/* * (C) Copyright 2002 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> /* * CPU test * Ternary instructions instr rD,rA,rB * * Arithmetic instructions: add, addc, adde, subf, subfc, subfe, * mullw, mulhw, mulhwu, divw, divwu * * The test contains a pre-built table of instructions, operands and * expected results. For each table entry, the test will cyclically use * different sets of operand registers and result registers. */ #ifdef CONFIG_POST #include <post.h> #include "cpu_asm.h" #if CONFIG_POST & CFG_POST_CPU extern void cpu_post_exec_22 (ulong *code, ulong *cr, ulong *res, ulong op1, ulong op2); extern ulong cpu_post_makecr (long v); static struct cpu_post_three_s { ulong cmd; ulong op1; ulong op2; ulong res; } cpu_post_three_table[] = { { OP_ADD, 100, 200, 300 }, { OP_ADD, 100, -200, -100 }, { OP_ADDC, 100, 200, 300 }, { OP_ADDC, 100, -200, -100 }, { OP_ADDE, 100, 200, 300 }, { OP_ADDE, 100, -200, -100 }, { OP_SUBF, 100, 200, 100 }, { OP_SUBF, 300, 200, -100 }, { OP_SUBFC, 100, 200, 100 }, { OP_SUBFC, 300, 200, -100 }, { OP_SUBFE, 100, 200, 200 + ~100 }, { OP_SUBFE, 300, 200, 200 + ~300 }, { OP_MULLW, 200, 300, 200 * 300 }, { OP_MULHW, 0x10000000, 0x10000000, 0x1000000 }, { OP_MULHWU, 0x80000000, 0x80000000, 0x40000000 }, { OP_DIVW, -20, 5, -4 }, { OP_DIVWU, 0x8000, 0x200, 0x40 }, }; static unsigned int cpu_post_three_size = sizeof (cpu_post_three_table) / sizeof (struct cpu_post_three_s); int cpu_post_test_three (void) { int ret = 0; unsigned int i, reg; int flag = disable_interrupts(); for (i = 0; i < cpu_post_three_size && ret == 0; i++) { struct cpu_post_three_s *test = cpu_post_three_table + i; for (reg = 0; reg < 32 && ret == 0; reg++) { unsigned int reg0 = (reg + 0) % 32; unsigned int reg1 = (reg + 1) % 32; unsigned int reg2 = (reg + 2) % 32; unsigned int stk = reg < 16 ? 31 : 15; unsigned long code[] = { ASM_STW(stk, 1, -4), ASM_ADDI(stk, 1, -24), ASM_STW(3, stk, 12), ASM_STW(4, stk, 16), ASM_STW(reg0, stk, 8), ASM_STW(reg1, stk, 4), ASM_STW(reg2, stk, 0), ASM_LWZ(reg1, stk, 12), ASM_LWZ(reg0, stk, 16), ASM_12(test->cmd, reg2, reg1, reg0), ASM_STW(reg2, stk, 12), ASM_LWZ(reg2, stk, 0), ASM_LWZ(reg1, stk, 4), ASM_LWZ(reg0, stk, 8), ASM_LWZ(3, stk, 12), ASM_ADDI(1, stk, 24), ASM_LWZ(stk, 1, -4), ASM_BLR, }; unsigned long codecr[] = { ASM_STW(stk, 1, -4), ASM_ADDI(stk, 1, -24), ASM_STW(3, stk, 12), ASM_STW(4, stk, 16), ASM_STW(reg0, stk, 8), ASM_STW(reg1, stk, 4), ASM_STW(reg2, stk, 0), ASM_LWZ(reg1, stk, 12), ASM_LWZ(reg0, stk, 16), ASM_12(test->cmd, reg2, reg1, reg0) | BIT_C, ASM_STW(reg2, stk, 12), ASM_LWZ(reg2, stk, 0), ASM_LWZ(reg1, stk, 4), ASM_LWZ(reg0, stk, 8), ASM_LWZ(3, stk, 12), ASM_ADDI(1, stk, 24), ASM_LWZ(stk, 1, -4), ASM_BLR, }; ulong res; ulong cr; if (ret == 0) { cr = 0; cpu_post_exec_22 (code, & cr, & res, test->op1, test->op2); ret = res == test->res && cr == 0 ? 0 : -1; if (ret != 0) { post_log ("Error at three test %d !\n", i); } } if (ret == 0) { cpu_post_exec_22 (codecr, & cr, & res, test->op1, test->op2); ret = res == test->res && (cr & 0xe0000000) == cpu_post_makecr (res) ? 0 : -1; if (ret != 0) { post_log ("Error at three test %d !\n", i); } } } } if (flag) enable_interrupts(); return ret; } #endif #endif