diff options
Diffstat (limited to 'linux/kernel/locking/mutex.c')
-rw-r--r-- | linux/kernel/locking/mutex.c | 972 |
1 files changed, 972 insertions, 0 deletions
diff --git a/linux/kernel/locking/mutex.c b/linux/kernel/locking/mutex.c new file mode 100644 index 00000000..4cccea6b --- /dev/null +++ b/linux/kernel/locking/mutex.c @@ -0,0 +1,972 @@ +/* + * kernel/locking/mutex.c + * + * Mutexes: blocking mutual exclusion locks + * + * Started by Ingo Molnar: + * + * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> + * + * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and + * David Howells for suggestions and improvements. + * + * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline + * from the -rt tree, where it was originally implemented for rtmutexes + * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale + * and Sven Dietrich. + * + * Also see Documentation/locking/mutex-design.txt. + */ +#include <linux/mutex.h> +#include <linux/ww_mutex.h> +#include <linux/sched.h> +#include <linux/sched/rt.h> +#include <linux/export.h> +#include <linux/spinlock.h> +#include <linux/interrupt.h> +#include <linux/debug_locks.h> +#include <linux/osq_lock.h> + +/* + * In the DEBUG case we are using the "NULL fastpath" for mutexes, + * which forces all calls into the slowpath: + */ +#ifdef CONFIG_DEBUG_MUTEXES +# include "mutex-debug.h" +# include <asm-generic/mutex-null.h> +/* + * Must be 0 for the debug case so we do not do the unlock outside of the + * wait_lock region. debug_mutex_unlock() will do the actual unlock in this + * case. + */ +# undef __mutex_slowpath_needs_to_unlock +# define __mutex_slowpath_needs_to_unlock() 0 +#else +# include "mutex.h" +# include <asm/mutex.h> +#endif + +void +__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) +{ + atomic_set(&lock->count, 1); + spin_lock_init(&lock->wait_lock); + INIT_LIST_HEAD(&lock->wait_list); + mutex_clear_owner(lock); +#ifdef CONFIG_MUTEX_SPIN_ON_OWNER + osq_lock_init(&lock->osq); +#endif + + debug_mutex_init(lock, name, key); +} + +EXPORT_SYMBOL(__mutex_init); + +#ifndef CONFIG_DEBUG_LOCK_ALLOC +/* + * We split the mutex lock/unlock logic into separate fastpath and + * slowpath functions, to reduce the register pressure on the fastpath. + * We also put the fastpath first in the kernel image, to make sure the + * branch is predicted by the CPU as default-untaken. + */ +__visible void __sched __mutex_lock_slowpath(atomic_t *lock_count); + +/** + * mutex_lock - acquire the mutex + * @lock: the mutex to be acquired + * + * Lock the mutex exclusively for this task. If the mutex is not + * available right now, it will sleep until it can get it. + * + * The mutex must later on be released by the same task that + * acquired it. Recursive locking is not allowed. The task + * may not exit without first unlocking the mutex. Also, kernel + * memory where the mutex resides must not be freed with + * the mutex still locked. The mutex must first be initialized + * (or statically defined) before it can be locked. memset()-ing + * the mutex to 0 is not allowed. + * + * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging + * checks that will enforce the restrictions and will also do + * deadlock debugging. ) + * + * This function is similar to (but not equivalent to) down(). + */ +void __sched mutex_lock(struct mutex *lock) +{ + might_sleep(); + /* + * The locking fastpath is the 1->0 transition from + * 'unlocked' into 'locked' state. + */ + __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath); + mutex_set_owner(lock); +} + +EXPORT_SYMBOL(mutex_lock); +#endif + +static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww, + struct ww_acquire_ctx *ww_ctx) +{ +#ifdef CONFIG_DEBUG_MUTEXES + /* + * If this WARN_ON triggers, you used ww_mutex_lock to acquire, + * but released with a normal mutex_unlock in this call. + * + * This should never happen, always use ww_mutex_unlock. + */ + DEBUG_LOCKS_WARN_ON(ww->ctx); + + /* + * Not quite done after calling ww_acquire_done() ? + */ + DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); + + if (ww_ctx->contending_lock) { + /* + * After -EDEADLK you tried to + * acquire a different ww_mutex? Bad! + */ + DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); + + /* + * You called ww_mutex_lock after receiving -EDEADLK, + * but 'forgot' to unlock everything else first? + */ + DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); + ww_ctx->contending_lock = NULL; + } + + /* + * Naughty, using a different class will lead to undefined behavior! + */ + DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); +#endif + ww_ctx->acquired++; +} + +/* + * After acquiring lock with fastpath or when we lost out in contested + * slowpath, set ctx and wake up any waiters so they can recheck. + * + * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set, + * as the fastpath and opportunistic spinning are disabled in that case. + */ +static __always_inline void +ww_mutex_set_context_fastpath(struct ww_mutex *lock, + struct ww_acquire_ctx *ctx) +{ + unsigned long flags; + struct mutex_waiter *cur; + + ww_mutex_lock_acquired(lock, ctx); + + lock->ctx = ctx; + + /* + * The lock->ctx update should be visible on all cores before + * the atomic read is done, otherwise contended waiters might be + * missed. The contended waiters will either see ww_ctx == NULL + * and keep spinning, or it will acquire wait_lock, add itself + * to waiter list and sleep. + */ + smp_mb(); /* ^^^ */ + + /* + * Check if lock is contended, if not there is nobody to wake up + */ + if (likely(atomic_read(&lock->base.count) == 0)) + return; + + /* + * Uh oh, we raced in fastpath, wake up everyone in this case, + * so they can see the new lock->ctx. + */ + spin_lock_mutex(&lock->base.wait_lock, flags); + list_for_each_entry(cur, &lock->base.wait_list, list) { + debug_mutex_wake_waiter(&lock->base, cur); + wake_up_process(cur->task); + } + spin_unlock_mutex(&lock->base.wait_lock, flags); +} + +/* + * After acquiring lock in the slowpath set ctx and wake up any + * waiters so they can recheck. + * + * Callers must hold the mutex wait_lock. + */ +static __always_inline void +ww_mutex_set_context_slowpath(struct ww_mutex *lock, + struct ww_acquire_ctx *ctx) +{ + struct mutex_waiter *cur; + + ww_mutex_lock_acquired(lock, ctx); + lock->ctx = ctx; + + /* + * Give any possible sleeping processes the chance to wake up, + * so they can recheck if they have to back off. + */ + list_for_each_entry(cur, &lock->base.wait_list, list) { + debug_mutex_wake_waiter(&lock->base, cur); + wake_up_process(cur->task); + } +} + +#ifdef CONFIG_MUTEX_SPIN_ON_OWNER +/* + * Look out! "owner" is an entirely speculative pointer + * access and not reliable. + */ +static noinline +bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) +{ + bool ret = true; + + rcu_read_lock(); + while (lock->owner == owner) { + /* + * Ensure we emit the owner->on_cpu, dereference _after_ + * checking lock->owner still matches owner. If that fails, + * owner might point to freed memory. If it still matches, + * the rcu_read_lock() ensures the memory stays valid. + */ + barrier(); + + if (!owner->on_cpu || need_resched()) { + ret = false; + break; + } + + cpu_relax_lowlatency(); + } + rcu_read_unlock(); + + return ret; +} + +/* + * Initial check for entering the mutex spinning loop + */ +static inline int mutex_can_spin_on_owner(struct mutex *lock) +{ + struct task_struct *owner; + int retval = 1; + + if (need_resched()) + return 0; + + rcu_read_lock(); + owner = READ_ONCE(lock->owner); + if (owner) + retval = owner->on_cpu; + rcu_read_unlock(); + /* + * if lock->owner is not set, the mutex owner may have just acquired + * it and not set the owner yet or the mutex has been released. + */ + return retval; +} + +/* + * Atomically try to take the lock when it is available + */ +static inline bool mutex_try_to_acquire(struct mutex *lock) +{ + return !mutex_is_locked(lock) && + (atomic_cmpxchg(&lock->count, 1, 0) == 1); +} + +/* + * Optimistic spinning. + * + * We try to spin for acquisition when we find that the lock owner + * is currently running on a (different) CPU and while we don't + * need to reschedule. The rationale is that if the lock owner is + * running, it is likely to release the lock soon. + * + * Since this needs the lock owner, and this mutex implementation + * doesn't track the owner atomically in the lock field, we need to + * track it non-atomically. + * + * We can't do this for DEBUG_MUTEXES because that relies on wait_lock + * to serialize everything. + * + * The mutex spinners are queued up using MCS lock so that only one + * spinner can compete for the mutex. However, if mutex spinning isn't + * going to happen, there is no point in going through the lock/unlock + * overhead. + * + * Returns true when the lock was taken, otherwise false, indicating + * that we need to jump to the slowpath and sleep. + */ +static bool mutex_optimistic_spin(struct mutex *lock, + struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) +{ + struct task_struct *task = current; + + if (!mutex_can_spin_on_owner(lock)) + goto done; + + /* + * In order to avoid a stampede of mutex spinners trying to + * acquire the mutex all at once, the spinners need to take a + * MCS (queued) lock first before spinning on the owner field. + */ + if (!osq_lock(&lock->osq)) + goto done; + + while (true) { + struct task_struct *owner; + + if (use_ww_ctx && ww_ctx->acquired > 0) { + struct ww_mutex *ww; + + ww = container_of(lock, struct ww_mutex, base); + /* + * If ww->ctx is set the contents are undefined, only + * by acquiring wait_lock there is a guarantee that + * they are not invalid when reading. + * + * As such, when deadlock detection needs to be + * performed the optimistic spinning cannot be done. + */ + if (READ_ONCE(ww->ctx)) + break; + } + + /* + * If there's an owner, wait for it to either + * release the lock or go to sleep. + */ + owner = READ_ONCE(lock->owner); + if (owner && !mutex_spin_on_owner(lock, owner)) + break; + + /* Try to acquire the mutex if it is unlocked. */ + if (mutex_try_to_acquire(lock)) { + lock_acquired(&lock->dep_map, ip); + + if (use_ww_ctx) { + struct ww_mutex *ww; + ww = container_of(lock, struct ww_mutex, base); + + ww_mutex_set_context_fastpath(ww, ww_ctx); + } + + mutex_set_owner(lock); + osq_unlock(&lock->osq); + return true; + } + + /* + * When there's no owner, we might have preempted between the + * owner acquiring the lock and setting the owner field. If + * we're an RT task that will live-lock because we won't let + * the owner complete. + */ + if (!owner && (need_resched() || rt_task(task))) + break; + + /* + * The cpu_relax() call is a compiler barrier which forces + * everything in this loop to be re-loaded. We don't need + * memory barriers as we'll eventually observe the right + * values at the cost of a few extra spins. + */ + cpu_relax_lowlatency(); + } + + osq_unlock(&lock->osq); +done: + /* + * If we fell out of the spin path because of need_resched(), + * reschedule now, before we try-lock the mutex. This avoids getting + * scheduled out right after we obtained the mutex. + */ + if (need_resched()) { + /* + * We _should_ have TASK_RUNNING here, but just in case + * we do not, make it so, otherwise we might get stuck. + */ + __set_current_state(TASK_RUNNING); + schedule_preempt_disabled(); + } + + return false; +} +#else +static bool mutex_optimistic_spin(struct mutex *lock, + struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) +{ + return false; +} +#endif + +__visible __used noinline +void __sched __mutex_unlock_slowpath(atomic_t *lock_count); + +/** + * mutex_unlock - release the mutex + * @lock: the mutex to be released + * + * Unlock a mutex that has been locked by this task previously. + * + * This function must not be used in interrupt context. Unlocking + * of a not locked mutex is not allowed. + * + * This function is similar to (but not equivalent to) up(). + */ +void __sched mutex_unlock(struct mutex *lock) +{ + /* + * The unlocking fastpath is the 0->1 transition from 'locked' + * into 'unlocked' state: + */ +#ifndef CONFIG_DEBUG_MUTEXES + /* + * When debugging is enabled we must not clear the owner before time, + * the slow path will always be taken, and that clears the owner field + * after verifying that it was indeed current. + */ + mutex_clear_owner(lock); +#endif + __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath); +} + +EXPORT_SYMBOL(mutex_unlock); + +/** + * ww_mutex_unlock - release the w/w mutex + * @lock: the mutex to be released + * + * Unlock a mutex that has been locked by this task previously with any of the + * ww_mutex_lock* functions (with or without an acquire context). It is + * forbidden to release the locks after releasing the acquire context. + * + * This function must not be used in interrupt context. Unlocking + * of a unlocked mutex is not allowed. + */ +void __sched ww_mutex_unlock(struct ww_mutex *lock) +{ + /* + * The unlocking fastpath is the 0->1 transition from 'locked' + * into 'unlocked' state: + */ + if (lock->ctx) { +#ifdef CONFIG_DEBUG_MUTEXES + DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); +#endif + if (lock->ctx->acquired > 0) + lock->ctx->acquired--; + lock->ctx = NULL; + } + +#ifndef CONFIG_DEBUG_MUTEXES + /* + * When debugging is enabled we must not clear the owner before time, + * the slow path will always be taken, and that clears the owner field + * after verifying that it was indeed current. + */ + mutex_clear_owner(&lock->base); +#endif + __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath); +} +EXPORT_SYMBOL(ww_mutex_unlock); + +static inline int __sched +__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx) +{ + struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); + struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); + + if (!hold_ctx) + return 0; + + if (unlikely(ctx == hold_ctx)) + return -EALREADY; + + if (ctx->stamp - hold_ctx->stamp <= LONG_MAX && + (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) { +#ifdef CONFIG_DEBUG_MUTEXES + DEBUG_LOCKS_WARN_ON(ctx->contending_lock); + ctx->contending_lock = ww; +#endif + return -EDEADLK; + } + + return 0; +} + +/* + * Lock a mutex (possibly interruptible), slowpath: + */ +static __always_inline int __sched +__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, + struct lockdep_map *nest_lock, unsigned long ip, + struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) +{ + struct task_struct *task = current; + struct mutex_waiter waiter; + unsigned long flags; + int ret; + + preempt_disable(); + mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); + + if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) { + /* got the lock, yay! */ + preempt_enable(); + return 0; + } + + spin_lock_mutex(&lock->wait_lock, flags); + + /* + * Once more, try to acquire the lock. Only try-lock the mutex if + * it is unlocked to reduce unnecessary xchg() operations. + */ + if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1)) + goto skip_wait; + + debug_mutex_lock_common(lock, &waiter); + debug_mutex_add_waiter(lock, &waiter, task_thread_info(task)); + + /* add waiting tasks to the end of the waitqueue (FIFO): */ + list_add_tail(&waiter.list, &lock->wait_list); + waiter.task = task; + + lock_contended(&lock->dep_map, ip); + + for (;;) { + /* + * Lets try to take the lock again - this is needed even if + * we get here for the first time (shortly after failing to + * acquire the lock), to make sure that we get a wakeup once + * it's unlocked. Later on, if we sleep, this is the + * operation that gives us the lock. We xchg it to -1, so + * that when we release the lock, we properly wake up the + * other waiters. We only attempt the xchg if the count is + * non-negative in order to avoid unnecessary xchg operations: + */ + if (atomic_read(&lock->count) >= 0 && + (atomic_xchg(&lock->count, -1) == 1)) + break; + + /* + * got a signal? (This code gets eliminated in the + * TASK_UNINTERRUPTIBLE case.) + */ + if (unlikely(signal_pending_state(state, task))) { + ret = -EINTR; + goto err; + } + + if (use_ww_ctx && ww_ctx->acquired > 0) { + ret = __ww_mutex_lock_check_stamp(lock, ww_ctx); + if (ret) + goto err; + } + + __set_task_state(task, state); + + /* didn't get the lock, go to sleep: */ + spin_unlock_mutex(&lock->wait_lock, flags); + schedule_preempt_disabled(); + spin_lock_mutex(&lock->wait_lock, flags); + } + __set_task_state(task, TASK_RUNNING); + + mutex_remove_waiter(lock, &waiter, current_thread_info()); + /* set it to 0 if there are no waiters left: */ + if (likely(list_empty(&lock->wait_list))) + atomic_set(&lock->count, 0); + debug_mutex_free_waiter(&waiter); + +skip_wait: + /* got the lock - cleanup and rejoice! */ + lock_acquired(&lock->dep_map, ip); + mutex_set_owner(lock); + + if (use_ww_ctx) { + struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); + ww_mutex_set_context_slowpath(ww, ww_ctx); + } + + spin_unlock_mutex(&lock->wait_lock, flags); + preempt_enable(); + return 0; + +err: + mutex_remove_waiter(lock, &waiter, task_thread_info(task)); + spin_unlock_mutex(&lock->wait_lock, flags); + debug_mutex_free_waiter(&waiter); + mutex_release(&lock->dep_map, 1, ip); + preempt_enable(); + return ret; +} + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +void __sched +mutex_lock_nested(struct mutex *lock, unsigned int subclass) +{ + might_sleep(); + __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, + subclass, NULL, _RET_IP_, NULL, 0); +} + +EXPORT_SYMBOL_GPL(mutex_lock_nested); + +void __sched +_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) +{ + might_sleep(); + __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, + 0, nest, _RET_IP_, NULL, 0); +} + +EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); + +int __sched +mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) +{ + might_sleep(); + return __mutex_lock_common(lock, TASK_KILLABLE, + subclass, NULL, _RET_IP_, NULL, 0); +} +EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); + +int __sched +mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) +{ + might_sleep(); + return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, + subclass, NULL, _RET_IP_, NULL, 0); +} + +EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); + +static inline int +ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ +#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH + unsigned tmp; + + if (ctx->deadlock_inject_countdown-- == 0) { + tmp = ctx->deadlock_inject_interval; + if (tmp > UINT_MAX/4) + tmp = UINT_MAX; + else + tmp = tmp*2 + tmp + tmp/2; + + ctx->deadlock_inject_interval = tmp; + ctx->deadlock_inject_countdown = tmp; + ctx->contending_lock = lock; + + ww_mutex_unlock(lock); + + return -EDEADLK; + } +#endif + + return 0; +} + +int __sched +__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + int ret; + + might_sleep(); + ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, + 0, &ctx->dep_map, _RET_IP_, ctx, 1); + if (!ret && ctx->acquired > 1) + return ww_mutex_deadlock_injection(lock, ctx); + + return ret; +} +EXPORT_SYMBOL_GPL(__ww_mutex_lock); + +int __sched +__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + int ret; + + might_sleep(); + ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, + 0, &ctx->dep_map, _RET_IP_, ctx, 1); + + if (!ret && ctx->acquired > 1) + return ww_mutex_deadlock_injection(lock, ctx); + + return ret; +} +EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible); + +#endif + +/* + * Release the lock, slowpath: + */ +static inline void +__mutex_unlock_common_slowpath(struct mutex *lock, int nested) +{ + unsigned long flags; + + /* + * As a performance measurement, release the lock before doing other + * wakeup related duties to follow. This allows other tasks to acquire + * the lock sooner, while still handling cleanups in past unlock calls. + * This can be done as we do not enforce strict equivalence between the + * mutex counter and wait_list. + * + * + * Some architectures leave the lock unlocked in the fastpath failure + * case, others need to leave it locked. In the later case we have to + * unlock it here - as the lock counter is currently 0 or negative. + */ + if (__mutex_slowpath_needs_to_unlock()) + atomic_set(&lock->count, 1); + + spin_lock_mutex(&lock->wait_lock, flags); + mutex_release(&lock->dep_map, nested, _RET_IP_); + debug_mutex_unlock(lock); + + if (!list_empty(&lock->wait_list)) { + /* get the first entry from the wait-list: */ + struct mutex_waiter *waiter = + list_entry(lock->wait_list.next, + struct mutex_waiter, list); + + debug_mutex_wake_waiter(lock, waiter); + + wake_up_process(waiter->task); + } + + spin_unlock_mutex(&lock->wait_lock, flags); +} + +/* + * Release the lock, slowpath: + */ +__visible void +__mutex_unlock_slowpath(atomic_t *lock_count) +{ + struct mutex *lock = container_of(lock_count, struct mutex, count); + + __mutex_unlock_common_slowpath(lock, 1); +} + +#ifndef CONFIG_DEBUG_LOCK_ALLOC +/* + * Here come the less common (and hence less performance-critical) APIs: + * mutex_lock_interruptible() and mutex_trylock(). + */ +static noinline int __sched +__mutex_lock_killable_slowpath(struct mutex *lock); + +static noinline int __sched +__mutex_lock_interruptible_slowpath(struct mutex *lock); + +/** + * mutex_lock_interruptible - acquire the mutex, interruptible + * @lock: the mutex to be acquired + * + * Lock the mutex like mutex_lock(), and return 0 if the mutex has + * been acquired or sleep until the mutex becomes available. If a + * signal arrives while waiting for the lock then this function + * returns -EINTR. + * + * This function is similar to (but not equivalent to) down_interruptible(). + */ +int __sched mutex_lock_interruptible(struct mutex *lock) +{ + int ret; + + might_sleep(); + ret = __mutex_fastpath_lock_retval(&lock->count); + if (likely(!ret)) { + mutex_set_owner(lock); + return 0; + } else + return __mutex_lock_interruptible_slowpath(lock); +} + +EXPORT_SYMBOL(mutex_lock_interruptible); + +int __sched mutex_lock_killable(struct mutex *lock) +{ + int ret; + + might_sleep(); + ret = __mutex_fastpath_lock_retval(&lock->count); + if (likely(!ret)) { + mutex_set_owner(lock); + return 0; + } else + return __mutex_lock_killable_slowpath(lock); +} +EXPORT_SYMBOL(mutex_lock_killable); + +__visible void __sched +__mutex_lock_slowpath(atomic_t *lock_count) +{ + struct mutex *lock = container_of(lock_count, struct mutex, count); + + __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, + NULL, _RET_IP_, NULL, 0); +} + +static noinline int __sched +__mutex_lock_killable_slowpath(struct mutex *lock) +{ + return __mutex_lock_common(lock, TASK_KILLABLE, 0, + NULL, _RET_IP_, NULL, 0); +} + +static noinline int __sched +__mutex_lock_interruptible_slowpath(struct mutex *lock) +{ + return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, + NULL, _RET_IP_, NULL, 0); +} + +static noinline int __sched +__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0, + NULL, _RET_IP_, ctx, 1); +} + +static noinline int __sched +__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, + struct ww_acquire_ctx *ctx) +{ + return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0, + NULL, _RET_IP_, ctx, 1); +} + +#endif + +/* + * Spinlock based trylock, we take the spinlock and check whether we + * can get the lock: + */ +static inline int __mutex_trylock_slowpath(atomic_t *lock_count) +{ + struct mutex *lock = container_of(lock_count, struct mutex, count); + unsigned long flags; + int prev; + + /* No need to trylock if the mutex is locked. */ + if (mutex_is_locked(lock)) + return 0; + + spin_lock_mutex(&lock->wait_lock, flags); + + prev = atomic_xchg(&lock->count, -1); + if (likely(prev == 1)) { + mutex_set_owner(lock); + mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); + } + + /* Set it back to 0 if there are no waiters: */ + if (likely(list_empty(&lock->wait_list))) + atomic_set(&lock->count, 0); + + spin_unlock_mutex(&lock->wait_lock, flags); + + return prev == 1; +} + +/** + * mutex_trylock - try to acquire the mutex, without waiting + * @lock: the mutex to be acquired + * + * Try to acquire the mutex atomically. Returns 1 if the mutex + * has been acquired successfully, and 0 on contention. + * + * NOTE: this function follows the spin_trylock() convention, so + * it is negated from the down_trylock() return values! Be careful + * about this when converting semaphore users to mutexes. + * + * This function must not be used in interrupt context. The + * mutex must be released by the same task that acquired it. + */ +int __sched mutex_trylock(struct mutex *lock) +{ + int ret; + + ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath); + if (ret) + mutex_set_owner(lock); + + return ret; +} +EXPORT_SYMBOL(mutex_trylock); + +#ifndef CONFIG_DEBUG_LOCK_ALLOC +int __sched +__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + int ret; + + might_sleep(); + + ret = __mutex_fastpath_lock_retval(&lock->base.count); + + if (likely(!ret)) { + ww_mutex_set_context_fastpath(lock, ctx); + mutex_set_owner(&lock->base); + } else + ret = __ww_mutex_lock_slowpath(lock, ctx); + return ret; +} +EXPORT_SYMBOL(__ww_mutex_lock); + +int __sched +__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + int ret; + + might_sleep(); + + ret = __mutex_fastpath_lock_retval(&lock->base.count); + + if (likely(!ret)) { + ww_mutex_set_context_fastpath(lock, ctx); + mutex_set_owner(&lock->base); + } else + ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx); + return ret; +} +EXPORT_SYMBOL(__ww_mutex_lock_interruptible); + +#endif + +/** + * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 + * @cnt: the atomic which we are to dec + * @lock: the mutex to return holding if we dec to 0 + * + * return true and hold lock if we dec to 0, return false otherwise + */ +int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) +{ + /* dec if we can't possibly hit 0 */ + if (atomic_add_unless(cnt, -1, 1)) + return 0; + /* we might hit 0, so take the lock */ + mutex_lock(lock); + if (!atomic_dec_and_test(cnt)) { + /* when we actually did the dec, we didn't hit 0 */ + mutex_unlock(lock); + return 0; + } + /* we hit 0, and we hold the lock */ + return 1; +} +EXPORT_SYMBOL(atomic_dec_and_mutex_lock); |