#ifndef _LINUX_KERNEL_H
#define _LINUX_KERNEL_H


#include <linux/types.h>

#define USHRT_MAX	((u16)(~0U))
#define SHRT_MAX	((s16)(USHRT_MAX>>1))
#define SHRT_MIN	((s16)(-SHRT_MAX - 1))
#define INT_MAX		((int)(~0U>>1))
#define INT_MIN		(-INT_MAX - 1)
#define UINT_MAX	(~0U)
#define LONG_MAX	((long)(~0UL>>1))
#define LONG_MIN	(-LONG_MAX - 1)
#define ULONG_MAX	(~0UL)
#define LLONG_MAX	((long long)(~0ULL>>1))
#define LLONG_MIN	(-LLONG_MAX - 1)
#define ULLONG_MAX	(~0ULL)
#ifndef SIZE_MAX
#define SIZE_MAX	(~(size_t)0)
#endif

#define U8_MAX		((u8)~0U)
#define S8_MAX		((s8)(U8_MAX>>1))
#define S8_MIN		((s8)(-S8_MAX - 1))
#define U16_MAX		((u16)~0U)
#define S16_MAX		((s16)(U16_MAX>>1))
#define S16_MIN		((s16)(-S16_MAX - 1))
#define U32_MAX		((u32)~0U)
#define S32_MAX		((s32)(U32_MAX>>1))
#define S32_MIN		((s32)(-S32_MAX - 1))
#define U64_MAX		((u64)~0ULL)
#define S64_MAX		((s64)(U64_MAX>>1))
#define S64_MIN		((s64)(-S64_MAX - 1))

#define STACK_MAGIC	0xdeadbeef

#define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))

#define ALIGN(x,a)		__ALIGN_MASK((x),(typeof(x))(a)-1)
#define __ALIGN_MASK(x,mask)	(((x)+(mask))&~(mask))
#define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
#define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)

#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))

/*
 * This looks more complex than it should be. But we need to
 * get the type for the ~ right in round_down (it needs to be
 * as wide as the result!), and we want to evaluate the macro
 * arguments just once each.
 */
#define __round_mask(x, y) ((__typeof__(x))((y)-1))
#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
#define round_down(x, y) ((x) & ~__round_mask(x, y))

#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))

#if BITS_PER_LONG == 32
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
#else
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
#endif

/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
#define roundup(x, y) (					\
{							\
	const typeof(y) __y = y;			\
	(((x) + (__y - 1)) / __y) * __y;		\
}							\
)
#define rounddown(x, y) (				\
{							\
	typeof(x) __x = (x);				\
	__x - (__x % (y));				\
}							\
)

/*
 * Divide positive or negative dividend by positive divisor and round
 * to closest integer. Result is undefined for negative divisors and
 * for negative dividends if the divisor variable type is unsigned.
 */
#define DIV_ROUND_CLOSEST(x, divisor)(			\
{							\
	typeof(x) __x = x;				\
	typeof(divisor) __d = divisor;			\
	(((typeof(x))-1) > 0 ||				\
	 ((typeof(divisor))-1) > 0 || (__x) > 0) ?	\
		(((__x) + ((__d) / 2)) / (__d)) :	\
		(((__x) - ((__d) / 2)) / (__d));	\
}							\
)

/*
 * Multiplies an integer by a fraction, while avoiding unnecessary
 * overflow or loss of precision.
 */
#define mult_frac(x, numer, denom)(			\
{							\
	typeof(x) quot = (x) / (denom);			\
	typeof(x) rem  = (x) % (denom);			\
	(quot * (numer)) + ((rem * (numer)) / (denom));	\
}							\
)

/**
 * upper_32_bits - return bits 32-63 of a number
 * @n: the number we're accessing
 *
 * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
 * the "right shift count >= width of type" warning when that quantity is
 * 32-bits.
 */
#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))

/**
 * lower_32_bits - return bits 0-31 of a number
 * @n: the number we're accessing
 */
#define lower_32_bits(n) ((u32)(n))

/*
 * abs() handles unsigned and signed longs, ints, shorts and chars.  For all
 * input types abs() returns a signed long.
 * abs() should not be used for 64-bit types (s64, u64, long long) - use abs64()
 * for those.
 */
#define abs(x) ({						\
		long ret;					\
		if (sizeof(x) == sizeof(long)) {		\
			long __x = (x);				\
			ret = (__x < 0) ? -__x : __x;		\
		} else {					\
			int __x = (x);				\
			ret = (__x < 0) ? -__x : __x;		\
		}						\
		ret;						\
	})

#define abs64(x) ({				\
		s64 __x = (x);			\
		(__x < 0) ? -__x : __x;		\
	})

/*
 * min()/max()/clamp() macros that also do
 * strict type-checking.. See the
 * "unnecessary" pointer comparison.
 */
#define min(x, y) ({				\
	typeof(x) _min1 = (x);			\
	typeof(y) _min2 = (y);			\
	(void) (&_min1 == &_min2);		\
	_min1 < _min2 ? _min1 : _min2; })

#define max(x, y) ({				\
	typeof(x) _max1 = (x);			\
	typeof(y) _max2 = (y);			\
	(void) (&_max1 == &_max2);		\
	_max1 > _max2 ? _max1 : _max2; })

#define min3(x, y, z) min((typeof(x))min(x, y), z)
#define max3(x, y, z) max((typeof(x))max(x, y), z)

/**
 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
 * @x: value1
 * @y: value2
 */
#define min_not_zero(x, y) ({			\
	typeof(x) __x = (x);			\
	typeof(y) __y = (y);			\
	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })

/**
 * clamp - return a value clamped to a given range with strict typechecking
 * @val: current value
 * @lo: lowest allowable value
 * @hi: highest allowable value
 *
 * This macro does strict typechecking of lo/hi to make sure they are of the
 * same type as val.  See the unnecessary pointer comparisons.
 */
#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)

/*
 * ..and if you can't take the strict
 * types, you can specify one yourself.
 *
 * Or not use min/max/clamp at all, of course.
 */
#define min_t(type, x, y) ({			\
	type __min1 = (x);			\
	type __min2 = (y);			\
	__min1 < __min2 ? __min1: __min2; })

#define max_t(type, x, y) ({			\
	type __max1 = (x);			\
	type __max2 = (y);			\
	__max1 > __max2 ? __max1: __max2; })

/**
 * clamp_t - return a value clamped to a given range using a given type
 * @type: the type of variable to use
 * @val: current value
 * @lo: minimum allowable value
 * @hi: maximum allowable value
 *
 * This macro does no typechecking and uses temporary variables of type
 * 'type' to make all the comparisons.
 */
#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)

/**
 * clamp_val - return a value clamped to a given range using val's type
 * @val: current value
 * @lo: minimum allowable value
 * @hi: maximum allowable value
 *
 * This macro does no typechecking and uses temporary variables of whatever
 * type the input argument 'val' is.  This is useful when val is an unsigned
 * type and min and max are literals that will otherwise be assigned a signed
 * integer type.
 */
#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)


/*
 * swap - swap value of @a and @b
 */
#define swap(a, b) \
	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)

/**
 * container_of - cast a member of a structure out to the containing structure
 * @ptr:	the pointer to the member.
 * @type:	the type of the container struct this is embedded in.
 * @member:	the name of the member within the struct.
 *
 */
#define container_of(ptr, type, member) ({			\
	const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
	(type *)( (char *)__mptr - offsetof(type,member) );})

#endif