// SPDX-License-Identifier: GPL-2.0+ /* * Tests for the driver model ADC API * * Copyright (c) 2015 Samsung Electronics * Przemyslaw Marczak <p.marczak@samsung.com> */ #include <common.h> #include <adc.h> #include <dm.h> #include <dm/root.h> #include <dm/util.h> #include <dm/test.h> #include <errno.h> #include <fdtdec.h> #include <power/regulator.h> #include <power/sandbox_pmic.h> #include <sandbox-adc.h> #include <test/ut.h> static int dm_test_adc_bind(struct unit_test_state *uts) { struct udevice *dev; unsigned int channel_mask; ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev)); ut_asserteq_str(SANDBOX_ADC_DEVNAME, dev->name); ut_assertok(adc_channel_mask(dev, &channel_mask)); ut_asserteq((1 << SANDBOX_ADC_CHANNELS) - 1, channel_mask); return 0; } DM_TEST(dm_test_adc_bind, DM_TESTF_SCAN_FDT); static int dm_test_adc_wrong_channel_selection(struct unit_test_state *uts) { struct udevice *dev; ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev)); ut_asserteq(-EINVAL, adc_start_channel(dev, SANDBOX_ADC_CHANNELS)); return 0; } DM_TEST(dm_test_adc_wrong_channel_selection, DM_TESTF_SCAN_FDT); static int dm_test_adc_supply(struct unit_test_state *uts) { struct udevice *supply; struct udevice *dev; int uV; ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev)); /* Test Vss value - predefined 0 uV */ ut_assertok(adc_vss_value(dev, &uV)); ut_asserteq(SANDBOX_ADC_VSS_VALUE, uV); /* Test Vdd initial value - buck2 */ ut_assertok(adc_vdd_value(dev, &uV)); ut_asserteq(SANDBOX_BUCK2_INITIAL_EXPECTED_UV, uV); /* Change Vdd value - buck2 manual preset */ ut_assertok(regulator_get_by_devname(SANDBOX_BUCK2_DEVNAME, &supply)); ut_assertok(regulator_set_value(supply, SANDBOX_BUCK2_SET_UV)); ut_asserteq(SANDBOX_BUCK2_SET_UV, regulator_get_value(supply)); /* Update ADC platdata and get new Vdd value */ ut_assertok(adc_vdd_value(dev, &uV)); ut_asserteq(SANDBOX_BUCK2_SET_UV, uV); /* Disable buck2 and test ADC supply enable function */ ut_assertok(regulator_set_enable(supply, false)); ut_asserteq(false, regulator_get_enable(supply)); /* adc_start_channel() should enable the supply regulator */ ut_assertok(adc_start_channel(dev, 0)); ut_asserteq(true, regulator_get_enable(supply)); return 0; } DM_TEST(dm_test_adc_supply, DM_TESTF_SCAN_FDT); struct adc_channel adc_channel_test_data[] = { { 0, SANDBOX_ADC_CHANNEL0_DATA }, { 1, SANDBOX_ADC_CHANNEL1_DATA }, { 2, SANDBOX_ADC_CHANNEL2_DATA }, { 3, SANDBOX_ADC_CHANNEL3_DATA }, }; static int dm_test_adc_single_channel_conversion(struct unit_test_state *uts) { struct adc_channel *tdata = adc_channel_test_data; unsigned int i, data; struct udevice *dev; ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev)); /* Test each ADC channel's value */ for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++) { ut_assertok(adc_start_channel(dev, tdata->id)); ut_assertok(adc_channel_data(dev, tdata->id, &data)); ut_asserteq(tdata->data, data); } return 0; } DM_TEST(dm_test_adc_single_channel_conversion, DM_TESTF_SCAN_FDT); static int dm_test_adc_multi_channel_conversion(struct unit_test_state *uts) { struct adc_channel channels[SANDBOX_ADC_CHANNELS]; struct udevice *dev; struct adc_channel *tdata = adc_channel_test_data; unsigned int i, channel_mask; channel_mask = ADC_CHANNEL(0) | ADC_CHANNEL(1) | ADC_CHANNEL(2) | ADC_CHANNEL(3); /* Start multi channel conversion */ ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev)); ut_assertok(adc_start_channels(dev, channel_mask)); ut_assertok(adc_channels_data(dev, channel_mask, channels)); /* Compare the expected and returned conversion data. */ for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++) ut_asserteq(tdata->data, channels[i].data); return 0; } DM_TEST(dm_test_adc_multi_channel_conversion, DM_TESTF_SCAN_FDT); static int dm_test_adc_single_channel_shot(struct unit_test_state *uts) { struct adc_channel *tdata = adc_channel_test_data; unsigned int i, data; for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++) { /* Start single channel conversion */ ut_assertok(adc_channel_single_shot("adc@0", tdata->id, &data)); /* Compare the expected and returned conversion data. */ ut_asserteq(tdata->data, data); } return 0; } DM_TEST(dm_test_adc_single_channel_shot, DM_TESTF_SCAN_FDT); static int dm_test_adc_multi_channel_shot(struct unit_test_state *uts) { struct adc_channel channels[SANDBOX_ADC_CHANNELS]; struct adc_channel *tdata = adc_channel_test_data; unsigned int i, channel_mask; channel_mask = ADC_CHANNEL(0) | ADC_CHANNEL(1) | ADC_CHANNEL(2) | ADC_CHANNEL(3); /* Start single call and multi channel conversion */ ut_assertok(adc_channels_single_shot("adc@0", channel_mask, channels)); /* Compare the expected and returned conversion data. */ for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++) ut_asserteq(tdata->data, channels[i].data); return 0; } DM_TEST(dm_test_adc_multi_channel_shot, DM_TESTF_SCAN_FDT); static const int dm_test_adc_uV_data[SANDBOX_ADC_CHANNELS] = { ((u64)SANDBOX_ADC_CHANNEL0_DATA * SANDBOX_BUCK2_INITIAL_EXPECTED_UV) / SANDBOX_ADC_DATA_MASK, ((u64)SANDBOX_ADC_CHANNEL1_DATA * SANDBOX_BUCK2_INITIAL_EXPECTED_UV) / SANDBOX_ADC_DATA_MASK, ((u64)SANDBOX_ADC_CHANNEL2_DATA * SANDBOX_BUCK2_INITIAL_EXPECTED_UV) / SANDBOX_ADC_DATA_MASK, ((u64)SANDBOX_ADC_CHANNEL3_DATA * SANDBOX_BUCK2_INITIAL_EXPECTED_UV) / SANDBOX_ADC_DATA_MASK, }; static int dm_test_adc_raw_to_uV(struct unit_test_state *uts) { struct adc_channel *tdata = adc_channel_test_data; unsigned int i, data; struct udevice *dev; int uV; ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev)); /* Test each ADC channel's value in microvolts */ for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++) { ut_assertok(adc_start_channel(dev, tdata->id)); ut_assertok(adc_channel_data(dev, tdata->id, &data)); ut_assertok(adc_raw_to_uV(dev, data, &uV)); ut_asserteq(dm_test_adc_uV_data[i], uV); } return 0; } DM_TEST(dm_test_adc_raw_to_uV, DM_TESTF_SCAN_FDT);