summaryrefslogtreecommitdiff
path: root/linux/fs/mbcache.c
diff options
context:
space:
mode:
authorMichael J. Chudobiak <mjc@avtechpulse.com>2016-04-25 10:00:44 -0400
committerMichael J. Chudobiak <mjc@avtechpulse.com>2016-04-25 10:00:44 -0400
commita1df417e74aa6dae7352dc8cbb0ad471af5b7c69 (patch)
treec34b2311e37ea31db153c90cb8f4570374d05e78 /linux/fs/mbcache.c
initial Olimex linux tree from Daniel, originally Feb 3, 2016
Diffstat (limited to 'linux/fs/mbcache.c')
-rw-r--r--linux/fs/mbcache.c858
1 files changed, 858 insertions, 0 deletions
diff --git a/linux/fs/mbcache.c b/linux/fs/mbcache.c
new file mode 100644
index 00000000..187477de
--- /dev/null
+++ b/linux/fs/mbcache.c
@@ -0,0 +1,858 @@
+/*
+ * linux/fs/mbcache.c
+ * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
+ */
+
+/*
+ * Filesystem Meta Information Block Cache (mbcache)
+ *
+ * The mbcache caches blocks of block devices that need to be located
+ * by their device/block number, as well as by other criteria (such
+ * as the block's contents).
+ *
+ * There can only be one cache entry in a cache per device and block number.
+ * Additional indexes need not be unique in this sense. The number of
+ * additional indexes (=other criteria) can be hardwired at compile time
+ * or specified at cache create time.
+ *
+ * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
+ * in the cache. A valid entry is in the main hash tables of the cache,
+ * and may also be in the lru list. An invalid entry is not in any hashes
+ * or lists.
+ *
+ * A valid cache entry is only in the lru list if no handles refer to it.
+ * Invalid cache entries will be freed when the last handle to the cache
+ * entry is released. Entries that cannot be freed immediately are put
+ * back on the lru list.
+ */
+
+/*
+ * Lock descriptions and usage:
+ *
+ * Each hash chain of both the block and index hash tables now contains
+ * a built-in lock used to serialize accesses to the hash chain.
+ *
+ * Accesses to global data structures mb_cache_list and mb_cache_lru_list
+ * are serialized via the global spinlock mb_cache_spinlock.
+ *
+ * Each mb_cache_entry contains a spinlock, e_entry_lock, to serialize
+ * accesses to its local data, such as e_used and e_queued.
+ *
+ * Lock ordering:
+ *
+ * Each block hash chain's lock has the highest lock order, followed by an
+ * index hash chain's lock, mb_cache_bg_lock (used to implement mb_cache_entry's
+ * lock), and mb_cach_spinlock, with the lowest order. While holding
+ * either a block or index hash chain lock, a thread can acquire an
+ * mc_cache_bg_lock, which in turn can also acquire mb_cache_spinlock.
+ *
+ * Synchronization:
+ *
+ * Since both mb_cache_entry_get and mb_cache_entry_find scan the block and
+ * index hash chian, it needs to lock the corresponding hash chain. For each
+ * mb_cache_entry within the chain, it needs to lock the mb_cache_entry to
+ * prevent either any simultaneous release or free on the entry and also
+ * to serialize accesses to either the e_used or e_queued member of the entry.
+ *
+ * To avoid having a dangling reference to an already freed
+ * mb_cache_entry, an mb_cache_entry is only freed when it is not on a
+ * block hash chain and also no longer being referenced, both e_used,
+ * and e_queued are 0's. When an mb_cache_entry is explicitly freed it is
+ * first removed from a block hash chain.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include <linux/hash.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/slab.h>
+#include <linux/sched.h>
+#include <linux/list_bl.h>
+#include <linux/mbcache.h>
+#include <linux/init.h>
+#include <linux/blockgroup_lock.h>
+#include <linux/log2.h>
+
+#ifdef MB_CACHE_DEBUG
+# define mb_debug(f...) do { \
+ printk(KERN_DEBUG f); \
+ printk("\n"); \
+ } while (0)
+#define mb_assert(c) do { if (!(c)) \
+ printk(KERN_ERR "assertion " #c " failed\n"); \
+ } while(0)
+#else
+# define mb_debug(f...) do { } while(0)
+# define mb_assert(c) do { } while(0)
+#endif
+#define mb_error(f...) do { \
+ printk(KERN_ERR f); \
+ printk("\n"); \
+ } while(0)
+
+#define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
+
+#define MB_CACHE_ENTRY_LOCK_BITS ilog2(NR_BG_LOCKS)
+#define MB_CACHE_ENTRY_LOCK_INDEX(ce) \
+ (hash_long((unsigned long)ce, MB_CACHE_ENTRY_LOCK_BITS))
+
+static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
+static struct blockgroup_lock *mb_cache_bg_lock;
+static struct kmem_cache *mb_cache_kmem_cache;
+
+MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
+MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
+MODULE_LICENSE("GPL");
+
+EXPORT_SYMBOL(mb_cache_create);
+EXPORT_SYMBOL(mb_cache_shrink);
+EXPORT_SYMBOL(mb_cache_destroy);
+EXPORT_SYMBOL(mb_cache_entry_alloc);
+EXPORT_SYMBOL(mb_cache_entry_insert);
+EXPORT_SYMBOL(mb_cache_entry_release);
+EXPORT_SYMBOL(mb_cache_entry_free);
+EXPORT_SYMBOL(mb_cache_entry_get);
+#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
+EXPORT_SYMBOL(mb_cache_entry_find_first);
+EXPORT_SYMBOL(mb_cache_entry_find_next);
+#endif
+
+/*
+ * Global data: list of all mbcache's, lru list, and a spinlock for
+ * accessing cache data structures on SMP machines. The lru list is
+ * global across all mbcaches.
+ */
+
+static LIST_HEAD(mb_cache_list);
+static LIST_HEAD(mb_cache_lru_list);
+static DEFINE_SPINLOCK(mb_cache_spinlock);
+
+static inline void
+__spin_lock_mb_cache_entry(struct mb_cache_entry *ce)
+{
+ spin_lock(bgl_lock_ptr(mb_cache_bg_lock,
+ MB_CACHE_ENTRY_LOCK_INDEX(ce)));
+}
+
+static inline void
+__spin_unlock_mb_cache_entry(struct mb_cache_entry *ce)
+{
+ spin_unlock(bgl_lock_ptr(mb_cache_bg_lock,
+ MB_CACHE_ENTRY_LOCK_INDEX(ce)));
+}
+
+static inline int
+__mb_cache_entry_is_block_hashed(struct mb_cache_entry *ce)
+{
+ return !hlist_bl_unhashed(&ce->e_block_list);
+}
+
+
+static inline void
+__mb_cache_entry_unhash_block(struct mb_cache_entry *ce)
+{
+ if (__mb_cache_entry_is_block_hashed(ce))
+ hlist_bl_del_init(&ce->e_block_list);
+}
+
+static inline int
+__mb_cache_entry_is_index_hashed(struct mb_cache_entry *ce)
+{
+ return !hlist_bl_unhashed(&ce->e_index.o_list);
+}
+
+static inline void
+__mb_cache_entry_unhash_index(struct mb_cache_entry *ce)
+{
+ if (__mb_cache_entry_is_index_hashed(ce))
+ hlist_bl_del_init(&ce->e_index.o_list);
+}
+
+/*
+ * __mb_cache_entry_unhash_unlock()
+ *
+ * This function is called to unhash both the block and index hash
+ * chain.
+ * It assumes both the block and index hash chain is locked upon entry.
+ * It also unlock both hash chains both exit
+ */
+static inline void
+__mb_cache_entry_unhash_unlock(struct mb_cache_entry *ce)
+{
+ __mb_cache_entry_unhash_index(ce);
+ hlist_bl_unlock(ce->e_index_hash_p);
+ __mb_cache_entry_unhash_block(ce);
+ hlist_bl_unlock(ce->e_block_hash_p);
+}
+
+static void
+__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
+{
+ struct mb_cache *cache = ce->e_cache;
+
+ mb_assert(!(ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt)));
+ kmem_cache_free(cache->c_entry_cache, ce);
+ atomic_dec(&cache->c_entry_count);
+}
+
+static void
+__mb_cache_entry_release(struct mb_cache_entry *ce)
+{
+ /* First lock the entry to serialize access to its local data. */
+ __spin_lock_mb_cache_entry(ce);
+ /* Wake up all processes queuing for this cache entry. */
+ if (ce->e_queued)
+ wake_up_all(&mb_cache_queue);
+ if (ce->e_used >= MB_CACHE_WRITER)
+ ce->e_used -= MB_CACHE_WRITER;
+ /*
+ * Make sure that all cache entries on lru_list have
+ * both e_used and e_qued of 0s.
+ */
+ ce->e_used--;
+ if (!(ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt))) {
+ if (!__mb_cache_entry_is_block_hashed(ce)) {
+ __spin_unlock_mb_cache_entry(ce);
+ goto forget;
+ }
+ /*
+ * Need access to lru list, first drop entry lock,
+ * then reacquire the lock in the proper order.
+ */
+ spin_lock(&mb_cache_spinlock);
+ if (list_empty(&ce->e_lru_list))
+ list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
+ spin_unlock(&mb_cache_spinlock);
+ }
+ __spin_unlock_mb_cache_entry(ce);
+ return;
+forget:
+ mb_assert(list_empty(&ce->e_lru_list));
+ __mb_cache_entry_forget(ce, GFP_KERNEL);
+}
+
+/*
+ * mb_cache_shrink_scan() memory pressure callback
+ *
+ * This function is called by the kernel memory management when memory
+ * gets low.
+ *
+ * @shrink: (ignored)
+ * @sc: shrink_control passed from reclaim
+ *
+ * Returns the number of objects freed.
+ */
+static unsigned long
+mb_cache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
+{
+ LIST_HEAD(free_list);
+ struct mb_cache_entry *entry, *tmp;
+ int nr_to_scan = sc->nr_to_scan;
+ gfp_t gfp_mask = sc->gfp_mask;
+ unsigned long freed = 0;
+
+ mb_debug("trying to free %d entries", nr_to_scan);
+ spin_lock(&mb_cache_spinlock);
+ while ((nr_to_scan-- > 0) && !list_empty(&mb_cache_lru_list)) {
+ struct mb_cache_entry *ce =
+ list_entry(mb_cache_lru_list.next,
+ struct mb_cache_entry, e_lru_list);
+ list_del_init(&ce->e_lru_list);
+ if (ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt))
+ continue;
+ spin_unlock(&mb_cache_spinlock);
+ /* Prevent any find or get operation on the entry */
+ hlist_bl_lock(ce->e_block_hash_p);
+ hlist_bl_lock(ce->e_index_hash_p);
+ /* Ignore if it is touched by a find/get */
+ if (ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt) ||
+ !list_empty(&ce->e_lru_list)) {
+ hlist_bl_unlock(ce->e_index_hash_p);
+ hlist_bl_unlock(ce->e_block_hash_p);
+ spin_lock(&mb_cache_spinlock);
+ continue;
+ }
+ __mb_cache_entry_unhash_unlock(ce);
+ list_add_tail(&ce->e_lru_list, &free_list);
+ spin_lock(&mb_cache_spinlock);
+ }
+ spin_unlock(&mb_cache_spinlock);
+
+ list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
+ __mb_cache_entry_forget(entry, gfp_mask);
+ freed++;
+ }
+ return freed;
+}
+
+static unsigned long
+mb_cache_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
+{
+ struct mb_cache *cache;
+ unsigned long count = 0;
+
+ spin_lock(&mb_cache_spinlock);
+ list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
+ mb_debug("cache %s (%d)", cache->c_name,
+ atomic_read(&cache->c_entry_count));
+ count += atomic_read(&cache->c_entry_count);
+ }
+ spin_unlock(&mb_cache_spinlock);
+
+ return vfs_pressure_ratio(count);
+}
+
+static struct shrinker mb_cache_shrinker = {
+ .count_objects = mb_cache_shrink_count,
+ .scan_objects = mb_cache_shrink_scan,
+ .seeks = DEFAULT_SEEKS,
+};
+
+/*
+ * mb_cache_create() create a new cache
+ *
+ * All entries in one cache are equal size. Cache entries may be from
+ * multiple devices. If this is the first mbcache created, registers
+ * the cache with kernel memory management. Returns NULL if no more
+ * memory was available.
+ *
+ * @name: name of the cache (informal)
+ * @bucket_bits: log2(number of hash buckets)
+ */
+struct mb_cache *
+mb_cache_create(const char *name, int bucket_bits)
+{
+ int n, bucket_count = 1 << bucket_bits;
+ struct mb_cache *cache = NULL;
+
+ if (!mb_cache_bg_lock) {
+ mb_cache_bg_lock = kmalloc(sizeof(struct blockgroup_lock),
+ GFP_KERNEL);
+ if (!mb_cache_bg_lock)
+ return NULL;
+ bgl_lock_init(mb_cache_bg_lock);
+ }
+
+ cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
+ if (!cache)
+ return NULL;
+ cache->c_name = name;
+ atomic_set(&cache->c_entry_count, 0);
+ cache->c_bucket_bits = bucket_bits;
+ cache->c_block_hash = kmalloc(bucket_count *
+ sizeof(struct hlist_bl_head), GFP_KERNEL);
+ if (!cache->c_block_hash)
+ goto fail;
+ for (n=0; n<bucket_count; n++)
+ INIT_HLIST_BL_HEAD(&cache->c_block_hash[n]);
+ cache->c_index_hash = kmalloc(bucket_count *
+ sizeof(struct hlist_bl_head), GFP_KERNEL);
+ if (!cache->c_index_hash)
+ goto fail;
+ for (n=0; n<bucket_count; n++)
+ INIT_HLIST_BL_HEAD(&cache->c_index_hash[n]);
+ if (!mb_cache_kmem_cache) {
+ mb_cache_kmem_cache = kmem_cache_create(name,
+ sizeof(struct mb_cache_entry), 0,
+ SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
+ if (!mb_cache_kmem_cache)
+ goto fail2;
+ }
+ cache->c_entry_cache = mb_cache_kmem_cache;
+
+ /*
+ * Set an upper limit on the number of cache entries so that the hash
+ * chains won't grow too long.
+ */
+ cache->c_max_entries = bucket_count << 4;
+
+ spin_lock(&mb_cache_spinlock);
+ list_add(&cache->c_cache_list, &mb_cache_list);
+ spin_unlock(&mb_cache_spinlock);
+ return cache;
+
+fail2:
+ kfree(cache->c_index_hash);
+
+fail:
+ kfree(cache->c_block_hash);
+ kfree(cache);
+ return NULL;
+}
+
+
+/*
+ * mb_cache_shrink()
+ *
+ * Removes all cache entries of a device from the cache. All cache entries
+ * currently in use cannot be freed, and thus remain in the cache. All others
+ * are freed.
+ *
+ * @bdev: which device's cache entries to shrink
+ */
+void
+mb_cache_shrink(struct block_device *bdev)
+{
+ LIST_HEAD(free_list);
+ struct list_head *l;
+ struct mb_cache_entry *ce, *tmp;
+
+ l = &mb_cache_lru_list;
+ spin_lock(&mb_cache_spinlock);
+ while (!list_is_last(l, &mb_cache_lru_list)) {
+ l = l->next;
+ ce = list_entry(l, struct mb_cache_entry, e_lru_list);
+ if (ce->e_bdev == bdev) {
+ list_del_init(&ce->e_lru_list);
+ if (ce->e_used || ce->e_queued ||
+ atomic_read(&ce->e_refcnt))
+ continue;
+ spin_unlock(&mb_cache_spinlock);
+ /*
+ * Prevent any find or get operation on the entry.
+ */
+ hlist_bl_lock(ce->e_block_hash_p);
+ hlist_bl_lock(ce->e_index_hash_p);
+ /* Ignore if it is touched by a find/get */
+ if (ce->e_used || ce->e_queued ||
+ atomic_read(&ce->e_refcnt) ||
+ !list_empty(&ce->e_lru_list)) {
+ hlist_bl_unlock(ce->e_index_hash_p);
+ hlist_bl_unlock(ce->e_block_hash_p);
+ l = &mb_cache_lru_list;
+ spin_lock(&mb_cache_spinlock);
+ continue;
+ }
+ __mb_cache_entry_unhash_unlock(ce);
+ mb_assert(!(ce->e_used || ce->e_queued ||
+ atomic_read(&ce->e_refcnt)));
+ list_add_tail(&ce->e_lru_list, &free_list);
+ l = &mb_cache_lru_list;
+ spin_lock(&mb_cache_spinlock);
+ }
+ }
+ spin_unlock(&mb_cache_spinlock);
+
+ list_for_each_entry_safe(ce, tmp, &free_list, e_lru_list) {
+ __mb_cache_entry_forget(ce, GFP_KERNEL);
+ }
+}
+
+
+/*
+ * mb_cache_destroy()
+ *
+ * Shrinks the cache to its minimum possible size (hopefully 0 entries),
+ * and then destroys it. If this was the last mbcache, un-registers the
+ * mbcache from kernel memory management.
+ */
+void
+mb_cache_destroy(struct mb_cache *cache)
+{
+ LIST_HEAD(free_list);
+ struct mb_cache_entry *ce, *tmp;
+
+ spin_lock(&mb_cache_spinlock);
+ list_for_each_entry_safe(ce, tmp, &mb_cache_lru_list, e_lru_list) {
+ if (ce->e_cache == cache)
+ list_move_tail(&ce->e_lru_list, &free_list);
+ }
+ list_del(&cache->c_cache_list);
+ spin_unlock(&mb_cache_spinlock);
+
+ list_for_each_entry_safe(ce, tmp, &free_list, e_lru_list) {
+ list_del_init(&ce->e_lru_list);
+ /*
+ * Prevent any find or get operation on the entry.
+ */
+ hlist_bl_lock(ce->e_block_hash_p);
+ hlist_bl_lock(ce->e_index_hash_p);
+ mb_assert(!(ce->e_used || ce->e_queued ||
+ atomic_read(&ce->e_refcnt)));
+ __mb_cache_entry_unhash_unlock(ce);
+ __mb_cache_entry_forget(ce, GFP_KERNEL);
+ }
+
+ if (atomic_read(&cache->c_entry_count) > 0) {
+ mb_error("cache %s: %d orphaned entries",
+ cache->c_name,
+ atomic_read(&cache->c_entry_count));
+ }
+
+ if (list_empty(&mb_cache_list)) {
+ kmem_cache_destroy(mb_cache_kmem_cache);
+ mb_cache_kmem_cache = NULL;
+ }
+ kfree(cache->c_index_hash);
+ kfree(cache->c_block_hash);
+ kfree(cache);
+}
+
+/*
+ * mb_cache_entry_alloc()
+ *
+ * Allocates a new cache entry. The new entry will not be valid initially,
+ * and thus cannot be looked up yet. It should be filled with data, and
+ * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
+ * if no more memory was available.
+ */
+struct mb_cache_entry *
+mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
+{
+ struct mb_cache_entry *ce;
+
+ if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) {
+ struct list_head *l;
+
+ l = &mb_cache_lru_list;
+ spin_lock(&mb_cache_spinlock);
+ while (!list_is_last(l, &mb_cache_lru_list)) {
+ l = l->next;
+ ce = list_entry(l, struct mb_cache_entry, e_lru_list);
+ if (ce->e_cache == cache) {
+ list_del_init(&ce->e_lru_list);
+ if (ce->e_used || ce->e_queued ||
+ atomic_read(&ce->e_refcnt))
+ continue;
+ spin_unlock(&mb_cache_spinlock);
+ /*
+ * Prevent any find or get operation on the
+ * entry.
+ */
+ hlist_bl_lock(ce->e_block_hash_p);
+ hlist_bl_lock(ce->e_index_hash_p);
+ /* Ignore if it is touched by a find/get */
+ if (ce->e_used || ce->e_queued ||
+ atomic_read(&ce->e_refcnt) ||
+ !list_empty(&ce->e_lru_list)) {
+ hlist_bl_unlock(ce->e_index_hash_p);
+ hlist_bl_unlock(ce->e_block_hash_p);
+ l = &mb_cache_lru_list;
+ spin_lock(&mb_cache_spinlock);
+ continue;
+ }
+ mb_assert(list_empty(&ce->e_lru_list));
+ mb_assert(!(ce->e_used || ce->e_queued ||
+ atomic_read(&ce->e_refcnt)));
+ __mb_cache_entry_unhash_unlock(ce);
+ goto found;
+ }
+ }
+ spin_unlock(&mb_cache_spinlock);
+ }
+
+ ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
+ if (!ce)
+ return NULL;
+ atomic_inc(&cache->c_entry_count);
+ INIT_LIST_HEAD(&ce->e_lru_list);
+ INIT_HLIST_BL_NODE(&ce->e_block_list);
+ INIT_HLIST_BL_NODE(&ce->e_index.o_list);
+ ce->e_cache = cache;
+ ce->e_queued = 0;
+ atomic_set(&ce->e_refcnt, 0);
+found:
+ ce->e_block_hash_p = &cache->c_block_hash[0];
+ ce->e_index_hash_p = &cache->c_index_hash[0];
+ ce->e_used = 1 + MB_CACHE_WRITER;
+ return ce;
+}
+
+
+/*
+ * mb_cache_entry_insert()
+ *
+ * Inserts an entry that was allocated using mb_cache_entry_alloc() into
+ * the cache. After this, the cache entry can be looked up, but is not yet
+ * in the lru list as the caller still holds a handle to it. Returns 0 on
+ * success, or -EBUSY if a cache entry for that device + inode exists
+ * already (this may happen after a failed lookup, but when another process
+ * has inserted the same cache entry in the meantime).
+ *
+ * @bdev: device the cache entry belongs to
+ * @block: block number
+ * @key: lookup key
+ */
+int
+mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
+ sector_t block, unsigned int key)
+{
+ struct mb_cache *cache = ce->e_cache;
+ unsigned int bucket;
+ struct hlist_bl_node *l;
+ struct hlist_bl_head *block_hash_p;
+ struct hlist_bl_head *index_hash_p;
+ struct mb_cache_entry *lce;
+
+ mb_assert(ce);
+ bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
+ cache->c_bucket_bits);
+ block_hash_p = &cache->c_block_hash[bucket];
+ hlist_bl_lock(block_hash_p);
+ hlist_bl_for_each_entry(lce, l, block_hash_p, e_block_list) {
+ if (lce->e_bdev == bdev && lce->e_block == block) {
+ hlist_bl_unlock(block_hash_p);
+ return -EBUSY;
+ }
+ }
+ mb_assert(!__mb_cache_entry_is_block_hashed(ce));
+ __mb_cache_entry_unhash_block(ce);
+ __mb_cache_entry_unhash_index(ce);
+ ce->e_bdev = bdev;
+ ce->e_block = block;
+ ce->e_block_hash_p = block_hash_p;
+ ce->e_index.o_key = key;
+ hlist_bl_add_head(&ce->e_block_list, block_hash_p);
+ hlist_bl_unlock(block_hash_p);
+ bucket = hash_long(key, cache->c_bucket_bits);
+ index_hash_p = &cache->c_index_hash[bucket];
+ hlist_bl_lock(index_hash_p);
+ ce->e_index_hash_p = index_hash_p;
+ hlist_bl_add_head(&ce->e_index.o_list, index_hash_p);
+ hlist_bl_unlock(index_hash_p);
+ return 0;
+}
+
+
+/*
+ * mb_cache_entry_release()
+ *
+ * Release a handle to a cache entry. When the last handle to a cache entry
+ * is released it is either freed (if it is invalid) or otherwise inserted
+ * in to the lru list.
+ */
+void
+mb_cache_entry_release(struct mb_cache_entry *ce)
+{
+ __mb_cache_entry_release(ce);
+}
+
+
+/*
+ * mb_cache_entry_free()
+ *
+ */
+void
+mb_cache_entry_free(struct mb_cache_entry *ce)
+{
+ mb_assert(ce);
+ mb_assert(list_empty(&ce->e_lru_list));
+ hlist_bl_lock(ce->e_index_hash_p);
+ __mb_cache_entry_unhash_index(ce);
+ hlist_bl_unlock(ce->e_index_hash_p);
+ hlist_bl_lock(ce->e_block_hash_p);
+ __mb_cache_entry_unhash_block(ce);
+ hlist_bl_unlock(ce->e_block_hash_p);
+ __mb_cache_entry_release(ce);
+}
+
+
+/*
+ * mb_cache_entry_get()
+ *
+ * Get a cache entry by device / block number. (There can only be one entry
+ * in the cache per device and block.) Returns NULL if no such cache entry
+ * exists. The returned cache entry is locked for exclusive access ("single
+ * writer").
+ */
+struct mb_cache_entry *
+mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
+ sector_t block)
+{
+ unsigned int bucket;
+ struct hlist_bl_node *l;
+ struct mb_cache_entry *ce;
+ struct hlist_bl_head *block_hash_p;
+
+ bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
+ cache->c_bucket_bits);
+ block_hash_p = &cache->c_block_hash[bucket];
+ /* First serialize access to the block corresponding hash chain. */
+ hlist_bl_lock(block_hash_p);
+ hlist_bl_for_each_entry(ce, l, block_hash_p, e_block_list) {
+ mb_assert(ce->e_block_hash_p == block_hash_p);
+ if (ce->e_bdev == bdev && ce->e_block == block) {
+ /*
+ * Prevent a free from removing the entry.
+ */
+ atomic_inc(&ce->e_refcnt);
+ hlist_bl_unlock(block_hash_p);
+ __spin_lock_mb_cache_entry(ce);
+ atomic_dec(&ce->e_refcnt);
+ if (ce->e_used > 0) {
+ DEFINE_WAIT(wait);
+ while (ce->e_used > 0) {
+ ce->e_queued++;
+ prepare_to_wait(&mb_cache_queue, &wait,
+ TASK_UNINTERRUPTIBLE);
+ __spin_unlock_mb_cache_entry(ce);
+ schedule();
+ __spin_lock_mb_cache_entry(ce);
+ ce->e_queued--;
+ }
+ finish_wait(&mb_cache_queue, &wait);
+ }
+ ce->e_used += 1 + MB_CACHE_WRITER;
+ __spin_unlock_mb_cache_entry(ce);
+
+ if (!list_empty(&ce->e_lru_list)) {
+ spin_lock(&mb_cache_spinlock);
+ list_del_init(&ce->e_lru_list);
+ spin_unlock(&mb_cache_spinlock);
+ }
+ if (!__mb_cache_entry_is_block_hashed(ce)) {
+ __mb_cache_entry_release(ce);
+ return NULL;
+ }
+ return ce;
+ }
+ }
+ hlist_bl_unlock(block_hash_p);
+ return NULL;
+}
+
+#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
+
+static struct mb_cache_entry *
+__mb_cache_entry_find(struct hlist_bl_node *l, struct hlist_bl_head *head,
+ struct block_device *bdev, unsigned int key)
+{
+
+ /* The index hash chain is alredy acquire by caller. */
+ while (l != NULL) {
+ struct mb_cache_entry *ce =
+ hlist_bl_entry(l, struct mb_cache_entry,
+ e_index.o_list);
+ mb_assert(ce->e_index_hash_p == head);
+ if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
+ /*
+ * Prevent a free from removing the entry.
+ */
+ atomic_inc(&ce->e_refcnt);
+ hlist_bl_unlock(head);
+ __spin_lock_mb_cache_entry(ce);
+ atomic_dec(&ce->e_refcnt);
+ ce->e_used++;
+ /* Incrementing before holding the lock gives readers
+ priority over writers. */
+ if (ce->e_used >= MB_CACHE_WRITER) {
+ DEFINE_WAIT(wait);
+
+ while (ce->e_used >= MB_CACHE_WRITER) {
+ ce->e_queued++;
+ prepare_to_wait(&mb_cache_queue, &wait,
+ TASK_UNINTERRUPTIBLE);
+ __spin_unlock_mb_cache_entry(ce);
+ schedule();
+ __spin_lock_mb_cache_entry(ce);
+ ce->e_queued--;
+ }
+ finish_wait(&mb_cache_queue, &wait);
+ }
+ __spin_unlock_mb_cache_entry(ce);
+ if (!list_empty(&ce->e_lru_list)) {
+ spin_lock(&mb_cache_spinlock);
+ list_del_init(&ce->e_lru_list);
+ spin_unlock(&mb_cache_spinlock);
+ }
+ if (!__mb_cache_entry_is_block_hashed(ce)) {
+ __mb_cache_entry_release(ce);
+ return ERR_PTR(-EAGAIN);
+ }
+ return ce;
+ }
+ l = l->next;
+ }
+ hlist_bl_unlock(head);
+ return NULL;
+}
+
+
+/*
+ * mb_cache_entry_find_first()
+ *
+ * Find the first cache entry on a given device with a certain key in
+ * an additional index. Additional matches can be found with
+ * mb_cache_entry_find_next(). Returns NULL if no match was found. The
+ * returned cache entry is locked for shared access ("multiple readers").
+ *
+ * @cache: the cache to search
+ * @bdev: the device the cache entry should belong to
+ * @key: the key in the index
+ */
+struct mb_cache_entry *
+mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
+ unsigned int key)
+{
+ unsigned int bucket = hash_long(key, cache->c_bucket_bits);
+ struct hlist_bl_node *l;
+ struct mb_cache_entry *ce = NULL;
+ struct hlist_bl_head *index_hash_p;
+
+ index_hash_p = &cache->c_index_hash[bucket];
+ hlist_bl_lock(index_hash_p);
+ if (!hlist_bl_empty(index_hash_p)) {
+ l = hlist_bl_first(index_hash_p);
+ ce = __mb_cache_entry_find(l, index_hash_p, bdev, key);
+ } else
+ hlist_bl_unlock(index_hash_p);
+ return ce;
+}
+
+
+/*
+ * mb_cache_entry_find_next()
+ *
+ * Find the next cache entry on a given device with a certain key in an
+ * additional index. Returns NULL if no match could be found. The previous
+ * entry is atomatically released, so that mb_cache_entry_find_next() can
+ * be called like this:
+ *
+ * entry = mb_cache_entry_find_first();
+ * while (entry) {
+ * ...
+ * entry = mb_cache_entry_find_next(entry, ...);
+ * }
+ *
+ * @prev: The previous match
+ * @bdev: the device the cache entry should belong to
+ * @key: the key in the index
+ */
+struct mb_cache_entry *
+mb_cache_entry_find_next(struct mb_cache_entry *prev,
+ struct block_device *bdev, unsigned int key)
+{
+ struct mb_cache *cache = prev->e_cache;
+ unsigned int bucket = hash_long(key, cache->c_bucket_bits);
+ struct hlist_bl_node *l;
+ struct mb_cache_entry *ce;
+ struct hlist_bl_head *index_hash_p;
+
+ index_hash_p = &cache->c_index_hash[bucket];
+ mb_assert(prev->e_index_hash_p == index_hash_p);
+ hlist_bl_lock(index_hash_p);
+ mb_assert(!hlist_bl_empty(index_hash_p));
+ l = prev->e_index.o_list.next;
+ ce = __mb_cache_entry_find(l, index_hash_p, bdev, key);
+ __mb_cache_entry_release(prev);
+ return ce;
+}
+
+#endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
+
+static int __init init_mbcache(void)
+{
+ register_shrinker(&mb_cache_shrinker);
+ return 0;
+}
+
+static void __exit exit_mbcache(void)
+{
+ unregister_shrinker(&mb_cache_shrinker);
+}
+
+module_init(init_mbcache)
+module_exit(exit_mbcache)
+