name. */ continue; } /* if we have a real file (and we're not just printing possibilities), then this is where we want to exit */ if (! *dirname || isspace (*dirname)) { if (! S_ISREG (mode)) { errnum = ERR_BAD_FILETYPE; return 0; } filepos = 0; filemax = stat_data_v1(INFO->current_ih) ? sd_v1_size((struct stat_data_v1 *) INFO->current_item) : sd_v2_size((struct stat_data *) INFO->current_item); #if 0 /* If this is a new stat data and size is > 4GB set filemax to * maximum */ if (__le16_to_cpu(INFO->current_ih->ih_version) == ITEM_VERSION_2 && sd_size_hi((struct stat_data *) INFO->current_item) > 0) filemax = 0xffffffff; #endif INFO->fileinfo.k_dir_id = dir_id; INFO->fileinfo.k_objectid = objectid; return next_key (); } /* continue with the file/directory name interpretation */ while (*dirname == '/') dirname++; if (! S_ISDIR (mode)) { errnum = ERR_BAD_FILETYPE; return 0; } for (rest = dirname; (ch = *rest) && ! isspace (ch) && ch != '/'; rest++); *rest = 0; # ifndef STAGE1_5 if (print_possibilities && ch != '/') do_possibilities = 1; # endif /* ! STAGE1_5 */ while (1) { char *name_end; int num_entries; if (! next_key ()) return 0; #ifdef REISERDEBUG printf ("ih: key %d:%d:%d:%d version:%d\n", __le32_to_cpu(INFO->current_ih->ih_key.k_dir_id), __le32_to_cpu(INFO->current_ih->ih_key.k_objectid), __le32_to_cpu(INFO->current_ih->ih_key.u.v1.k_offset), __le32_to_cpu(INFO->current_ih->ih_key.u.v1.k_uniqueness), __le16_to_cpu(INFO->current_ih->ih_version)); #endif /* REISERDEBUG */ if (__le32_to_cpu(INFO->current_ih->ih_key.k_objectid) != objectid) break; name_end = INFO->current_item + __le16_to_cpu(INFO->current_ih->ih_item_len); de_head = (struct reiserfs_de_head *) INFO->current_item; num_entries = __le16_to_cpu(INFO->current_ih->u.ih_entry_count); while (num_entries > 0) { char *filename = INFO->current_item + deh_location(de_head); char tmp = *name_end; if ((deh_state(de_head) & DEH_Visible)) { int cmp; /* Directory names in ReiserFS are not null * terminated. We write a temporary 0 behind it. * NOTE: that this may overwrite the first block in * the tree cache. That doesn't hurt as long as we * don't call next_key () in between. */ *name_end = 0; cmp = substring (dirname, filename); *name_end = tmp; # ifndef STAGE1_5 if (do_possibilities) { if (cmp <= 0) { char fn[PATH_MAX]; struct fsys_reiser_info info_save; if (print_possibilities > 0) print_possibilities = -print_possibilities; *name_end = 0; strcpy(fn, filename); *name_end = tmp; /* If NAME is "." or "..", do not count it. */ if (strcmp (fn, ".") != 0 && strcmp (fn, "..") != 0) { memcpy(&info_save, INFO, sizeof(struct fsys_reiser_info)); search_stat (deh_dir_id(de_head), deh_objectid(de_head)); sd_print_item(INFO->current_ih, INFO->current_item); printf(" %s\n", fn); search_stat (dir_id, objectid); memcpy(INFO, &info_save, sizeof(struct fsys_reiser_info)); } } } else # endif /* ! STAGE1_5 */ if (cmp == 0) goto found; } /* The beginning of this name marks the end of the next name. */ name_end = filename; de_head++; num_entries--; } } # ifndef STAGE1_5 if (print_possibilities < 0) return 1; # endif /* ! STAGE1_5 */ errnum = ERR_FILE_NOT_FOUND; *rest = ch; return 0; found: *rest = ch; dirname = rest; parent_dir_id = dir_id; parent_objectid = objectid; dir_id = deh_dir_id(de_head); objectid = deh_objectid(de_head); } } /* * U-Boot interface functions */ /* * List given directory * * RETURN: 0 - OK, else grub_error_t errnum */ int reiserfs_ls (char *dirname) { char *dir_slash; int res; errnum = 0; dir_slash = malloc(strlen(dirname) + 1); if (dir_slash == NULL) { return ERR_NUMBER_OVERFLOW; } strcpy(dir_slash, dirname); /* add "/" to the directory name */ strcat(dir_slash, "/"); print_possibilities = 1; res = reiserfs_dir (dir_slash); free(dir_slash); if (!res || errnum) { return errnum; } return 0; } /* * Open file for reading * * RETURN: >0 - OK, size of opened file * <0 - ERROR -grub_error_t errnum */ int reiserfs_open (char *filename) { /* open the file */ errnum = 0; print_possibilities = 0; if (!reiserfs_dir (filename) || errnum) { return -errnum; } return filemax; }