diff options
author | Michael J. Chudobiak <mjc@avtechpulse.com> | 2016-04-25 10:00:44 -0400 |
---|---|---|
committer | Michael J. Chudobiak <mjc@avtechpulse.com> | 2016-04-25 10:00:44 -0400 |
commit | a1df417e74aa6dae7352dc8cbb0ad471af5b7c69 (patch) | |
tree | c34b2311e37ea31db153c90cb8f4570374d05e78 /linux/arch/ia64/kernel/smpboot.c |
initial Olimex linux tree from Daniel, originally Feb 3, 2016
Diffstat (limited to 'linux/arch/ia64/kernel/smpboot.c')
-rw-r--r-- | linux/arch/ia64/kernel/smpboot.c | 861 |
1 files changed, 861 insertions, 0 deletions
diff --git a/linux/arch/ia64/kernel/smpboot.c b/linux/arch/ia64/kernel/smpboot.c new file mode 100644 index 00000000..b054c5c6 --- /dev/null +++ b/linux/arch/ia64/kernel/smpboot.c @@ -0,0 +1,861 @@ +/* + * SMP boot-related support + * + * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co + * David Mosberger-Tang <davidm@hpl.hp.com> + * Copyright (C) 2001, 2004-2005 Intel Corp + * Rohit Seth <rohit.seth@intel.com> + * Suresh Siddha <suresh.b.siddha@intel.com> + * Gordon Jin <gordon.jin@intel.com> + * Ashok Raj <ashok.raj@intel.com> + * + * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here. + * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code. + * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence. + * smp_boot_cpus()/smp_commence() is replaced by + * smp_prepare_cpus()/__cpu_up()/smp_cpus_done(). + * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support + * 04/12/26 Jin Gordon <gordon.jin@intel.com> + * 04/12/26 Rohit Seth <rohit.seth@intel.com> + * Add multi-threading and multi-core detection + * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com> + * Setup cpu_sibling_map and cpu_core_map + */ + +#include <linux/module.h> +#include <linux/acpi.h> +#include <linux/bootmem.h> +#include <linux/cpu.h> +#include <linux/delay.h> +#include <linux/init.h> +#include <linux/interrupt.h> +#include <linux/irq.h> +#include <linux/kernel.h> +#include <linux/kernel_stat.h> +#include <linux/mm.h> +#include <linux/notifier.h> +#include <linux/smp.h> +#include <linux/spinlock.h> +#include <linux/efi.h> +#include <linux/percpu.h> +#include <linux/bitops.h> + +#include <linux/atomic.h> +#include <asm/cache.h> +#include <asm/current.h> +#include <asm/delay.h> +#include <asm/io.h> +#include <asm/irq.h> +#include <asm/machvec.h> +#include <asm/mca.h> +#include <asm/page.h> +#include <asm/paravirt.h> +#include <asm/pgalloc.h> +#include <asm/pgtable.h> +#include <asm/processor.h> +#include <asm/ptrace.h> +#include <asm/sal.h> +#include <asm/tlbflush.h> +#include <asm/unistd.h> +#include <asm/sn/arch.h> + +#define SMP_DEBUG 0 + +#if SMP_DEBUG +#define Dprintk(x...) printk(x) +#else +#define Dprintk(x...) +#endif + +#ifdef CONFIG_HOTPLUG_CPU +#ifdef CONFIG_PERMIT_BSP_REMOVE +#define bsp_remove_ok 1 +#else +#define bsp_remove_ok 0 +#endif + +/* + * Global array allocated for NR_CPUS at boot time + */ +struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS]; + +/* + * start_ap in head.S uses this to store current booting cpu + * info. + */ +struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0]; + +#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]); + +#else +#define set_brendez_area(x) +#endif + + +/* + * ITC synchronization related stuff: + */ +#define MASTER (0) +#define SLAVE (SMP_CACHE_BYTES/8) + +#define NUM_ROUNDS 64 /* magic value */ +#define NUM_ITERS 5 /* likewise */ + +static DEFINE_SPINLOCK(itc_sync_lock); +static volatile unsigned long go[SLAVE + 1]; + +#define DEBUG_ITC_SYNC 0 + +extern void start_ap (void); +extern unsigned long ia64_iobase; + +struct task_struct *task_for_booting_cpu; + +/* + * State for each CPU + */ +DEFINE_PER_CPU(int, cpu_state); + +cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned; +EXPORT_SYMBOL(cpu_core_map); +DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map); +EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); + +int smp_num_siblings = 1; + +/* which logical CPU number maps to which CPU (physical APIC ID) */ +volatile int ia64_cpu_to_sapicid[NR_CPUS]; +EXPORT_SYMBOL(ia64_cpu_to_sapicid); + +static cpumask_t cpu_callin_map; + +struct smp_boot_data smp_boot_data __initdata; + +unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */ + +char __initdata no_int_routing; + +unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */ + +#ifdef CONFIG_FORCE_CPEI_RETARGET +#define CPEI_OVERRIDE_DEFAULT (1) +#else +#define CPEI_OVERRIDE_DEFAULT (0) +#endif + +unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT; + +static int __init +cmdl_force_cpei(char *str) +{ + int value=0; + + get_option (&str, &value); + force_cpei_retarget = value; + + return 1; +} + +__setup("force_cpei=", cmdl_force_cpei); + +static int __init +nointroute (char *str) +{ + no_int_routing = 1; + printk ("no_int_routing on\n"); + return 1; +} + +__setup("nointroute", nointroute); + +static void fix_b0_for_bsp(void) +{ +#ifdef CONFIG_HOTPLUG_CPU + int cpuid; + static int fix_bsp_b0 = 1; + + cpuid = smp_processor_id(); + + /* + * Cache the b0 value on the first AP that comes up + */ + if (!(fix_bsp_b0 && cpuid)) + return; + + sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0]; + printk ("Fixed BSP b0 value from CPU %d\n", cpuid); + + fix_bsp_b0 = 0; +#endif +} + +void +sync_master (void *arg) +{ + unsigned long flags, i; + + go[MASTER] = 0; + + local_irq_save(flags); + { + for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) { + while (!go[MASTER]) + cpu_relax(); + go[MASTER] = 0; + go[SLAVE] = ia64_get_itc(); + } + } + local_irq_restore(flags); +} + +/* + * Return the number of cycles by which our itc differs from the itc on the master + * (time-keeper) CPU. A positive number indicates our itc is ahead of the master, + * negative that it is behind. + */ +static inline long +get_delta (long *rt, long *master) +{ + unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; + unsigned long tcenter, t0, t1, tm; + long i; + + for (i = 0; i < NUM_ITERS; ++i) { + t0 = ia64_get_itc(); + go[MASTER] = 1; + while (!(tm = go[SLAVE])) + cpu_relax(); + go[SLAVE] = 0; + t1 = ia64_get_itc(); + + if (t1 - t0 < best_t1 - best_t0) + best_t0 = t0, best_t1 = t1, best_tm = tm; + } + + *rt = best_t1 - best_t0; + *master = best_tm - best_t0; + + /* average best_t0 and best_t1 without overflow: */ + tcenter = (best_t0/2 + best_t1/2); + if (best_t0 % 2 + best_t1 % 2 == 2) + ++tcenter; + return tcenter - best_tm; +} + +/* + * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU + * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of + * unaccounted-for errors (such as getting a machine check in the middle of a calibration + * step). The basic idea is for the slave to ask the master what itc value it has and to + * read its own itc before and after the master responds. Each iteration gives us three + * timestamps: + * + * slave master + * + * t0 ---\ + * ---\ + * ---> + * tm + * /--- + * /--- + * t1 <--- + * + * + * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0 + * and t1. If we achieve this, the clocks are synchronized provided the interconnect + * between the slave and the master is symmetric. Even if the interconnect were + * asymmetric, we would still know that the synchronization error is smaller than the + * roundtrip latency (t0 - t1). + * + * When the interconnect is quiet and symmetric, this lets us synchronize the itc to + * within one or two cycles. However, we can only *guarantee* that the synchronization is + * accurate to within a round-trip time, which is typically in the range of several + * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually + * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better + * than half a micro second or so. + */ +void +ia64_sync_itc (unsigned int master) +{ + long i, delta, adj, adjust_latency = 0, done = 0; + unsigned long flags, rt, master_time_stamp, bound; +#if DEBUG_ITC_SYNC + struct { + long rt; /* roundtrip time */ + long master; /* master's timestamp */ + long diff; /* difference between midpoint and master's timestamp */ + long lat; /* estimate of itc adjustment latency */ + } t[NUM_ROUNDS]; +#endif + + /* + * Make sure local timer ticks are disabled while we sync. If + * they were enabled, we'd have to worry about nasty issues + * like setting the ITC ahead of (or a long time before) the + * next scheduled tick. + */ + BUG_ON((ia64_get_itv() & (1 << 16)) == 0); + + go[MASTER] = 1; + + if (smp_call_function_single(master, sync_master, NULL, 0) < 0) { + printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master); + return; + } + + while (go[MASTER]) + cpu_relax(); /* wait for master to be ready */ + + spin_lock_irqsave(&itc_sync_lock, flags); + { + for (i = 0; i < NUM_ROUNDS; ++i) { + delta = get_delta(&rt, &master_time_stamp); + if (delta == 0) { + done = 1; /* let's lock on to this... */ + bound = rt; + } + + if (!done) { + if (i > 0) { + adjust_latency += -delta; + adj = -delta + adjust_latency/4; + } else + adj = -delta; + + ia64_set_itc(ia64_get_itc() + adj); + } +#if DEBUG_ITC_SYNC + t[i].rt = rt; + t[i].master = master_time_stamp; + t[i].diff = delta; + t[i].lat = adjust_latency/4; +#endif + } + } + spin_unlock_irqrestore(&itc_sync_lock, flags); + +#if DEBUG_ITC_SYNC + for (i = 0; i < NUM_ROUNDS; ++i) + printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", + t[i].rt, t[i].master, t[i].diff, t[i].lat); +#endif + + printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, " + "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt); +} + +/* + * Ideally sets up per-cpu profiling hooks. Doesn't do much now... + */ +static inline void smp_setup_percpu_timer(void) +{ +} + +static void +smp_callin (void) +{ + int cpuid, phys_id, itc_master; + struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo; + extern void ia64_init_itm(void); + extern volatile int time_keeper_id; + +#ifdef CONFIG_PERFMON + extern void pfm_init_percpu(void); +#endif + + cpuid = smp_processor_id(); + phys_id = hard_smp_processor_id(); + itc_master = time_keeper_id; + + if (cpu_online(cpuid)) { + printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n", + phys_id, cpuid); + BUG(); + } + + fix_b0_for_bsp(); + + /* + * numa_node_id() works after this. + */ + set_numa_node(cpu_to_node_map[cpuid]); + set_numa_mem(local_memory_node(cpu_to_node_map[cpuid])); + + spin_lock(&vector_lock); + /* Setup the per cpu irq handling data structures */ + __setup_vector_irq(cpuid); + notify_cpu_starting(cpuid); + set_cpu_online(cpuid, true); + per_cpu(cpu_state, cpuid) = CPU_ONLINE; + spin_unlock(&vector_lock); + + smp_setup_percpu_timer(); + + ia64_mca_cmc_vector_setup(); /* Setup vector on AP */ + +#ifdef CONFIG_PERFMON + pfm_init_percpu(); +#endif + + local_irq_enable(); + + if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { + /* + * Synchronize the ITC with the BP. Need to do this after irqs are + * enabled because ia64_sync_itc() calls smp_call_function_single(), which + * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls + * local_bh_enable(), which bugs out if irqs are not enabled... + */ + Dprintk("Going to syncup ITC with ITC Master.\n"); + ia64_sync_itc(itc_master); + } + + /* + * Get our bogomips. + */ + ia64_init_itm(); + + /* + * Delay calibration can be skipped if new processor is identical to the + * previous processor. + */ + last_cpuinfo = cpu_data(cpuid - 1); + this_cpuinfo = local_cpu_data; + if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq || + last_cpuinfo->proc_freq != this_cpuinfo->proc_freq || + last_cpuinfo->features != this_cpuinfo->features || + last_cpuinfo->revision != this_cpuinfo->revision || + last_cpuinfo->family != this_cpuinfo->family || + last_cpuinfo->archrev != this_cpuinfo->archrev || + last_cpuinfo->model != this_cpuinfo->model) + calibrate_delay(); + local_cpu_data->loops_per_jiffy = loops_per_jiffy; + + /* + * Allow the master to continue. + */ + cpumask_set_cpu(cpuid, &cpu_callin_map); + Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid); +} + + +/* + * Activate a secondary processor. head.S calls this. + */ +int +start_secondary (void *unused) +{ + /* Early console may use I/O ports */ + ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); +#ifndef CONFIG_PRINTK_TIME + Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id()); +#endif + efi_map_pal_code(); + cpu_init(); + preempt_disable(); + smp_callin(); + + cpu_startup_entry(CPUHP_ONLINE); + return 0; +} + +static int +do_boot_cpu (int sapicid, int cpu, struct task_struct *idle) +{ + int timeout; + + task_for_booting_cpu = idle; + Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid); + + set_brendez_area(cpu); + platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0); + + /* + * Wait 10s total for the AP to start + */ + Dprintk("Waiting on callin_map ..."); + for (timeout = 0; timeout < 100000; timeout++) { + if (cpumask_test_cpu(cpu, &cpu_callin_map)) + break; /* It has booted */ + barrier(); /* Make sure we re-read cpu_callin_map */ + udelay(100); + } + Dprintk("\n"); + + if (!cpumask_test_cpu(cpu, &cpu_callin_map)) { + printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid); + ia64_cpu_to_sapicid[cpu] = -1; + set_cpu_online(cpu, false); /* was set in smp_callin() */ + return -EINVAL; + } + return 0; +} + +static int __init +decay (char *str) +{ + int ticks; + get_option (&str, &ticks); + return 1; +} + +__setup("decay=", decay); + +/* + * Initialize the logical CPU number to SAPICID mapping + */ +void __init +smp_build_cpu_map (void) +{ + int sapicid, cpu, i; + int boot_cpu_id = hard_smp_processor_id(); + + for (cpu = 0; cpu < NR_CPUS; cpu++) { + ia64_cpu_to_sapicid[cpu] = -1; + } + + ia64_cpu_to_sapicid[0] = boot_cpu_id; + init_cpu_present(cpumask_of(0)); + set_cpu_possible(0, true); + for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) { + sapicid = smp_boot_data.cpu_phys_id[i]; + if (sapicid == boot_cpu_id) + continue; + set_cpu_present(cpu, true); + set_cpu_possible(cpu, true); + ia64_cpu_to_sapicid[cpu] = sapicid; + cpu++; + } +} + +/* + * Cycle through the APs sending Wakeup IPIs to boot each. + */ +void __init +smp_prepare_cpus (unsigned int max_cpus) +{ + int boot_cpu_id = hard_smp_processor_id(); + + /* + * Initialize the per-CPU profiling counter/multiplier + */ + + smp_setup_percpu_timer(); + + cpumask_set_cpu(0, &cpu_callin_map); + + local_cpu_data->loops_per_jiffy = loops_per_jiffy; + ia64_cpu_to_sapicid[0] = boot_cpu_id; + + printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id); + + current_thread_info()->cpu = 0; + + /* + * If SMP should be disabled, then really disable it! + */ + if (!max_cpus) { + printk(KERN_INFO "SMP mode deactivated.\n"); + init_cpu_online(cpumask_of(0)); + init_cpu_present(cpumask_of(0)); + init_cpu_possible(cpumask_of(0)); + return; + } +} + +void smp_prepare_boot_cpu(void) +{ + set_cpu_online(smp_processor_id(), true); + cpumask_set_cpu(smp_processor_id(), &cpu_callin_map); + set_numa_node(cpu_to_node_map[smp_processor_id()]); + per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; + paravirt_post_smp_prepare_boot_cpu(); +} + +#ifdef CONFIG_HOTPLUG_CPU +static inline void +clear_cpu_sibling_map(int cpu) +{ + int i; + + for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu)) + cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i)); + for_each_cpu(i, &cpu_core_map[cpu]) + cpumask_clear_cpu(cpu, &cpu_core_map[i]); + + per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE; +} + +static void +remove_siblinginfo(int cpu) +{ + int last = 0; + + if (cpu_data(cpu)->threads_per_core == 1 && + cpu_data(cpu)->cores_per_socket == 1) { + cpumask_clear_cpu(cpu, &cpu_core_map[cpu]); + cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu)); + return; + } + + last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0); + + /* remove it from all sibling map's */ + clear_cpu_sibling_map(cpu); +} + +extern void fixup_irqs(void); + +int migrate_platform_irqs(unsigned int cpu) +{ + int new_cpei_cpu; + struct irq_data *data = NULL; + const struct cpumask *mask; + int retval = 0; + + /* + * dont permit CPEI target to removed. + */ + if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) { + printk ("CPU (%d) is CPEI Target\n", cpu); + if (can_cpei_retarget()) { + /* + * Now re-target the CPEI to a different processor + */ + new_cpei_cpu = cpumask_any(cpu_online_mask); + mask = cpumask_of(new_cpei_cpu); + set_cpei_target_cpu(new_cpei_cpu); + data = irq_get_irq_data(ia64_cpe_irq); + /* + * Switch for now, immediately, we need to do fake intr + * as other interrupts, but need to study CPEI behaviour with + * polling before making changes. + */ + if (data && data->chip) { + data->chip->irq_disable(data); + data->chip->irq_set_affinity(data, mask, false); + data->chip->irq_enable(data); + printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu); + } + } + if (!data) { + printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu); + retval = -EBUSY; + } + } + return retval; +} + +/* must be called with cpucontrol mutex held */ +int __cpu_disable(void) +{ + int cpu = smp_processor_id(); + + /* + * dont permit boot processor for now + */ + if (cpu == 0 && !bsp_remove_ok) { + printk ("Your platform does not support removal of BSP\n"); + return (-EBUSY); + } + + if (ia64_platform_is("sn2")) { + if (!sn_cpu_disable_allowed(cpu)) + return -EBUSY; + } + + set_cpu_online(cpu, false); + + if (migrate_platform_irqs(cpu)) { + set_cpu_online(cpu, true); + return -EBUSY; + } + + remove_siblinginfo(cpu); + fixup_irqs(); + local_flush_tlb_all(); + cpumask_clear_cpu(cpu, &cpu_callin_map); + return 0; +} + +void __cpu_die(unsigned int cpu) +{ + unsigned int i; + + for (i = 0; i < 100; i++) { + /* They ack this in play_dead by setting CPU_DEAD */ + if (per_cpu(cpu_state, cpu) == CPU_DEAD) + { + printk ("CPU %d is now offline\n", cpu); + return; + } + msleep(100); + } + printk(KERN_ERR "CPU %u didn't die...\n", cpu); +} +#endif /* CONFIG_HOTPLUG_CPU */ + +void +smp_cpus_done (unsigned int dummy) +{ + int cpu; + unsigned long bogosum = 0; + + /* + * Allow the user to impress friends. + */ + + for_each_online_cpu(cpu) { + bogosum += cpu_data(cpu)->loops_per_jiffy; + } + + printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", + (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); +} + +static inline void set_cpu_sibling_map(int cpu) +{ + int i; + + for_each_online_cpu(i) { + if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) { + cpumask_set_cpu(i, &cpu_core_map[cpu]); + cpumask_set_cpu(cpu, &cpu_core_map[i]); + if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) { + cpumask_set_cpu(i, + &per_cpu(cpu_sibling_map, cpu)); + cpumask_set_cpu(cpu, + &per_cpu(cpu_sibling_map, i)); + } + } + } +} + +int +__cpu_up(unsigned int cpu, struct task_struct *tidle) +{ + int ret; + int sapicid; + + sapicid = ia64_cpu_to_sapicid[cpu]; + if (sapicid == -1) + return -EINVAL; + + /* + * Already booted cpu? not valid anymore since we dont + * do idle loop tightspin anymore. + */ + if (cpumask_test_cpu(cpu, &cpu_callin_map)) + return -EINVAL; + + per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; + /* Processor goes to start_secondary(), sets online flag */ + ret = do_boot_cpu(sapicid, cpu, tidle); + if (ret < 0) + return ret; + + if (cpu_data(cpu)->threads_per_core == 1 && + cpu_data(cpu)->cores_per_socket == 1) { + cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu)); + cpumask_set_cpu(cpu, &cpu_core_map[cpu]); + return 0; + } + + set_cpu_sibling_map(cpu); + + return 0; +} + +/* + * Assume that CPUs have been discovered by some platform-dependent interface. For + * SoftSDV/Lion, that would be ACPI. + * + * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP(). + */ +void __init +init_smp_config(void) +{ + struct fptr { + unsigned long fp; + unsigned long gp; + } *ap_startup; + long sal_ret; + + /* Tell SAL where to drop the APs. */ + ap_startup = (struct fptr *) start_ap; + sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ, + ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0); + if (sal_ret < 0) + printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n", + ia64_sal_strerror(sal_ret)); +} + +/* + * identify_siblings(cpu) gets called from identify_cpu. This populates the + * information related to logical execution units in per_cpu_data structure. + */ +void identify_siblings(struct cpuinfo_ia64 *c) +{ + long status; + u16 pltid; + pal_logical_to_physical_t info; + + status = ia64_pal_logical_to_phys(-1, &info); + if (status != PAL_STATUS_SUCCESS) { + if (status != PAL_STATUS_UNIMPLEMENTED) { + printk(KERN_ERR + "ia64_pal_logical_to_phys failed with %ld\n", + status); + return; + } + + info.overview_ppid = 0; + info.overview_cpp = 1; + info.overview_tpc = 1; + } + + status = ia64_sal_physical_id_info(&pltid); + if (status != PAL_STATUS_SUCCESS) { + if (status != PAL_STATUS_UNIMPLEMENTED) + printk(KERN_ERR + "ia64_sal_pltid failed with %ld\n", + status); + return; + } + + c->socket_id = (pltid << 8) | info.overview_ppid; + + if (info.overview_cpp == 1 && info.overview_tpc == 1) + return; + + c->cores_per_socket = info.overview_cpp; + c->threads_per_core = info.overview_tpc; + c->num_log = info.overview_num_log; + + c->core_id = info.log1_cid; + c->thread_id = info.log1_tid; +} + +/* + * returns non zero, if multi-threading is enabled + * on at least one physical package. Due to hotplug cpu + * and (maxcpus=), all threads may not necessarily be enabled + * even though the processor supports multi-threading. + */ +int is_multithreading_enabled(void) +{ + int i, j; + + for_each_present_cpu(i) { + for_each_present_cpu(j) { + if (j == i) + continue; + if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) { + if (cpu_data(j)->core_id == cpu_data(i)->core_id) + return 1; + } + } + } + return 0; +} +EXPORT_SYMBOL_GPL(is_multithreading_enabled); |