/* * Copyright (c) 2011 The Chromium OS Authors. * SPDX-License-Identifier: GPL-2.0+ */ #ifndef USE_HOSTCC #include <common.h> #include <errno.h> #include <serial.h> #include <libfdt.h> #include <fdtdec.h> #include <asm/sections.h> #include <linux/ctype.h> DECLARE_GLOBAL_DATA_PTR; /* * Here are the type we know about. One day we might allow drivers to * register. For now we just put them here. The COMPAT macro allows us to * turn this into a sparse list later, and keeps the ID with the name. */ #define COMPAT(id, name) name static const char * const compat_names[COMPAT_COUNT] = { COMPAT(UNKNOWN, "<none>"), COMPAT(NVIDIA_TEGRA20_EMC, "nvidia,tegra20-emc"), COMPAT(NVIDIA_TEGRA20_EMC_TABLE, "nvidia,tegra20-emc-table"), COMPAT(NVIDIA_TEGRA20_KBC, "nvidia,tegra20-kbc"), COMPAT(NVIDIA_TEGRA20_NAND, "nvidia,tegra20-nand"), COMPAT(NVIDIA_TEGRA20_PWM, "nvidia,tegra20-pwm"), COMPAT(NVIDIA_TEGRA124_DC, "nvidia,tegra124-dc"), COMPAT(NVIDIA_TEGRA124_SOR, "nvidia,tegra124-sor"), COMPAT(NVIDIA_TEGRA124_PMC, "nvidia,tegra124-pmc"), COMPAT(NVIDIA_TEGRA20_DC, "nvidia,tegra20-dc"), COMPAT(NVIDIA_TEGRA210_SDMMC, "nvidia,tegra210-sdhci"), COMPAT(NVIDIA_TEGRA124_SDMMC, "nvidia,tegra124-sdhci"), COMPAT(NVIDIA_TEGRA30_SDMMC, "nvidia,tegra30-sdhci"), COMPAT(NVIDIA_TEGRA20_SDMMC, "nvidia,tegra20-sdhci"), COMPAT(NVIDIA_TEGRA124_PCIE, "nvidia,tegra124-pcie"), COMPAT(NVIDIA_TEGRA30_PCIE, "nvidia,tegra30-pcie"), COMPAT(NVIDIA_TEGRA20_PCIE, "nvidia,tegra20-pcie"), COMPAT(NVIDIA_TEGRA124_XUSB_PADCTL, "nvidia,tegra124-xusb-padctl"), COMPAT(NVIDIA_TEGRA210_XUSB_PADCTL, "nvidia,tegra210-xusb-padctl"), COMPAT(SMSC_LAN9215, "smsc,lan9215"), COMPAT(SAMSUNG_EXYNOS5_SROMC, "samsung,exynos-sromc"), COMPAT(SAMSUNG_S3C2440_I2C, "samsung,s3c2440-i2c"), COMPAT(SAMSUNG_EXYNOS5_SOUND, "samsung,exynos-sound"), COMPAT(WOLFSON_WM8994_CODEC, "wolfson,wm8994-codec"), COMPAT(GOOGLE_CROS_EC_KEYB, "google,cros-ec-keyb"), COMPAT(SAMSUNG_EXYNOS_USB_PHY, "samsung,exynos-usb-phy"), COMPAT(SAMSUNG_EXYNOS5_USB3_PHY, "samsung,exynos5250-usb3-phy"), COMPAT(SAMSUNG_EXYNOS_TMU, "samsung,exynos-tmu"), COMPAT(SAMSUNG_EXYNOS_FIMD, "samsung,exynos-fimd"), COMPAT(SAMSUNG_EXYNOS_MIPI_DSI, "samsung,exynos-mipi-dsi"), COMPAT(SAMSUNG_EXYNOS5_DP, "samsung,exynos5-dp"), COMPAT(SAMSUNG_EXYNOS_DWMMC, "samsung,exynos-dwmmc"), COMPAT(SAMSUNG_EXYNOS_MMC, "samsung,exynos-mmc"), COMPAT(SAMSUNG_EXYNOS_SERIAL, "samsung,exynos4210-uart"), COMPAT(MAXIM_MAX77686_PMIC, "maxim,max77686"), COMPAT(GENERIC_SPI_FLASH, "spi-flash"), COMPAT(MAXIM_98095_CODEC, "maxim,max98095-codec"), COMPAT(SAMSUNG_EXYNOS5_I2C, "samsung,exynos5-hsi2c"), COMPAT(SANDBOX_LCD_SDL, "sandbox,lcd-sdl"), COMPAT(SAMSUNG_EXYNOS_SYSMMU, "samsung,sysmmu-v3.3"), COMPAT(INTEL_MICROCODE, "intel,microcode"), COMPAT(MEMORY_SPD, "memory-spd"), COMPAT(INTEL_PANTHERPOINT_AHCI, "intel,pantherpoint-ahci"), COMPAT(INTEL_MODEL_206AX, "intel,model-206ax"), COMPAT(INTEL_GMA, "intel,gma"), COMPAT(AMS_AS3722, "ams,as3722"), COMPAT(INTEL_ICH_SPI, "intel,ich-spi"), COMPAT(INTEL_QRK_MRC, "intel,quark-mrc"), COMPAT(INTEL_X86_PINCTRL, "intel,x86-pinctrl"), COMPAT(SOCIONEXT_XHCI, "socionext,uniphier-xhci"), COMPAT(COMPAT_INTEL_PCH, "intel,bd82x6x"), COMPAT(COMPAT_INTEL_IRQ_ROUTER, "intel,irq-router"), COMPAT(ALTERA_SOCFPGA_DWMAC, "altr,socfpga-stmmac"), COMPAT(ALTERA_SOCFPGA_DWMMC, "altr,socfpga-dw-mshc"), COMPAT(COMPAT_INTEL_BAYTRAIL_FSP, "intel,baytrail-fsp"), COMPAT(COMPAT_INTEL_BAYTRAIL_FSP_MDP, "intel,baytrail-fsp-mdp"), }; const char *fdtdec_get_compatible(enum fdt_compat_id id) { /* We allow reading of the 'unknown' ID for testing purposes */ assert(id >= 0 && id < COMPAT_COUNT); return compat_names[id]; } fdt_addr_t fdtdec_get_addr_size_fixed(const void *blob, int node, const char *prop_name, int index, int na, int ns, fdt_size_t *sizep) { const fdt32_t *prop, *prop_end; const fdt32_t *prop_addr, *prop_size, *prop_after_size; int len; fdt_addr_t addr; debug("%s: %s: ", __func__, prop_name); if (na > (sizeof(fdt_addr_t) / sizeof(fdt32_t))) { debug("(na too large for fdt_addr_t type)\n"); return FDT_ADDR_T_NONE; } if (ns > (sizeof(fdt_size_t) / sizeof(fdt32_t))) { debug("(ns too large for fdt_size_t type)\n"); return FDT_ADDR_T_NONE; } prop = fdt_getprop(blob, node, prop_name, &len); if (!prop) { debug("(not found)\n"); return FDT_ADDR_T_NONE; } prop_end = prop + (len / sizeof(*prop)); prop_addr = prop + (index * (na + ns)); prop_size = prop_addr + na; prop_after_size = prop_size + ns; if (prop_after_size > prop_end) { debug("(not enough data: expected >= %d cells, got %d cells)\n", (u32)(prop_after_size - prop), ((u32)(prop_end - prop))); return FDT_ADDR_T_NONE; } addr = fdtdec_get_number(prop_addr, na); if (sizep) { *sizep = fdtdec_get_number(prop_size, ns); debug("addr=%08llx, size=%llx\n", (u64)addr, (u64)*sizep); } else { debug("addr=%08llx\n", (u64)addr); } return addr; } fdt_addr_t fdtdec_get_addr_size_auto_parent(const void *blob, int parent, int node, const char *prop_name, int index, fdt_size_t *sizep) { int na, ns; debug("%s: ", __func__); na = fdt_address_cells(blob, parent); if (na < 1) { debug("(bad #address-cells)\n"); return FDT_ADDR_T_NONE; } ns = fdt_size_cells(blob, parent); if (ns < 0) { debug("(bad #size-cells)\n"); return FDT_ADDR_T_NONE; } debug("na=%d, ns=%d, ", na, ns); return fdtdec_get_addr_size_fixed(blob, node, prop_name, index, na, ns, sizep); } fdt_addr_t fdtdec_get_addr_size_auto_noparent(const void *blob, int node, const char *prop_name, int index, fdt_size_t *sizep) { int parent; debug("%s: ", __func__); parent = fdt_parent_offset(blob, node); if (parent < 0) { debug("(no parent found)\n"); return FDT_ADDR_T_NONE; } return fdtdec_get_addr_size_auto_parent(blob, parent, node, prop_name, index, sizep); } fdt_addr_t fdtdec_get_addr_size(const void *blob, int node, const char *prop_name, fdt_size_t *sizep) { int ns = sizep ? (sizeof(fdt_size_t) / sizeof(fdt32_t)) : 0; return fdtdec_get_addr_size_fixed(blob, node, prop_name, 0, sizeof(fdt_addr_t) / sizeof(fdt32_t), ns, sizep); } fdt_addr_t fdtdec_get_addr(const void *blob, int node, const char *prop_name) { return fdtdec_get_addr_size(blob, node, prop_name, NULL); } #ifdef CONFIG_PCI int fdtdec_get_pci_addr(const void *blob, int node, enum fdt_pci_space type, const char *prop_name, struct fdt_pci_addr *addr) { const u32 *cell; int len; int ret = -ENOENT; debug("%s: %s: ", __func__, prop_name); /* * If we follow the pci bus bindings strictly, we should check * the value of the node's parent node's #address-cells and * #size-cells. They need to be 3 and 2 accordingly. However, * for simplicity we skip the check here. */ cell = fdt_getprop(blob, node, prop_name, &len); if (!cell) goto fail; if ((len % FDT_PCI_REG_SIZE) == 0) { int num = len / FDT_PCI_REG_SIZE; int i; for (i = 0; i < num; i++) { debug("pci address #%d: %08lx %08lx %08lx\n", i, (ulong)fdt_addr_to_cpu(cell[0]), (ulong)fdt_addr_to_cpu(cell[1]), (ulong)fdt_addr_to_cpu(cell[2])); if ((fdt_addr_to_cpu(*cell) & type) == type) { addr->phys_hi = fdt_addr_to_cpu(cell[0]); addr->phys_mid = fdt_addr_to_cpu(cell[1]); addr->phys_lo = fdt_addr_to_cpu(cell[2]); break; } else { cell += (FDT_PCI_ADDR_CELLS + FDT_PCI_SIZE_CELLS); } } if (i == num) { ret = -ENXIO; goto fail; } return 0; } else { ret = -EINVAL; } fail: debug("(not found)\n"); return ret; } int fdtdec_get_pci_vendev(const void *blob, int node, u16 *vendor, u16 *device) { const char *list, *end; int len; list = fdt_getprop(blob, node, "compatible", &len); if (!list) return -ENOENT; end = list + len; while (list < end) { char *s; len = strlen(list); if (len >= strlen("pciVVVV,DDDD")) { s = strstr(list, "pci"); /* * check if the string is something like pciVVVV,DDDD.RR * or just pciVVVV,DDDD */ if (s && s[7] == ',' && (s[12] == '.' || s[12] == 0)) { s += 3; *vendor = simple_strtol(s, NULL, 16); s += 5; *device = simple_strtol(s, NULL, 16); return 0; } } list += (len + 1); } return -ENOENT; } int fdtdec_get_pci_bdf(const void *blob, int node, struct fdt_pci_addr *addr, pci_dev_t *bdf) { u16 dt_vendor, dt_device, vendor, device; int ret; /* get vendor id & device id from the compatible string */ ret = fdtdec_get_pci_vendev(blob, node, &dt_vendor, &dt_device); if (ret) return ret; /* extract the bdf from fdt_pci_addr */ *bdf = addr->phys_hi & 0xffff00; /* read vendor id & device id based on bdf */ pci_read_config_word(*bdf, PCI_VENDOR_ID, &vendor); pci_read_config_word(*bdf, PCI_DEVICE_ID, &device); /* * Note there are two places in the device tree to fully describe * a pci device: one is via compatible string with a format of * "pciVVVV,DDDD" and the other one is the bdf numbers encoded in * the device node's reg address property. We read the vendor id * and device id based on bdf and compare the values with the * "VVVV,DDDD". If they are the same, then we are good to use bdf * to read device's bar. But if they are different, we have to rely * on the vendor id and device id extracted from the compatible * string and locate the real bdf by pci_find_device(). This is * because normally we may only know device's device number and * function number when writing device tree. The bus number is * dynamically assigned during the pci enumeration process. */ if ((dt_vendor != vendor) || (dt_device != device)) { *bdf = pci_find_device(dt_vendor, dt_device, 0); if (*bdf == -1) return -ENODEV; } return 0; } int fdtdec_get_pci_bar32(const void *blob, int node, struct fdt_pci_addr *addr, u32 *bar) { pci_dev_t bdf; int barnum; int ret; /* get pci devices's bdf */ ret = fdtdec_get_pci_bdf(blob, node, addr, &bdf); if (ret) return ret; /* extract the bar number from fdt_pci_addr */ barnum = addr->phys_hi & 0xff; if ((barnum < PCI_BASE_ADDRESS_0) || (barnum > PCI_CARDBUS_CIS)) return -EINVAL; barnum = (barnum - PCI_BASE_ADDRESS_0) / 4; *bar = pci_read_bar32(pci_bus_to_hose(PCI_BUS(bdf)), bdf, barnum); return 0; } #endif uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name, uint64_t default_val) { const uint64_t *cell64; int length; cell64 = fdt_getprop(blob, node, prop_name, &length); if (!cell64 || length < sizeof(*cell64)) return default_val; return fdt64_to_cpu(*cell64); } int fdtdec_get_is_enabled(const void *blob, int node) { const char *cell; /* * It should say "okay", so only allow that. Some fdts use "ok" but * this is a bug. Please fix your device tree source file. See here * for discussion: * * http://www.mail-archive.com/u-boot@lists.denx.de/msg71598.html */ cell = fdt_getprop(blob, node, "status", NULL); if (cell) return 0 == strcmp(cell, "okay"); return 1; } enum fdt_compat_id fdtdec_lookup(const void *blob, int node) { enum fdt_compat_id id; /* Search our drivers */ for (id = COMPAT_UNKNOWN; id < COMPAT_COUNT; id++) if (0 == fdt_node_check_compatible(blob, node, compat_names[id])) return id; return COMPAT_UNKNOWN; } int fdtdec_next_compatible(const void *blob, int node, enum fdt_compat_id id) { return fdt_node_offset_by_compatible(blob, node, compat_names[id]); } int fdtdec_next_compatible_subnode(const void *blob, int node, enum fdt_compat_id id, int *depthp) { do { node = fdt_next_node(blob, node, depthp); } while (*depthp > 1); /* If this is a direct subnode, and compatible, return it */ if (*depthp == 1 && 0 == fdt_node_check_compatible( blob, node, compat_names[id])) return node; return -FDT_ERR_NOTFOUND; } int fdtdec_next_alias(const void *blob, const char *name, enum fdt_compat_id id, int *upto) { #define MAX_STR_LEN 20 char str[MAX_STR_LEN + 20]; int node, err; /* snprintf() is not available */ assert(strlen(name) < MAX_STR_LEN); sprintf(str, "%.*s%d", MAX_STR_LEN, name, *upto); node = fdt_path_offset(blob, str); if (node < 0) return node; err = fdt_node_check_compatible(blob, node, compat_names[id]); if (err < 0) return err; if (err) return -FDT_ERR_NOTFOUND; (*upto)++; return node; } int fdtdec_find_aliases_for_id(const void *blob, const char *name, enum fdt_compat_id id, int *node_list, int maxcount) { memset(node_list, '\0', sizeof(*node_list) * maxcount); return fdtdec_add_aliases_for_id(blob, name, id, node_list, maxcount); } /* TODO: Can we tighten this code up a little? */ int fdtdec_add_aliases_for_id(const void *blob, const char *name, enum fdt_compat_id id, int *node_list, int maxcount) { int name_len = strlen(name); int nodes[maxcount]; int num_found = 0; int offset, node; int alias_node; int count; int i, j; /* find the alias node if present */ alias_node = fdt_path_offset(blob, "/aliases"); /* * start with nothing, and we can assume that the root node can't * match */ memset(nodes, '\0', sizeof(nodes)); /* First find all the compatible nodes */ for (node = count = 0; node >= 0 && count < maxcount;) { node = fdtdec_next_compatible(blob, node, id); if (node >= 0) nodes[count++] = node; } if (node >= 0) debug("%s: warning: maxcount exceeded with alias '%s'\n", __func__, name); /* Now find all the aliases */ for (offset = fdt_first_property_offset(blob, alias_node); offset > 0; offset = fdt_next_property_offset(blob, offset)) { const struct fdt_property *prop; const char *path; int number; int found; node = 0; prop = fdt_get_property_by_offset(blob, offset, NULL); path = fdt_string(blob, fdt32_to_cpu(prop->nameoff)); if (prop->len && 0 == strncmp(path, name, name_len)) node = fdt_path_offset(blob, prop->data); if (node <= 0) continue; /* Get the alias number */ number = simple_strtoul(path + name_len, NULL, 10); if (number < 0 || number >= maxcount) { debug("%s: warning: alias '%s' is out of range\n", __func__, path); continue; } /* Make sure the node we found is actually in our list! */ found = -1; for (j = 0; j < count; j++) if (nodes[j] == node) { found = j; break; } if (found == -1) { debug("%s: warning: alias '%s' points to a node " "'%s' that is missing or is not compatible " " with '%s'\n", __func__, path, fdt_get_name(blob, node, NULL), compat_names[id]); continue; } /* * Add this node to our list in the right place, and mark * it as done. */ if (fdtdec_get_is_enabled(blob, node)) { if (node_list[number]) { debug("%s: warning: alias '%s' requires that " "a node be placed in the list in a " "position which is already filled by " "node '%s'\n", __func__, path, fdt_get_name(blob, node, NULL)); continue; } node_list[number] = node; if (number >= num_found) num_found = number + 1; } nodes[found] = 0; } /* Add any nodes not mentioned by an alias */ for (i = j = 0; i < maxcount; i++) { if (!node_list[i]) { for (; j < maxcount; j++) if (nodes[j] && fdtdec_get_is_enabled(blob, nodes[j])) break; /* Have we run out of nodes to add? */ if (j == maxcount) break; assert(!node_list[i]); node_list[i] = nodes[j++]; if (i >= num_found) num_found = i + 1; } } return num_found; } int fdtdec_get_alias_seq(const void *blob, const char *base, int offset, int *seqp) { int base_len = strlen(base); const char *find_name; int find_namelen; int prop_offset; int aliases; find_name = fdt_get_name(blob, offset, &find_namelen); debug("Looking for '%s' at %d, name %s\n", base, offset, find_name); aliases = fdt_path_offset(blob, "/aliases"); for (prop_offset = fdt_first_property_offset(blob, aliases); prop_offset > 0; prop_offset = fdt_next_property_offset(blob, prop_offset)) { const char *prop; const char *name; const char *slash; int len, val; prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len); debug(" - %s, %s\n", name, prop); if (len < find_namelen || *prop != '/' || prop[len - 1] || strncmp(name, base, base_len)) continue; slash = strrchr(prop, '/'); if (strcmp(slash + 1, find_name)) continue; val = trailing_strtol(name); if (val != -1) { *seqp = val; debug("Found seq %d\n", *seqp); return 0; } } debug("Not found\n"); return -ENOENT; } int fdtdec_get_chosen_node(const void *blob, const char *name) { const char *prop; int chosen_node; int len; if (!blob) return -FDT_ERR_NOTFOUND; chosen_node = fdt_path_offset(blob, "/chosen"); prop = fdt_getprop(blob, chosen_node, name, &len); if (!prop) return -FDT_ERR_NOTFOUND; return fdt_path_offset(blob, prop); } int fdtdec_check_fdt(void) { /* * We must have an FDT, but we cannot panic() yet since the console * is not ready. So for now, just assert(). Boards which need an early * FDT (prior to console ready) will need to make their own * arrangements and do their own checks. */ assert(!fdtdec_prepare_fdt()); return 0; } /* * This function is a little odd in that it accesses global data. At some * point if the architecture board.c files merge this will make more sense. * Even now, it is common code. */ int fdtdec_prepare_fdt(void) { if (!gd->fdt_blob || ((uintptr_t)gd->fdt_blob & 3) || fdt_check_header(gd->fdt_blob)) { #ifdef CONFIG_SPL_BUILD puts("Missing DTB\n"); #else puts("No valid device tree binary found - please append one to U-Boot binary, use u-boot-dtb.bin or define CONFIG_OF_EMBED. For sandbox, use -d <file.dtb>\n"); # ifdef DEBUG if (gd->fdt_blob) { printf("fdt_blob=%p\n", gd->fdt_blob); print_buffer((ulong)gd->fdt_blob, gd->fdt_blob, 4, 32, 0); } # endif #endif return -1; } return 0; } int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name) { const u32 *phandle; int lookup; debug("%s: %s\n", __func__, prop_name); phandle = fdt_getprop(blob, node, prop_name, NULL); if (!phandle) return -FDT_ERR_NOTFOUND; lookup = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*phandle)); return lookup; } /** * Look up a property in a node and check that it has a minimum length. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * @param min_len minimum property length in bytes * @param err 0 if ok, or -FDT_ERR_NOTFOUND if the property is not found, or -FDT_ERR_BADLAYOUT if not enough data * @return pointer to cell, which is only valid if err == 0 */ static const void *get_prop_check_min_len(const void *blob, int node, const char *prop_name, int min_len, int *err) { const void *cell; int len; debug("%s: %s\n", __func__, prop_name); cell = fdt_getprop(blob, node, prop_name, &len); if (!cell) *err = -FDT_ERR_NOTFOUND; else if (len < min_len) *err = -FDT_ERR_BADLAYOUT; else *err = 0; return cell; } int fdtdec_get_int_array(const void *blob, int node, const char *prop_name, u32 *array, int count) { const u32 *cell; int i, err = 0; debug("%s: %s\n", __func__, prop_name); cell = get_prop_check_min_len(blob, node, prop_name, sizeof(u32) * count, &err); if (!err) { for (i = 0; i < count; i++) array[i] = fdt32_to_cpu(cell[i]); } return err; } int fdtdec_get_int_array_count(const void *blob, int node, const char *prop_name, u32 *array, int count) { const u32 *cell; int len, elems; int i; debug("%s: %s\n", __func__, prop_name); cell = fdt_getprop(blob, node, prop_name, &len); if (!cell) return -FDT_ERR_NOTFOUND; elems = len / sizeof(u32); if (count > elems) count = elems; for (i = 0; i < count; i++) array[i] = fdt32_to_cpu(cell[i]); return count; } const u32 *fdtdec_locate_array(const void *blob, int node, const char *prop_name, int count) { const u32 *cell; int err; cell = get_prop_check_min_len(blob, node, prop_name, sizeof(u32) * count, &err); return err ? NULL : cell; } int fdtdec_get_bool(const void *blob, int node, const char *prop_name) { const s32 *cell; int len; debug("%s: %s\n", __func__, prop_name); cell = fdt_getprop(blob, node, prop_name, &len); return cell != NULL; } int fdtdec_parse_phandle_with_args(const void *blob, int src_node, const char *list_name, const char *cells_name, int cell_count, int index, struct fdtdec_phandle_args *out_args) { const __be32 *list, *list_end; int rc = 0, size, cur_index = 0; uint32_t count = 0; int node = -1; int phandle; /* Retrieve the phandle list property */ list = fdt_getprop(blob, src_node, list_name, &size); if (!list) return -ENOENT; list_end = list + size / sizeof(*list); /* Loop over the phandles until all the requested entry is found */ while (list < list_end) { rc = -EINVAL; count = 0; /* * If phandle is 0, then it is an empty entry with no * arguments. Skip forward to the next entry. */ phandle = be32_to_cpup(list++); if (phandle) { /* * Find the provider node and parse the #*-cells * property to determine the argument length. * * This is not needed if the cell count is hard-coded * (i.e. cells_name not set, but cell_count is set), * except when we're going to return the found node * below. */ if (cells_name || cur_index == index) { node = fdt_node_offset_by_phandle(blob, phandle); if (!node) { debug("%s: could not find phandle\n", fdt_get_name(blob, src_node, NULL)); goto err; } } if (cells_name) { count = fdtdec_get_int(blob, node, cells_name, -1); if (count == -1) { debug("%s: could not get %s for %s\n", fdt_get_name(blob, src_node, NULL), cells_name, fdt_get_name(blob, node, NULL)); goto err; } } else { count = cell_count; } /* * Make sure that the arguments actually fit in the * remaining property data length */ if (list + count > list_end) { debug("%s: arguments longer than property\n", fdt_get_name(blob, src_node, NULL)); goto err; } } /* * All of the error cases above bail out of the loop, so at * this point, the parsing is successful. If the requested * index matches, then fill the out_args structure and return, * or return -ENOENT for an empty entry. */ rc = -ENOENT; if (cur_index == index) { if (!phandle) goto err; if (out_args) { int i; if (count > MAX_PHANDLE_ARGS) { debug("%s: too many arguments %d\n", fdt_get_name(blob, src_node, NULL), count); count = MAX_PHANDLE_ARGS; } out_args->node = node; out_args->args_count = count; for (i = 0; i < count; i++) { out_args->args[i] = be32_to_cpup(list++); } } /* Found it! return success */ return 0; } node = -1; list += count; cur_index++; } /* * Result will be one of: * -ENOENT : index is for empty phandle * -EINVAL : parsing error on data * [1..n] : Number of phandle (count mode; when index = -1) */ rc = index < 0 ? cur_index : -ENOENT; err: return rc; } int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name, u8 *array, int count) { const u8 *cell; int err; cell = get_prop_check_min_len(blob, node, prop_name, count, &err); if (!err) memcpy(array, cell, count); return err; } const u8 *fdtdec_locate_byte_array(const void *blob, int node, const char *prop_name, int count) { const u8 *cell; int err; cell = get_prop_check_min_len(blob, node, prop_name, count, &err); if (err) return NULL; return cell; } int fdtdec_get_config_int(const void *blob, const char *prop_name, int default_val) { int config_node; debug("%s: %s\n", __func__, prop_name); config_node = fdt_path_offset(blob, "/config"); if (config_node < 0) return default_val; return fdtdec_get_int(blob, config_node, prop_name, default_val); } int fdtdec_get_config_bool(const void *blob, const char *prop_name) { int config_node; const void *prop; debug("%s: %s\n", __func__, prop_name); config_node = fdt_path_offset(blob, "/config"); if (config_node < 0) return 0; prop = fdt_get_property(blob, config_node, prop_name, NULL); return prop != NULL; } char *fdtdec_get_config_string(const void *blob, const char *prop_name) { const char *nodep; int nodeoffset; int len; debug("%s: %s\n", __func__, prop_name); nodeoffset = fdt_path_offset(blob, "/config"); if (nodeoffset < 0) return NULL; nodep = fdt_getprop(blob, nodeoffset, prop_name, &len); if (!nodep) return NULL; return (char *)nodep; } int fdtdec_decode_region(const void *blob, int node, const char *prop_name, fdt_addr_t *basep, fdt_size_t *sizep) { const fdt_addr_t *cell; int len; debug("%s: %s: %s\n", __func__, fdt_get_name(blob, node, NULL), prop_name); cell = fdt_getprop(blob, node, prop_name, &len); if (!cell || (len < sizeof(fdt_addr_t) * 2)) { debug("cell=%p, len=%d\n", cell, len); return -1; } *basep = fdt_addr_to_cpu(*cell); *sizep = fdt_size_to_cpu(cell[1]); debug("%s: base=%08lx, size=%lx\n", __func__, (ulong)*basep, (ulong)*sizep); return 0; } /** * Read a flash entry from the fdt * * @param blob FDT blob * @param node Offset of node to read * @param name Name of node being read * @param entry Place to put offset and size of this node * @return 0 if ok, -ve on error */ int fdtdec_read_fmap_entry(const void *blob, int node, const char *name, struct fmap_entry *entry) { const char *prop; u32 reg[2]; if (fdtdec_get_int_array(blob, node, "reg", reg, 2)) { debug("Node '%s' has bad/missing 'reg' property\n", name); return -FDT_ERR_NOTFOUND; } entry->offset = reg[0]; entry->length = reg[1]; entry->used = fdtdec_get_int(blob, node, "used", entry->length); prop = fdt_getprop(blob, node, "compress", NULL); entry->compress_algo = prop && !strcmp(prop, "lzo") ? FMAP_COMPRESS_LZO : FMAP_COMPRESS_NONE; prop = fdt_getprop(blob, node, "hash", &entry->hash_size); entry->hash_algo = prop ? FMAP_HASH_SHA256 : FMAP_HASH_NONE; entry->hash = (uint8_t *)prop; return 0; } u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells) { u64 number = 0; while (cells--) number = (number << 32) | fdt32_to_cpu(*ptr++); return number; } int fdt_get_resource(const void *fdt, int node, const char *property, unsigned int index, struct fdt_resource *res) { const fdt32_t *ptr, *end; int na, ns, len, parent; unsigned int i = 0; parent = fdt_parent_offset(fdt, node); if (parent < 0) return parent; na = fdt_address_cells(fdt, parent); ns = fdt_size_cells(fdt, parent); ptr = fdt_getprop(fdt, node, property, &len); if (!ptr) return len; end = ptr + len / sizeof(*ptr); while (ptr + na + ns <= end) { if (i == index) { res->start = res->end = fdtdec_get_number(ptr, na); res->end += fdtdec_get_number(&ptr[na], ns) - 1; return 0; } ptr += na + ns; i++; } return -FDT_ERR_NOTFOUND; } int fdt_get_named_resource(const void *fdt, int node, const char *property, const char *prop_names, const char *name, struct fdt_resource *res) { int index; index = fdt_find_string(fdt, node, prop_names, name); if (index < 0) return index; return fdt_get_resource(fdt, node, property, index, res); } int fdtdec_decode_memory_region(const void *blob, int config_node, const char *mem_type, const char *suffix, fdt_addr_t *basep, fdt_size_t *sizep) { char prop_name[50]; const char *mem; fdt_size_t size, offset_size; fdt_addr_t base, offset; int node; if (config_node == -1) { config_node = fdt_path_offset(blob, "/config"); if (config_node < 0) { debug("%s: Cannot find /config node\n", __func__); return -ENOENT; } } if (!suffix) suffix = ""; snprintf(prop_name, sizeof(prop_name), "%s-memory%s", mem_type, suffix); mem = fdt_getprop(blob, config_node, prop_name, NULL); if (!mem) { debug("%s: No memory type for '%s', using /memory\n", __func__, prop_name); mem = "/memory"; } node = fdt_path_offset(blob, mem); if (node < 0) { debug("%s: Failed to find node '%s': %s\n", __func__, mem, fdt_strerror(node)); return -ENOENT; } /* * Not strictly correct - the memory may have multiple banks. We just * use the first */ if (fdtdec_decode_region(blob, node, "reg", &base, &size)) { debug("%s: Failed to decode memory region %s\n", __func__, mem); return -EINVAL; } snprintf(prop_name, sizeof(prop_name), "%s-offset%s", mem_type, suffix); if (fdtdec_decode_region(blob, config_node, prop_name, &offset, &offset_size)) { debug("%s: Failed to decode memory region '%s'\n", __func__, prop_name); return -EINVAL; } *basep = base + offset; *sizep = offset_size; return 0; } static int decode_timing_property(const void *blob, int node, const char *name, struct timing_entry *result) { int length, ret = 0; const u32 *prop; prop = fdt_getprop(blob, node, name, &length); if (!prop) { debug("%s: could not find property %s\n", fdt_get_name(blob, node, NULL), name); return length; } if (length == sizeof(u32)) { result->typ = fdtdec_get_int(blob, node, name, 0); result->min = result->typ; result->max = result->typ; } else { ret = fdtdec_get_int_array(blob, node, name, &result->min, 3); } return ret; } int fdtdec_decode_display_timing(const void *blob, int parent, int index, struct display_timing *dt) { int i, node, timings_node; u32 val = 0; int ret = 0; timings_node = fdt_subnode_offset(blob, parent, "display-timings"); if (timings_node < 0) return timings_node; for (i = 0, node = fdt_first_subnode(blob, timings_node); node > 0 && i != index; node = fdt_next_subnode(blob, node)) i++; if (node < 0) return node; memset(dt, 0, sizeof(*dt)); ret |= decode_timing_property(blob, node, "hback-porch", &dt->hback_porch); ret |= decode_timing_property(blob, node, "hfront-porch", &dt->hfront_porch); ret |= decode_timing_property(blob, node, "hactive", &dt->hactive); ret |= decode_timing_property(blob, node, "hsync-len", &dt->hsync_len); ret |= decode_timing_property(blob, node, "vback-porch", &dt->vback_porch); ret |= decode_timing_property(blob, node, "vfront-porch", &dt->vfront_porch); ret |= decode_timing_property(blob, node, "vactive", &dt->vactive); ret |= decode_timing_property(blob, node, "vsync-len", &dt->vsync_len); ret |= decode_timing_property(blob, node, "clock-frequency", &dt->pixelclock); dt->flags = 0; val = fdtdec_get_int(blob, node, "vsync-active", -1); if (val != -1) { dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH : DISPLAY_FLAGS_VSYNC_LOW; } val = fdtdec_get_int(blob, node, "hsync-active", -1); if (val != -1) { dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH : DISPLAY_FLAGS_HSYNC_LOW; } val = fdtdec_get_int(blob, node, "de-active", -1); if (val != -1) { dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH : DISPLAY_FLAGS_DE_LOW; } val = fdtdec_get_int(blob, node, "pixelclk-active", -1); if (val != -1) { dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE : DISPLAY_FLAGS_PIXDATA_NEGEDGE; } if (fdtdec_get_bool(blob, node, "interlaced")) dt->flags |= DISPLAY_FLAGS_INTERLACED; if (fdtdec_get_bool(blob, node, "doublescan")) dt->flags |= DISPLAY_FLAGS_DOUBLESCAN; if (fdtdec_get_bool(blob, node, "doubleclk")) dt->flags |= DISPLAY_FLAGS_DOUBLECLK; return 0; } int fdtdec_setup(void) { #if CONFIG_IS_ENABLED(OF_CONTROL) # ifdef CONFIG_OF_EMBED /* Get a pointer to the FDT */ gd->fdt_blob = __dtb_dt_begin; # elif defined CONFIG_OF_SEPARATE # ifdef CONFIG_SPL_BUILD /* FDT is at end of BSS */ gd->fdt_blob = (ulong *)&__bss_end; # else /* FDT is at end of image */ gd->fdt_blob = (ulong *)&_end; # endif # elif defined(CONFIG_OF_HOSTFILE) if (sandbox_read_fdt_from_file()) { puts("Failed to read control FDT\n"); return -1; } # endif # ifndef CONFIG_SPL_BUILD /* Allow the early environment to override the fdt address */ gd->fdt_blob = (void *)getenv_ulong("fdtcontroladdr", 16, (uintptr_t)gd->fdt_blob); # endif #endif return fdtdec_prepare_fdt(); } #endif /* !USE_HOSTCC */