// SPDX-License-Identifier: GPL-2.0+ /* * EFI application runtime services * * Copyright (c) 2016 Alexander Graf */ #include #include #include #include #include #include /* For manual relocation support */ DECLARE_GLOBAL_DATA_PTR; struct efi_runtime_mmio_list { struct list_head link; void **ptr; u64 paddr; u64 len; }; /* This list contains all runtime available mmio regions */ LIST_HEAD(efi_runtime_mmio); static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void); static efi_status_t __efi_runtime EFIAPI efi_device_error(void); static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void); /* * TODO(sjg@chromium.org): These defines and structures should come from the ELF * header for each architecture (or a generic header) rather than being repeated * here. */ #if defined(__aarch64__) #define R_RELATIVE R_AARCH64_RELATIVE #define R_MASK 0xffffffffULL #define IS_RELA 1 #elif defined(__arm__) #define R_RELATIVE R_ARM_RELATIVE #define R_MASK 0xffULL #elif defined(__i386__) #define R_RELATIVE R_386_RELATIVE #define R_MASK 0xffULL #elif defined(__x86_64__) #define R_RELATIVE R_X86_64_RELATIVE #define R_MASK 0xffffffffULL #define IS_RELA 1 #elif defined(__riscv) #define R_RELATIVE R_RISCV_RELATIVE #define R_MASK 0xffULL #define IS_RELA 1 struct dyn_sym { ulong foo1; ulong addr; u32 foo2; u32 foo3; }; #if (__riscv_xlen == 32) #define R_ABSOLUTE R_RISCV_32 #define SYM_INDEX 8 #elif (__riscv_xlen == 64) #define R_ABSOLUTE R_RISCV_64 #define SYM_INDEX 32 #else #error unknown riscv target #endif #else #error Need to add relocation awareness #endif struct elf_rel { ulong *offset; ulong info; }; struct elf_rela { ulong *offset; ulong info; long addend; }; /* * EFI runtime code lives in two stages. In the first stage, U-Boot and an EFI * payload are running concurrently at the same time. In this mode, we can * handle a good number of runtime callbacks */ /** * efi_update_table_header_crc32() - Update crc32 in table header * * @table: EFI table */ void __efi_runtime efi_update_table_header_crc32(struct efi_table_hdr *table) { table->crc32 = 0; table->crc32 = crc32(0, (const unsigned char *)table, table->headersize); } /** * efi_reset_system_boottime() - reset system at boot time * * This function implements the ResetSystem() runtime service before * SetVirtualAddressMap() is called. * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @reset_type: type of reset to perform * @reset_status: status code for the reset * @data_size: size of reset_data * @reset_data: information about the reset */ static void EFIAPI efi_reset_system_boottime( enum efi_reset_type reset_type, efi_status_t reset_status, unsigned long data_size, void *reset_data) { struct efi_event *evt; EFI_ENTRY("%d %lx %lx %p", reset_type, reset_status, data_size, reset_data); /* Notify reset */ list_for_each_entry(evt, &efi_events, link) { if (evt->group && !guidcmp(evt->group, &efi_guid_event_group_reset_system)) { efi_signal_event(evt, false); break; } } switch (reset_type) { case EFI_RESET_COLD: case EFI_RESET_WARM: case EFI_RESET_PLATFORM_SPECIFIC: do_reset(NULL, 0, 0, NULL); break; case EFI_RESET_SHUTDOWN: #ifdef CONFIG_CMD_POWEROFF do_poweroff(NULL, 0, 0, NULL); #endif break; } while (1) { } } /** * efi_get_time_boottime() - get current time at boot time * * This function implements the GetTime runtime service before * SetVirtualAddressMap() is called. * * See the Unified Extensible Firmware Interface (UEFI) specification * for details. * * @time: pointer to structure to receive current time * @capabilities: pointer to structure to receive RTC properties * Returns: status code */ static efi_status_t EFIAPI efi_get_time_boottime( struct efi_time *time, struct efi_time_cap *capabilities) { #ifdef CONFIG_DM_RTC efi_status_t ret = EFI_SUCCESS; int r; struct rtc_time tm; struct udevice *dev; EFI_ENTRY("%p %p", time, capabilities); if (!time) { ret = EFI_INVALID_PARAMETER; goto out; } r = uclass_get_device(UCLASS_RTC, 0, &dev); if (!r) r = dm_rtc_get(dev, &tm); if (r) { ret = EFI_DEVICE_ERROR; goto out; } memset(time, 0, sizeof(*time)); time->year = tm.tm_year; time->month = tm.tm_mon; time->day = tm.tm_mday; time->hour = tm.tm_hour; time->minute = tm.tm_min; time->second = tm.tm_sec; time->daylight = EFI_TIME_ADJUST_DAYLIGHT; if (tm.tm_isdst > 0) time->daylight |= EFI_TIME_IN_DAYLIGHT; time->timezone = EFI_UNSPECIFIED_TIMEZONE; if (capabilities) { /* Set reasonable dummy values */ capabilities->resolution = 1; /* 1 Hz */ capabilities->accuracy = 100000000; /* 100 ppm */ capabilities->sets_to_zero = false; } out: return EFI_EXIT(ret); #else EFI_ENTRY("%p %p", time, capabilities); return EFI_EXIT(EFI_DEVICE_ERROR); #endif } /** * efi_reset_system() - reset system * * This function implements the ResetSystem() runtime service after * SetVirtualAddressMap() is called. It only executes an endless loop. * Boards may override the helpers below to implement reset functionality. * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @reset_type: type of reset to perform * @reset_status: status code for the reset * @data_size: size of reset_data * @reset_data: information about the reset */ void __weak __efi_runtime EFIAPI efi_reset_system( enum efi_reset_type reset_type, efi_status_t reset_status, unsigned long data_size, void *reset_data) { /* Nothing we can do */ while (1) { } } /** * efi_reset_system_init() - initialize the reset driver * * Boards may override this function to initialize the reset driver. */ efi_status_t __weak efi_reset_system_init(void) { return EFI_SUCCESS; } /** * efi_get_time() - get current time * * This function implements the GetTime runtime service after * SetVirtualAddressMap() is called. As the U-Boot driver are not available * anymore only an error code is returned. * * See the Unified Extensible Firmware Interface (UEFI) specification * for details. * * @time: pointer to structure to receive current time * @capabilities: pointer to structure to receive RTC properties * Returns: status code */ efi_status_t __weak __efi_runtime EFIAPI efi_get_time( struct efi_time *time, struct efi_time_cap *capabilities) { /* Nothing we can do */ return EFI_DEVICE_ERROR; } struct efi_runtime_detach_list_struct { void *ptr; void *patchto; }; static const struct efi_runtime_detach_list_struct efi_runtime_detach_list[] = { { /* do_reset is gone */ .ptr = &efi_runtime_services.reset_system, .patchto = efi_reset_system, }, { /* invalidate_*cache_all are gone */ .ptr = &efi_runtime_services.set_virtual_address_map, .patchto = &efi_invalid_parameter, }, { /* RTC accessors are gone */ .ptr = &efi_runtime_services.get_time, .patchto = &efi_get_time, }, { /* Clean up system table */ .ptr = &systab.con_in, .patchto = NULL, }, { /* Clean up system table */ .ptr = &systab.con_out, .patchto = NULL, }, { /* Clean up system table */ .ptr = &systab.std_err, .patchto = NULL, }, { /* Clean up system table */ .ptr = &systab.boottime, .patchto = NULL, }, { .ptr = &efi_runtime_services.get_variable, .patchto = &efi_device_error, }, { .ptr = &efi_runtime_services.get_next_variable_name, .patchto = &efi_device_error, }, { .ptr = &efi_runtime_services.set_variable, .patchto = &efi_device_error, } }; static bool efi_runtime_tobedetached(void *p) { int i; for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++) if (efi_runtime_detach_list[i].ptr == p) return true; return false; } static void efi_runtime_detach(ulong offset) { int i; ulong patchoff = offset - (ulong)gd->relocaddr; for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++) { ulong patchto = (ulong)efi_runtime_detach_list[i].patchto; ulong *p = efi_runtime_detach_list[i].ptr; ulong newaddr = patchto ? (patchto + patchoff) : 0; debug("%s: Setting %p to %lx\n", __func__, p, newaddr); *p = newaddr; } /* Update CRC32 */ efi_update_table_header_crc32(&efi_runtime_services.hdr); } /* Relocate EFI runtime to uboot_reloc_base = offset */ void efi_runtime_relocate(ulong offset, struct efi_mem_desc *map) { #ifdef IS_RELA struct elf_rela *rel = (void*)&__efi_runtime_rel_start; #else struct elf_rel *rel = (void*)&__efi_runtime_rel_start; static ulong lastoff = CONFIG_SYS_TEXT_BASE; #endif debug("%s: Relocating to offset=%lx\n", __func__, offset); for (; (ulong)rel < (ulong)&__efi_runtime_rel_stop; rel++) { ulong base = CONFIG_SYS_TEXT_BASE; ulong *p; ulong newaddr; p = (void*)((ulong)rel->offset - base) + gd->relocaddr; debug("%s: rel->info=%#lx *p=%#lx rel->offset=%p\n", __func__, rel->info, *p, rel->offset); switch (rel->info & R_MASK) { case R_RELATIVE: #ifdef IS_RELA newaddr = rel->addend + offset - CONFIG_SYS_TEXT_BASE; #else newaddr = *p - lastoff + offset; #endif break; #ifdef R_ABSOLUTE case R_ABSOLUTE: { ulong symidx = rel->info >> SYM_INDEX; extern struct dyn_sym __dyn_sym_start[]; newaddr = __dyn_sym_start[symidx].addr + offset; break; } #endif default: if (!efi_runtime_tobedetached(p)) printf("%s: Unknown relocation type %llx\n", __func__, rel->info & R_MASK); continue; } /* Check if the relocation is inside bounds */ if (map && ((newaddr < map->virtual_start) || newaddr > (map->virtual_start + (map->num_pages << EFI_PAGE_SHIFT)))) { if (!efi_runtime_tobedetached(p)) printf("%s: Relocation at %p is out of " "range (%lx)\n", __func__, p, newaddr); continue; } debug("%s: Setting %p to %lx\n", __func__, p, newaddr); *p = newaddr; flush_dcache_range((ulong)p & ~(EFI_CACHELINE_SIZE - 1), ALIGN((ulong)&p[1], EFI_CACHELINE_SIZE)); } #ifndef IS_RELA lastoff = offset; #endif invalidate_icache_all(); } /** * efi_set_virtual_address_map() - change from physical to virtual mapping * * This function implements the SetVirtualAddressMap() runtime service. * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @memory_map_size: size of the virtual map * @descriptor_size: size of an entry in the map * @descriptor_version: version of the map entries * @virtmap: virtual address mapping information * Return: status code */ static efi_status_t EFIAPI efi_set_virtual_address_map( unsigned long memory_map_size, unsigned long descriptor_size, uint32_t descriptor_version, struct efi_mem_desc *virtmap) { ulong runtime_start = (ulong)&__efi_runtime_start & ~(ulong)EFI_PAGE_MASK; int n = memory_map_size / descriptor_size; int i; EFI_ENTRY("%lx %lx %x %p", memory_map_size, descriptor_size, descriptor_version, virtmap); /* Rebind mmio pointers */ for (i = 0; i < n; i++) { struct efi_mem_desc *map = (void*)virtmap + (descriptor_size * i); struct list_head *lhandle; efi_physical_addr_t map_start = map->physical_start; efi_physical_addr_t map_len = map->num_pages << EFI_PAGE_SHIFT; efi_physical_addr_t map_end = map_start + map_len; u64 off = map->virtual_start - map_start; /* Adjust all mmio pointers in this region */ list_for_each(lhandle, &efi_runtime_mmio) { struct efi_runtime_mmio_list *lmmio; lmmio = list_entry(lhandle, struct efi_runtime_mmio_list, link); if ((map_start <= lmmio->paddr) && (map_end >= lmmio->paddr)) { uintptr_t new_addr = lmmio->paddr + off; *lmmio->ptr = (void *)new_addr; } } if ((map_start <= (uintptr_t)systab.tables) && (map_end >= (uintptr_t)systab.tables)) { char *ptr = (char *)systab.tables; ptr += off; systab.tables = (struct efi_configuration_table *)ptr; } } /* Move the actual runtime code over */ for (i = 0; i < n; i++) { struct efi_mem_desc *map; map = (void*)virtmap + (descriptor_size * i); if (map->type == EFI_RUNTIME_SERVICES_CODE) { ulong new_offset = map->virtual_start - (runtime_start - gd->relocaddr); efi_runtime_relocate(new_offset, map); /* Once we're virtual, we can no longer handle complex callbacks */ efi_runtime_detach(new_offset); return EFI_EXIT(EFI_SUCCESS); } } return EFI_EXIT(EFI_INVALID_PARAMETER); } /** * efi_add_runtime_mmio() - add memory-mapped IO region * * This function adds a memory-mapped IO region to the memory map to make it * available at runtime. * * @mmio_ptr: address of the memory-mapped IO region * @len: size of the memory-mapped IO region * Returns: status code */ efi_status_t efi_add_runtime_mmio(void *mmio_ptr, u64 len) { struct efi_runtime_mmio_list *newmmio; u64 pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; uint64_t addr = *(uintptr_t *)mmio_ptr; uint64_t retaddr; retaddr = efi_add_memory_map(addr, pages, EFI_MMAP_IO, false); if (retaddr != addr) return EFI_OUT_OF_RESOURCES; newmmio = calloc(1, sizeof(*newmmio)); if (!newmmio) return EFI_OUT_OF_RESOURCES; newmmio->ptr = mmio_ptr; newmmio->paddr = *(uintptr_t *)mmio_ptr; newmmio->len = len; list_add_tail(&newmmio->link, &efi_runtime_mmio); return EFI_SUCCESS; } /* * In the second stage, U-Boot has disappeared. To isolate our runtime code * that at this point still exists from the rest, we put it into a special * section. * * !!WARNING!! * * This means that we can not rely on any code outside of this file in any * function or variable below this line. * * Please keep everything fully self-contained and annotated with * __efi_runtime and __efi_runtime_data markers. */ /* * Relocate the EFI runtime stub to a different place. We need to call this * the first time we expose the runtime interface to a user and on set virtual * address map calls. */ /** * efi_unimplemented() - replacement function, returns EFI_UNSUPPORTED * * This function is used after SetVirtualAddressMap() is called as replacement * for services that are not available anymore due to constraints of the U-Boot * implementation. * * Return: EFI_UNSUPPORTED */ static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void) { return EFI_UNSUPPORTED; } /** * efi_device_error() - replacement function, returns EFI_DEVICE_ERROR * * This function is used after SetVirtualAddressMap() is called as replacement * for services that are not available anymore due to constraints of the U-Boot * implementation. * * Return: EFI_DEVICE_ERROR */ static efi_status_t __efi_runtime EFIAPI efi_device_error(void) { return EFI_DEVICE_ERROR; } /** * efi_invalid_parameter() - replacement function, returns EFI_INVALID_PARAMETER * * This function is used after SetVirtualAddressMap() is called as replacement * for services that are not available anymore due to constraints of the U-Boot * implementation. * * Return: EFI_INVALID_PARAMETER */ static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void) { return EFI_INVALID_PARAMETER; } /** * efi_update_capsule() - process information from operating system * * This function implements the UpdateCapsule() runtime service. * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @capsule_header_array: pointer to array of virtual pointers * @capsule_count: number of pointers in capsule_header_array * @scatter_gather_list: pointer to arry of physical pointers * Returns: status code */ efi_status_t __efi_runtime EFIAPI efi_update_capsule( struct efi_capsule_header **capsule_header_array, efi_uintn_t capsule_count, u64 scatter_gather_list) { return EFI_UNSUPPORTED; } /** * efi_query_capsule_caps() - check if capsule is supported * * This function implements the QueryCapsuleCapabilities() runtime service. * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @capsule_header_array: pointer to array of virtual pointers * @capsule_count: number of pointers in capsule_header_array * @maximum_capsule_size: maximum capsule size * @reset_type: type of reset needed for capsule update * Returns: status code */ efi_status_t __efi_runtime EFIAPI efi_query_capsule_caps( struct efi_capsule_header **capsule_header_array, efi_uintn_t capsule_count, u64 maximum_capsule_size, u32 reset_type) { return EFI_UNSUPPORTED; } /** * efi_query_variable_info() - get information about EFI variables * * This function implements the QueryVariableInfo() runtime service. * * See the Unified Extensible Firmware Interface (UEFI) specification for * details. * * @attributes: bitmask to select variables to be * queried * @maximum_variable_storage_size: maximum size of storage area for the * selected variable types * @remaining_variable_storage_size: remaining size of storage are for the * selected variable types * @maximum_variable_size: maximum size of a variable of the * selected type * Returns: status code */ efi_status_t __efi_runtime EFIAPI efi_query_variable_info( u32 attributes, u64 *maximum_variable_storage_size, u64 *remaining_variable_storage_size, u64 *maximum_variable_size) { return EFI_UNSUPPORTED; } struct efi_runtime_services __efi_runtime_data efi_runtime_services = { .hdr = { .signature = EFI_RUNTIME_SERVICES_SIGNATURE, .revision = EFI_SPECIFICATION_VERSION, .headersize = sizeof(struct efi_runtime_services), }, .get_time = &efi_get_time_boottime, .set_time = (void *)&efi_device_error, .get_wakeup_time = (void *)&efi_unimplemented, .set_wakeup_time = (void *)&efi_unimplemented, .set_virtual_address_map = &efi_set_virtual_address_map, .convert_pointer = (void *)&efi_invalid_parameter, .get_variable = efi_get_variable, .get_next_variable_name = efi_get_next_variable_name, .set_variable = efi_set_variable, .get_next_high_mono_count = (void *)&efi_device_error, .reset_system = &efi_reset_system_boottime, .update_capsule = efi_update_capsule, .query_capsule_caps = efi_query_capsule_caps, .query_variable_info = efi_query_variable_info, };