/* * Allwinner NAND randomizer and image builder implementation: * * Copyright © 2016 NextThing Co. * Copyright © 2016 Free Electrons * * Author: Boris Brezillon <boris.brezillon@free-electrons.com> * */ #include <linux/bch.h> #include <getopt.h> #include <version.h> #define BCH_PRIMITIVE_POLY 0x5803 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) struct image_info { int ecc_strength; int ecc_step_size; int page_size; int oob_size; int usable_page_size; int eraseblock_size; int scramble; int boot0; off_t offset; const char *source; const char *dest; }; static void swap_bits(uint8_t *buf, int len) { int i, j; for (j = 0; j < len; j++) { uint8_t byte = buf[j]; buf[j] = 0; for (i = 0; i < 8; i++) { if (byte & (1 << i)) buf[j] |= (1 << (7 - i)); } } } static uint16_t lfsr_step(uint16_t state, int count) { state &= 0x7fff; while (count--) state = ((state >> 1) | ((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff; return state; } static uint16_t default_scrambler_seeds[] = { 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, }; static uint16_t brom_scrambler_seeds[] = { 0x4a80 }; static void scramble(const struct image_info *info, int page, uint8_t *data, int datalen) { uint16_t state; int i; /* Boot0 is always scrambled no matter the command line option. */ if (info->boot0) { state = brom_scrambler_seeds[0]; } else { unsigned seedmod = info->eraseblock_size / info->page_size; /* Bail out earlier if the user didn't ask for scrambling. */ if (!info->scramble) return; if (seedmod > ARRAY_SIZE(default_scrambler_seeds)) seedmod = ARRAY_SIZE(default_scrambler_seeds); state = default_scrambler_seeds[page % seedmod]; } /* Prepare the initial state... */ state = lfsr_step(state, 15); /* and start scrambling data. */ for (i = 0; i < datalen; i++) { data[i] ^= state; state = lfsr_step(state, 8); } } static int write_page(const struct image_info *info, uint8_t *buffer, FILE *src, FILE *rnd, FILE *dst, struct bch_control *bch, int page) { int steps = info->usable_page_size / info->ecc_step_size; int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8); off_t pos = ftell(dst); size_t pad, cnt; int i; if (eccbytes % 2) eccbytes++; memset(buffer, 0xff, info->page_size + info->oob_size); cnt = fread(buffer, 1, info->usable_page_size, src); if (!cnt) { if (!feof(src)) { fprintf(stderr, "Failed to read data from the source\n"); return -1; } else { return 0; } } fwrite(buffer, info->page_size + info->oob_size, 1, dst); for (i = 0; i < info->usable_page_size; i++) { if (buffer[i] != 0xff) break; } /* We leave empty pages at 0xff. */ if (i == info->usable_page_size) return 0; /* Restore the source pointer to read it again. */ fseek(src, -cnt, SEEK_CUR); /* Randomize unused space if scrambling is required. */ if (info->scramble) { int offs; if (info->boot0) { size_t ret; offs = steps * (info->ecc_step_size + eccbytes + 4); cnt = info->page_size + info->oob_size - offs; ret = fread(buffer + offs, 1, cnt, rnd); if (!ret && !feof(rnd)) { fprintf(stderr, "Failed to read random data\n"); return -1; } } else { offs = info->page_size + (steps * (eccbytes + 4)); cnt = info->page_size + info->oob_size - offs; memset(buffer + offs, 0xff, cnt); scramble(info, page, buffer + offs, cnt); } fseek(dst, pos + offs, SEEK_SET); fwrite(buffer + offs, cnt, 1, dst); } for (i = 0; i < steps; i++) { int ecc_offs, data_offs; uint8_t *ecc; memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4); ecc = buffer + info->ecc_step_size + 4; if (info->boot0) { data_offs = i * (info->ecc_step_size + eccbytes + 4); ecc_offs = data_offs + info->ecc_step_size + 4; } else { data_offs = i * info->ecc_step_size; ecc_offs = info->page_size + 4 + (i * (eccbytes + 4)); } cnt = fread(buffer, 1, info->ecc_step_size, src); if (!cnt && !feof(src)) { fprintf(stderr, "Failed to read data from the source\n"); return -1; } pad = info->ecc_step_size - cnt; if (pad) { if (info->scramble && info->boot0) { size_t ret; ret = fread(buffer + cnt, 1, pad, rnd); if (!ret && !feof(rnd)) { fprintf(stderr, "Failed to read random data\n"); return -1; } } else { memset(buffer + cnt, 0xff, pad); } } memset(ecc, 0, eccbytes); swap_bits(buffer, info->ecc_step_size + 4); encode_bch(bch, buffer, info->ecc_step_size + 4, ecc); swap_bits(buffer, info->ecc_step_size + 4); swap_bits(ecc, eccbytes); scramble(info, page, buffer, info->ecc_step_size + 4 + eccbytes); fseek(dst, pos + data_offs, SEEK_SET); fwrite(buffer, info->ecc_step_size, 1, dst); fseek(dst, pos + ecc_offs - 4, SEEK_SET); fwrite(ecc - 4, eccbytes + 4, 1, dst); } /* Fix BBM. */ fseek(dst, pos + info->page_size, SEEK_SET); memset(buffer, 0xff, 2); fwrite(buffer, 2, 1, dst); /* Make dst pointer point to the next page. */ fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET); return 0; } static int create_image(const struct image_info *info) { off_t page = info->offset / info->page_size; struct bch_control *bch; FILE *src, *dst, *rnd; uint8_t *buffer; bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY); if (!bch) { fprintf(stderr, "Failed to init the BCH engine\n"); return -1; } buffer = malloc(info->page_size + info->oob_size); if (!buffer) { fprintf(stderr, "Failed to allocate the NAND page buffer\n"); return -1; } memset(buffer, 0xff, info->page_size + info->oob_size); src = fopen(info->source, "r"); if (!src) { fprintf(stderr, "Failed to open source file (%s)\n", info->source); return -1; } dst = fopen(info->dest, "w"); if (!dst) { fprintf(stderr, "Failed to open dest file (%s)\n", info->dest); return -1; } rnd = fopen("/dev/urandom", "r"); if (!rnd) { fprintf(stderr, "Failed to open /dev/urandom\n"); return -1; } while (!feof(src)) { int ret; ret = write_page(info, buffer, src, rnd, dst, bch, page++); if (ret) return ret; } return 0; } static void display_help(int status) { fprintf(status == EXIT_SUCCESS ? stdout : stderr, "sunxi-nand-image-builder %s\n" "\n" "Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image\n" "\n" "Creates a raw NAND image that can be read by the sunxi NAND controller.\n" "\n" "-h --help Display this help and exit\n" "-c <str>/<step> --ecc=<str>/<step> ECC config (strength/step-size)\n" "-p <size> --page=<size> Page size\n" "-o <size> --oob=<size> OOB size\n" "-u <size> --usable=<size> Usable page size\n" "-e <size> --eraseblock=<size> Erase block size\n" "-b --boot0 Build a boot0 image.\n" "-s --scramble Scramble data\n" "-a <offset> --address=<offset> Where the image will be programmed.\n" "\n" "Notes:\n" "All the information you need to pass to this tool should be part of\n" "the NAND datasheet.\n" "\n" "The NAND controller only supports the following ECC configs\n" " Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n" " Valid ECC step size: 512 and 1024\n" "\n" "If you are building a boot0 image, you'll have specify extra options.\n" "These options should be chosen based on the layouts described here:\n" " http://linux-sunxi.org/NAND#More_information_on_BROM_NAND\n" "\n" " --usable should be assigned the 'Hardware page' value\n" " --ecc should be assigned the 'ECC capacity'/'ECC page' values\n" " --usable should be smaller than --page\n" "\n" "The --address option is only required for non-boot0 images that are \n" "meant to be programmed at a non eraseblock aligned offset.\n" "\n" "Examples:\n" " The H27UCG8T2BTR-BC NAND exposes\n" " * 16k pages\n" " * 1280 OOB bytes per page\n" " * 4M eraseblocks\n" " * requires data scrambling\n" " * expects a minimum ECC of 40bits/1024bytes\n" "\n" " A normal image can be generated with\n" " sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -c 40/1024\n" " A boot0 image can be generated with\n" " sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -b -u 4096 -c 64/1024\n", PLAIN_VERSION); exit(status); } static int check_image_info(struct image_info *info) { static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; int eccbytes, eccsteps; unsigned i; if (!info->page_size) { fprintf(stderr, "--page is missing\n"); return -EINVAL; } if (!info->page_size) { fprintf(stderr, "--oob is missing\n"); return -EINVAL; } if (!info->eraseblock_size) { fprintf(stderr, "--eraseblock is missing\n"); return -EINVAL; } if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) { fprintf(stderr, "Invalid ECC step argument: %d\n", info->ecc_step_size); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) { if (valid_ecc_strengths[i] == info->ecc_strength) break; } if (i == ARRAY_SIZE(valid_ecc_strengths)) { fprintf(stderr, "Invalid ECC strength argument: %d\n", info->ecc_strength); return -EINVAL; } eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8); if (eccbytes % 2) eccbytes++; eccbytes += 4; eccsteps = info->usable_page_size / info->ecc_step_size; if (info->page_size + info->oob_size < info->usable_page_size + (eccsteps * eccbytes)) { fprintf(stderr, "ECC bytes do not fit in the NAND page, choose a weaker ECC\n"); return -EINVAL; } return 0; } int main(int argc, char **argv) { struct image_info info; memset(&info, 0, sizeof(info)); /* * Process user arguments */ for (;;) { int option_index = 0; char *endptr = NULL; static const struct option long_options[] = { {"help", no_argument, 0, 'h'}, {"ecc", required_argument, 0, 'c'}, {"page", required_argument, 0, 'p'}, {"oob", required_argument, 0, 'o'}, {"usable", required_argument, 0, 'u'}, {"eraseblock", required_argument, 0, 'e'}, {"boot0", no_argument, 0, 'b'}, {"scramble", no_argument, 0, 's'}, {"address", required_argument, 0, 'a'}, {0, 0, 0, 0}, }; int c = getopt_long(argc, argv, "c:p:o:u:e:ba:sh", long_options, &option_index); if (c == EOF) break; switch (c) { case 'h': display_help(0); break; case 's': info.scramble = 1; break; case 'c': info.ecc_strength = strtol(optarg, &endptr, 0); if (*endptr == '/') info.ecc_step_size = strtol(endptr + 1, NULL, 0); break; case 'p': info.page_size = strtol(optarg, NULL, 0); break; case 'o': info.oob_size = strtol(optarg, NULL, 0); break; case 'u': info.usable_page_size = strtol(optarg, NULL, 0); break; case 'e': info.eraseblock_size = strtol(optarg, NULL, 0); break; case 'b': info.boot0 = 1; break; case 'a': info.offset = strtoull(optarg, NULL, 0); break; case '?': display_help(-1); break; } } if ((argc - optind) != 2) display_help(-1); info.source = argv[optind]; info.dest = argv[optind + 1]; if (!info.boot0) { info.usable_page_size = info.page_size; } else if (!info.usable_page_size) { if (info.page_size > 8192) info.usable_page_size = 8192; else if (info.page_size > 4096) info.usable_page_size = 4096; else info.usable_page_size = 1024; } if (check_image_info(&info)) display_help(-1); return create_image(&info); }