/* * EFI application runtime services * * Copyright (c) 2016 Alexander Graf * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include /* For manual relocation support */ DECLARE_GLOBAL_DATA_PTR; struct efi_runtime_mmio_list { struct list_head link; void **ptr; u64 paddr; u64 len; }; /* This list contains all runtime available mmio regions */ LIST_HEAD(efi_runtime_mmio); static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void); static efi_status_t __efi_runtime EFIAPI efi_device_error(void); static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void); #ifdef CONFIG_SYS_CACHELINE_SIZE #define EFI_CACHELINE_SIZE CONFIG_SYS_CACHELINE_SIZE #else /* Just use the greatest cache flush alignment requirement I'm aware of */ #define EFI_CACHELINE_SIZE 128 #endif #if defined(CONFIG_ARM64) #define R_RELATIVE 1027 #define R_MASK 0xffffffffULL #define IS_RELA 1 #elif defined(CONFIG_ARM) #define R_RELATIVE 23 #define R_MASK 0xffULL #elif defined(CONFIG_X86) #include #define R_RELATIVE R_386_RELATIVE #define R_MASK 0xffULL #else #error Need to add relocation awareness #endif struct elf_rel { ulong *offset; ulong info; }; struct elf_rela { ulong *offset; ulong info; long addend; }; /* * EFI Runtime code lives in 2 stages. In the first stage, U-Boot and an EFI * payload are running concurrently at the same time. In this mode, we can * handle a good number of runtime callbacks */ static void EFIAPI efi_reset_system_boottime( enum efi_reset_type reset_type, efi_status_t reset_status, unsigned long data_size, void *reset_data) { EFI_ENTRY("%d %lx %lx %p", reset_type, reset_status, data_size, reset_data); switch (reset_type) { case EFI_RESET_COLD: case EFI_RESET_WARM: do_reset(NULL, 0, 0, NULL); break; case EFI_RESET_SHUTDOWN: /* We don't have anything to map this to */ break; } while (1) { } } static efi_status_t EFIAPI efi_get_time_boottime( struct efi_time *time, struct efi_time_cap *capabilities) { #if defined(CONFIG_CMD_DATE) && defined(CONFIG_DM_RTC) struct rtc_time tm; int r; struct udevice *dev; EFI_ENTRY("%p %p", time, capabilities); r = uclass_get_device(UCLASS_RTC, 0, &dev); if (r) return EFI_EXIT(EFI_DEVICE_ERROR); r = dm_rtc_get(dev, &tm); if (r) return EFI_EXIT(EFI_DEVICE_ERROR); memset(time, 0, sizeof(*time)); time->year = tm.tm_year; time->month = tm.tm_mon; time->day = tm.tm_mday; time->hour = tm.tm_hour; time->minute = tm.tm_min; time->daylight = tm.tm_isdst; return EFI_EXIT(EFI_SUCCESS); #else return EFI_DEVICE_ERROR; #endif } /* Boards may override the helpers below to implement RTS functionality */ void __weak __efi_runtime EFIAPI efi_reset_system( enum efi_reset_type reset_type, efi_status_t reset_status, unsigned long data_size, void *reset_data) { /* Nothing we can do */ while (1) { } } void __weak efi_reset_system_init(void) { } efi_status_t __weak __efi_runtime EFIAPI efi_get_time( struct efi_time *time, struct efi_time_cap *capabilities) { /* Nothing we can do */ return EFI_DEVICE_ERROR; } void __weak efi_get_time_init(void) { } struct efi_runtime_detach_list_struct { void *ptr; void *patchto; }; static const struct efi_runtime_detach_list_struct efi_runtime_detach_list[] = { { /* do_reset is gone */ .ptr = &efi_runtime_services.reset_system, .patchto = efi_reset_system, }, { /* invalidate_*cache_all are gone */ .ptr = &efi_runtime_services.set_virtual_address_map, .patchto = &efi_invalid_parameter, }, { /* RTC accessors are gone */ .ptr = &efi_runtime_services.get_time, .patchto = &efi_get_time, }, { /* Clean up system table */ .ptr = &systab.con_in, .patchto = NULL, }, { /* Clean up system table */ .ptr = &systab.con_out, .patchto = NULL, }, { /* Clean up system table */ .ptr = &systab.std_err, .patchto = NULL, }, { /* Clean up system table */ .ptr = &systab.boottime, .patchto = NULL, }, }; static bool efi_runtime_tobedetached(void *p) { int i; for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++) if (efi_runtime_detach_list[i].ptr == p) return true; return false; } static void efi_runtime_detach(ulong offset) { int i; ulong patchoff = offset - (ulong)gd->relocaddr; for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++) { ulong patchto = (ulong)efi_runtime_detach_list[i].patchto; ulong *p = efi_runtime_detach_list[i].ptr; ulong newaddr = patchto ? (patchto + patchoff) : 0; debug("%s: Setting %p to %lx\n", __func__, p, newaddr); *p = newaddr; } } /* Relocate EFI runtime to uboot_reloc_base = offset */ void efi_runtime_relocate(ulong offset, struct efi_mem_desc *map) { #ifdef IS_RELA struct elf_rela *rel = (void*)&__efi_runtime_rel_start; #else struct elf_rel *rel = (void*)&__efi_runtime_rel_start; static ulong lastoff = CONFIG_SYS_TEXT_BASE; #endif debug("%s: Relocating to offset=%lx\n", __func__, offset); for (; (ulong)rel < (ulong)&__efi_runtime_rel_stop; rel++) { ulong base = CONFIG_SYS_TEXT_BASE; ulong *p; ulong newaddr; p = (void*)((ulong)rel->offset - base) + gd->relocaddr; if ((rel->info & R_MASK) != R_RELATIVE) { continue; } #ifdef IS_RELA newaddr = rel->addend + offset - CONFIG_SYS_TEXT_BASE; #else newaddr = *p - lastoff + offset; #endif /* Check if the relocation is inside bounds */ if (map && ((newaddr < map->virtual_start) || newaddr > (map->virtual_start + (map->num_pages << EFI_PAGE_SHIFT)))) { if (!efi_runtime_tobedetached(p)) printf("U-Boot EFI: Relocation at %p is out of " "range (%lx)\n", p, newaddr); continue; } debug("%s: Setting %p to %lx\n", __func__, p, newaddr); *p = newaddr; flush_dcache_range((ulong)p & ~(EFI_CACHELINE_SIZE - 1), ALIGN((ulong)&p[1], EFI_CACHELINE_SIZE)); } #ifndef IS_RELA lastoff = offset; #endif invalidate_icache_all(); } static efi_status_t EFIAPI efi_set_virtual_address_map( unsigned long memory_map_size, unsigned long descriptor_size, uint32_t descriptor_version, struct efi_mem_desc *virtmap) { ulong runtime_start = (ulong)&__efi_runtime_start & ~(ulong)EFI_PAGE_MASK; int n = memory_map_size / descriptor_size; int i; EFI_ENTRY("%lx %lx %x %p", memory_map_size, descriptor_size, descriptor_version, virtmap); /* Rebind mmio pointers */ for (i = 0; i < n; i++) { struct efi_mem_desc *map = (void*)virtmap + (descriptor_size * i); struct list_head *lhandle; efi_physical_addr_t map_start = map->physical_start; efi_physical_addr_t map_len = map->num_pages << EFI_PAGE_SHIFT; efi_physical_addr_t map_end = map_start + map_len; /* Adjust all mmio pointers in this region */ list_for_each(lhandle, &efi_runtime_mmio) { struct efi_runtime_mmio_list *lmmio; lmmio = list_entry(lhandle, struct efi_runtime_mmio_list, link); if ((map_start <= lmmio->paddr) && (map_end >= lmmio->paddr)) { u64 off = map->virtual_start - map_start; uintptr_t new_addr = lmmio->paddr + off; *lmmio->ptr = (void *)new_addr; } } } /* Move the actual runtime code over */ for (i = 0; i < n; i++) { struct efi_mem_desc *map; map = (void*)virtmap + (descriptor_size * i); if (map->type == EFI_RUNTIME_SERVICES_CODE) { ulong new_offset = map->virtual_start - (runtime_start - gd->relocaddr); efi_runtime_relocate(new_offset, map); /* Once we're virtual, we can no longer handle complex callbacks */ efi_runtime_detach(new_offset); return EFI_EXIT(EFI_SUCCESS); } } return EFI_EXIT(EFI_INVALID_PARAMETER); } void efi_add_runtime_mmio(void *mmio_ptr, u64 len) { struct efi_runtime_mmio_list *newmmio; u64 pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; efi_add_memory_map(*(uintptr_t *)mmio_ptr, pages, EFI_MMAP_IO, false); newmmio = calloc(1, sizeof(*newmmio)); newmmio->ptr = mmio_ptr; newmmio->paddr = *(uintptr_t *)mmio_ptr; newmmio->len = len; list_add_tail(&newmmio->link, &efi_runtime_mmio); } /* * In the second stage, U-Boot has disappeared. To isolate our runtime code * that at this point still exists from the rest, we put it into a special * section. * * !!WARNING!! * * This means that we can not rely on any code outside of this file in any * function or variable below this line. * * Please keep everything fully self-contained and annotated with * __efi_runtime and __efi_runtime_data markers. */ /* * Relocate the EFI runtime stub to a different place. We need to call this * the first time we expose the runtime interface to a user and on set virtual * address map calls. */ static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void) { return EFI_UNSUPPORTED; } static efi_status_t __efi_runtime EFIAPI efi_device_error(void) { return EFI_DEVICE_ERROR; } static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void) { return EFI_INVALID_PARAMETER; } struct efi_runtime_services __efi_runtime_data efi_runtime_services = { .hdr = { .signature = EFI_RUNTIME_SERVICES_SIGNATURE, .revision = EFI_RUNTIME_SERVICES_REVISION, .headersize = sizeof(struct efi_table_hdr), }, .get_time = &efi_get_time_boottime, .set_time = (void *)&efi_device_error, .get_wakeup_time = (void *)&efi_unimplemented, .set_wakeup_time = (void *)&efi_unimplemented, .set_virtual_address_map = &efi_set_virtual_address_map, .convert_pointer = (void *)&efi_invalid_parameter, .get_variable = (void *)&efi_device_error, .get_next_variable = (void *)&efi_device_error, .set_variable = (void *)&efi_device_error, .get_next_high_mono_count = (void *)&efi_device_error, .reset_system = &efi_reset_system_boottime, };