summaryrefslogtreecommitdiff
path: root/linux/kernel/time/hrtimer.c
diff options
context:
space:
mode:
Diffstat (limited to 'linux/kernel/time/hrtimer.c')
-rw-r--r--linux/kernel/time/hrtimer.c2140
1 files changed, 2140 insertions, 0 deletions
diff --git a/linux/kernel/time/hrtimer.c b/linux/kernel/time/hrtimer.c
new file mode 100644
index 00000000..2c6be169
--- /dev/null
+++ b/linux/kernel/time/hrtimer.c
@@ -0,0 +1,2140 @@
+/*
+ * linux/kernel/hrtimer.c
+ *
+ * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
+ * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
+ * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
+ *
+ * High-resolution kernel timers
+ *
+ * In contrast to the low-resolution timeout API implemented in
+ * kernel/timer.c, hrtimers provide finer resolution and accuracy
+ * depending on system configuration and capabilities.
+ *
+ * These timers are currently used for:
+ * - itimers
+ * - POSIX timers
+ * - nanosleep
+ * - precise in-kernel timing
+ *
+ * Started by: Thomas Gleixner and Ingo Molnar
+ *
+ * Credits:
+ * based on kernel/timer.c
+ *
+ * Help, testing, suggestions, bugfixes, improvements were
+ * provided by:
+ *
+ * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
+ * et. al.
+ *
+ * For licencing details see kernel-base/COPYING
+ */
+
+#include <linux/cpu.h>
+#include <linux/export.h>
+#include <linux/percpu.h>
+#include <linux/hrtimer.h>
+#include <linux/notifier.h>
+#include <linux/syscalls.h>
+#include <linux/kallsyms.h>
+#include <linux/interrupt.h>
+#include <linux/tick.h>
+#include <linux/seq_file.h>
+#include <linux/err.h>
+#include <linux/debugobjects.h>
+#include <linux/sched.h>
+#include <linux/sched/sysctl.h>
+#include <linux/sched/rt.h>
+#include <linux/sched/deadline.h>
+#include <linux/timer.h>
+#include <linux/kthread.h>
+#include <linux/freezer.h>
+
+#include <asm/uaccess.h>
+
+#include <trace/events/timer.h>
+#include <trace/events/hist.h>
+
+#include "tick-internal.h"
+
+/*
+ * The timer bases:
+ *
+ * There are more clockids then hrtimer bases. Thus, we index
+ * into the timer bases by the hrtimer_base_type enum. When trying
+ * to reach a base using a clockid, hrtimer_clockid_to_base()
+ * is used to convert from clockid to the proper hrtimer_base_type.
+ */
+DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
+{
+
+ .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
+ .clock_base =
+ {
+ {
+ .index = HRTIMER_BASE_MONOTONIC,
+ .clockid = CLOCK_MONOTONIC,
+ .get_time = &ktime_get,
+ .resolution = KTIME_LOW_RES,
+ },
+ {
+ .index = HRTIMER_BASE_REALTIME,
+ .clockid = CLOCK_REALTIME,
+ .get_time = &ktime_get_real,
+ .resolution = KTIME_LOW_RES,
+ },
+ {
+ .index = HRTIMER_BASE_BOOTTIME,
+ .clockid = CLOCK_BOOTTIME,
+ .get_time = &ktime_get_boottime,
+ .resolution = KTIME_LOW_RES,
+ },
+ {
+ .index = HRTIMER_BASE_TAI,
+ .clockid = CLOCK_TAI,
+ .get_time = &ktime_get_clocktai,
+ .resolution = KTIME_LOW_RES,
+ },
+ }
+};
+
+static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
+ [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
+ [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
+ [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
+ [CLOCK_TAI] = HRTIMER_BASE_TAI,
+};
+
+static inline int hrtimer_clockid_to_base(clockid_t clock_id)
+{
+ return hrtimer_clock_to_base_table[clock_id];
+}
+
+
+/*
+ * Get the coarse grained time at the softirq based on xtime and
+ * wall_to_monotonic.
+ */
+static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
+{
+ ktime_t xtim, mono, boot, tai;
+ ktime_t off_real, off_boot, off_tai;
+
+ mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
+ boot = ktime_add(mono, off_boot);
+ xtim = ktime_add(mono, off_real);
+ tai = ktime_add(mono, off_tai);
+
+ base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
+ base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
+ base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
+ base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
+}
+
+/*
+ * Functions and macros which are different for UP/SMP systems are kept in a
+ * single place
+ */
+#ifdef CONFIG_SMP
+
+/*
+ * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
+ * means that all timers which are tied to this base via timer->base are
+ * locked, and the base itself is locked too.
+ *
+ * So __run_timers/migrate_timers can safely modify all timers which could
+ * be found on the lists/queues.
+ *
+ * When the timer's base is locked, and the timer removed from list, it is
+ * possible to set timer->base = NULL and drop the lock: the timer remains
+ * locked.
+ */
+static
+struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
+ unsigned long *flags)
+{
+ struct hrtimer_clock_base *base;
+
+ for (;;) {
+ base = timer->base;
+ if (likely(base != NULL)) {
+ raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
+ if (likely(base == timer->base))
+ return base;
+ /* The timer has migrated to another CPU: */
+ raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
+ }
+ cpu_relax();
+ }
+}
+
+/*
+ * With HIGHRES=y we do not migrate the timer when it is expiring
+ * before the next event on the target cpu because we cannot reprogram
+ * the target cpu hardware and we would cause it to fire late.
+ *
+ * Called with cpu_base->lock of target cpu held.
+ */
+static int
+hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
+{
+#ifdef CONFIG_HIGH_RES_TIMERS
+ ktime_t expires;
+
+ if (!new_base->cpu_base->hres_active)
+ return 0;
+
+ expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
+ return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
+#else
+ return 0;
+#endif
+}
+
+/*
+ * Switch the timer base to the current CPU when possible.
+ */
+static inline struct hrtimer_clock_base *
+switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
+ int pinned)
+{
+ struct hrtimer_clock_base *new_base;
+ struct hrtimer_cpu_base *new_cpu_base;
+ int this_cpu = smp_processor_id();
+ int cpu = get_nohz_timer_target(pinned);
+ int basenum = base->index;
+
+again:
+ new_cpu_base = &per_cpu(hrtimer_bases, cpu);
+ new_base = &new_cpu_base->clock_base[basenum];
+
+ if (base != new_base) {
+ /*
+ * We are trying to move timer to new_base.
+ * However we can't change timer's base while it is running,
+ * so we keep it on the same CPU. No hassle vs. reprogramming
+ * the event source in the high resolution case. The softirq
+ * code will take care of this when the timer function has
+ * completed. There is no conflict as we hold the lock until
+ * the timer is enqueued.
+ */
+ if (unlikely(hrtimer_callback_running(timer)))
+ return base;
+
+ /* See the comment in lock_timer_base() */
+ timer->base = NULL;
+ raw_spin_unlock(&base->cpu_base->lock);
+ raw_spin_lock(&new_base->cpu_base->lock);
+
+ if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
+ cpu = this_cpu;
+ raw_spin_unlock(&new_base->cpu_base->lock);
+ raw_spin_lock(&base->cpu_base->lock);
+ timer->base = base;
+ goto again;
+ }
+ timer->base = new_base;
+ } else {
+ if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
+ cpu = this_cpu;
+ goto again;
+ }
+ }
+ return new_base;
+}
+
+#else /* CONFIG_SMP */
+
+static inline struct hrtimer_clock_base *
+lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
+{
+ struct hrtimer_clock_base *base = timer->base;
+
+ raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
+
+ return base;
+}
+
+# define switch_hrtimer_base(t, b, p) (b)
+
+#endif /* !CONFIG_SMP */
+
+/*
+ * Functions for the union type storage format of ktime_t which are
+ * too large for inlining:
+ */
+#if BITS_PER_LONG < 64
+/*
+ * Divide a ktime value by a nanosecond value
+ */
+s64 __ktime_divns(const ktime_t kt, s64 div)
+{
+ int sft = 0;
+ s64 dclc;
+ u64 tmp;
+
+ dclc = ktime_to_ns(kt);
+ tmp = dclc < 0 ? -dclc : dclc;
+
+ /* Make sure the divisor is less than 2^32: */
+ while (div >> 32) {
+ sft++;
+ div >>= 1;
+ }
+ tmp >>= sft;
+ do_div(tmp, (unsigned long) div);
+ return dclc < 0 ? -tmp : tmp;
+}
+EXPORT_SYMBOL_GPL(__ktime_divns);
+#endif /* BITS_PER_LONG >= 64 */
+
+/*
+ * Add two ktime values and do a safety check for overflow:
+ */
+ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
+{
+ ktime_t res = ktime_add(lhs, rhs);
+
+ /*
+ * We use KTIME_SEC_MAX here, the maximum timeout which we can
+ * return to user space in a timespec:
+ */
+ if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
+ res = ktime_set(KTIME_SEC_MAX, 0);
+
+ return res;
+}
+
+EXPORT_SYMBOL_GPL(ktime_add_safe);
+
+#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
+
+static struct debug_obj_descr hrtimer_debug_descr;
+
+static void *hrtimer_debug_hint(void *addr)
+{
+ return ((struct hrtimer *) addr)->function;
+}
+
+/*
+ * fixup_init is called when:
+ * - an active object is initialized
+ */
+static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
+{
+ struct hrtimer *timer = addr;
+
+ switch (state) {
+ case ODEBUG_STATE_ACTIVE:
+ hrtimer_cancel(timer);
+ debug_object_init(timer, &hrtimer_debug_descr);
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+/*
+ * fixup_activate is called when:
+ * - an active object is activated
+ * - an unknown object is activated (might be a statically initialized object)
+ */
+static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
+{
+ switch (state) {
+
+ case ODEBUG_STATE_NOTAVAILABLE:
+ WARN_ON_ONCE(1);
+ return 0;
+
+ case ODEBUG_STATE_ACTIVE:
+ WARN_ON(1);
+
+ default:
+ return 0;
+ }
+}
+
+/*
+ * fixup_free is called when:
+ * - an active object is freed
+ */
+static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
+{
+ struct hrtimer *timer = addr;
+
+ switch (state) {
+ case ODEBUG_STATE_ACTIVE:
+ hrtimer_cancel(timer);
+ debug_object_free(timer, &hrtimer_debug_descr);
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+static struct debug_obj_descr hrtimer_debug_descr = {
+ .name = "hrtimer",
+ .debug_hint = hrtimer_debug_hint,
+ .fixup_init = hrtimer_fixup_init,
+ .fixup_activate = hrtimer_fixup_activate,
+ .fixup_free = hrtimer_fixup_free,
+};
+
+static inline void debug_hrtimer_init(struct hrtimer *timer)
+{
+ debug_object_init(timer, &hrtimer_debug_descr);
+}
+
+static inline void debug_hrtimer_activate(struct hrtimer *timer)
+{
+ debug_object_activate(timer, &hrtimer_debug_descr);
+}
+
+static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
+{
+ debug_object_deactivate(timer, &hrtimer_debug_descr);
+}
+
+static inline void debug_hrtimer_free(struct hrtimer *timer)
+{
+ debug_object_free(timer, &hrtimer_debug_descr);
+}
+
+static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
+ enum hrtimer_mode mode);
+
+void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
+ enum hrtimer_mode mode)
+{
+ debug_object_init_on_stack(timer, &hrtimer_debug_descr);
+ __hrtimer_init(timer, clock_id, mode);
+}
+EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
+
+void destroy_hrtimer_on_stack(struct hrtimer *timer)
+{
+ debug_object_free(timer, &hrtimer_debug_descr);
+}
+
+#else
+static inline void debug_hrtimer_init(struct hrtimer *timer) { }
+static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
+static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
+#endif
+
+static inline void
+debug_init(struct hrtimer *timer, clockid_t clockid,
+ enum hrtimer_mode mode)
+{
+ debug_hrtimer_init(timer);
+ trace_hrtimer_init(timer, clockid, mode);
+}
+
+static inline void debug_activate(struct hrtimer *timer)
+{
+ debug_hrtimer_activate(timer);
+ trace_hrtimer_start(timer);
+}
+
+static inline void debug_deactivate(struct hrtimer *timer)
+{
+ debug_hrtimer_deactivate(timer);
+ trace_hrtimer_cancel(timer);
+}
+
+#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
+static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
+{
+ struct hrtimer_clock_base *base = cpu_base->clock_base;
+ ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
+ int i;
+
+ for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
+ struct timerqueue_node *next;
+ struct hrtimer *timer;
+
+ next = timerqueue_getnext(&base->active);
+ if (!next)
+ continue;
+
+ timer = container_of(next, struct hrtimer, node);
+ expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
+ if (expires.tv64 < expires_next.tv64)
+ expires_next = expires;
+ }
+ /*
+ * clock_was_set() might have changed base->offset of any of
+ * the clock bases so the result might be negative. Fix it up
+ * to prevent a false positive in clockevents_program_event().
+ */
+ if (expires_next.tv64 < 0)
+ expires_next.tv64 = 0;
+ return expires_next;
+}
+#endif
+
+/* High resolution timer related functions */
+#ifdef CONFIG_HIGH_RES_TIMERS
+
+/*
+ * High resolution timer enabled ?
+ */
+static int hrtimer_hres_enabled __read_mostly = 1;
+
+/*
+ * Enable / Disable high resolution mode
+ */
+static int __init setup_hrtimer_hres(char *str)
+{
+ if (!strcmp(str, "off"))
+ hrtimer_hres_enabled = 0;
+ else if (!strcmp(str, "on"))
+ hrtimer_hres_enabled = 1;
+ else
+ return 0;
+ return 1;
+}
+
+__setup("highres=", setup_hrtimer_hres);
+
+/*
+ * hrtimer_high_res_enabled - query, if the highres mode is enabled
+ */
+static inline int hrtimer_is_hres_enabled(void)
+{
+ return hrtimer_hres_enabled;
+}
+
+/*
+ * Is the high resolution mode active ?
+ */
+static inline int hrtimer_hres_active(void)
+{
+ return __this_cpu_read(hrtimer_bases.hres_active);
+}
+
+/*
+ * Reprogram the event source with checking both queues for the
+ * next event
+ * Called with interrupts disabled and base->lock held
+ */
+static void
+hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
+{
+ ktime_t expires_next = __hrtimer_get_next_event(cpu_base);
+
+ if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
+ return;
+
+ cpu_base->expires_next.tv64 = expires_next.tv64;
+
+ /*
+ * If a hang was detected in the last timer interrupt then we
+ * leave the hang delay active in the hardware. We want the
+ * system to make progress. That also prevents the following
+ * scenario:
+ * T1 expires 50ms from now
+ * T2 expires 5s from now
+ *
+ * T1 is removed, so this code is called and would reprogram
+ * the hardware to 5s from now. Any hrtimer_start after that
+ * will not reprogram the hardware due to hang_detected being
+ * set. So we'd effectivly block all timers until the T2 event
+ * fires.
+ */
+ if (cpu_base->hang_detected)
+ return;
+
+ if (cpu_base->expires_next.tv64 != KTIME_MAX)
+ tick_program_event(cpu_base->expires_next, 1);
+}
+
+/*
+ * Shared reprogramming for clock_realtime and clock_monotonic
+ *
+ * When a timer is enqueued and expires earlier than the already enqueued
+ * timers, we have to check, whether it expires earlier than the timer for
+ * which the clock event device was armed.
+ *
+ * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
+ * and no expiry check happens. The timer gets enqueued into the rbtree. The
+ * reprogramming and expiry check is done in the hrtimer_interrupt or in the
+ * softirq.
+ *
+ * Called with interrupts disabled and base->cpu_base.lock held
+ */
+static int hrtimer_reprogram(struct hrtimer *timer,
+ struct hrtimer_clock_base *base)
+{
+ struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+ ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
+ int res;
+
+ WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
+
+ /*
+ * When the callback is running, we do not reprogram the clock event
+ * device. The timer callback is either running on a different CPU or
+ * the callback is executed in the hrtimer_interrupt context. The
+ * reprogramming is handled at the end of the hrtimer_interrupt.
+ */
+ if (hrtimer_callback_running(timer))
+ return 0;
+
+ /*
+ * CLOCK_REALTIME timer might be requested with an absolute
+ * expiry time which is less than base->offset. Nothing wrong
+ * about that, just avoid to call into the tick code, which
+ * has now objections against negative expiry values.
+ */
+ if (expires.tv64 < 0)
+ return -ETIME;
+
+ if (expires.tv64 >= cpu_base->expires_next.tv64)
+ return 0;
+
+ /*
+ * When the target cpu of the timer is currently executing
+ * hrtimer_interrupt(), then we do not touch the clock event
+ * device. hrtimer_interrupt() will reevaluate all clock bases
+ * before reprogramming the device.
+ */
+ if (cpu_base->in_hrtirq)
+ return 0;
+
+ /*
+ * If a hang was detected in the last timer interrupt then we
+ * do not schedule a timer which is earlier than the expiry
+ * which we enforced in the hang detection. We want the system
+ * to make progress.
+ */
+ if (cpu_base->hang_detected)
+ return 0;
+
+ /*
+ * Clockevents returns -ETIME, when the event was in the past.
+ */
+ res = tick_program_event(expires, 0);
+ if (!IS_ERR_VALUE(res))
+ cpu_base->expires_next = expires;
+ return res;
+}
+
+static void __run_hrtimer(struct hrtimer *timer, ktime_t *now);
+static int hrtimer_rt_defer(struct hrtimer *timer);
+
+/*
+ * Initialize the high resolution related parts of cpu_base
+ */
+static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
+{
+ base->expires_next.tv64 = KTIME_MAX;
+ base->hres_active = 0;
+}
+
+static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
+ struct hrtimer_clock_base *base,
+ int wakeup)
+{
+ if (!hrtimer_reprogram(timer, base))
+ return 0;
+ if (!wakeup)
+ return -ETIME;
+#ifdef CONFIG_PREEMPT_RT_BASE
+ if (!hrtimer_rt_defer(timer))
+ return -ETIME;
+#endif
+ return 1;
+}
+
+static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
+{
+ ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
+ ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
+ ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
+
+ return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
+}
+
+/*
+ * Retrigger next event is called after clock was set
+ *
+ * Called with interrupts disabled via on_each_cpu()
+ */
+static void retrigger_next_event(void *arg)
+{
+ struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
+
+ if (!hrtimer_hres_active())
+ return;
+
+ raw_spin_lock(&base->lock);
+ hrtimer_update_base(base);
+ hrtimer_force_reprogram(base, 0);
+ raw_spin_unlock(&base->lock);
+}
+
+/*
+ * Switch to high resolution mode
+ */
+static int hrtimer_switch_to_hres(void)
+{
+ int i, cpu = smp_processor_id();
+ struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
+ unsigned long flags;
+
+ if (base->hres_active)
+ return 1;
+
+ local_irq_save(flags);
+
+ if (tick_init_highres()) {
+ local_irq_restore(flags);
+ printk(KERN_WARNING "Could not switch to high resolution "
+ "mode on CPU %d\n", cpu);
+ return 0;
+ }
+ base->hres_active = 1;
+ for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
+ base->clock_base[i].resolution = KTIME_HIGH_RES;
+
+ tick_setup_sched_timer();
+ /* "Retrigger" the interrupt to get things going */
+ retrigger_next_event(NULL);
+ local_irq_restore(flags);
+ return 1;
+}
+
+static void clock_was_set_work(struct work_struct *work)
+{
+ clock_was_set();
+}
+
+static DECLARE_WORK(hrtimer_work, clock_was_set_work);
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+/*
+ * RT can not call schedule_work from real interrupt context.
+ * Need to make a thread to do the real work.
+ */
+static struct task_struct *clock_set_delay_thread;
+static bool do_clock_set_delay;
+
+static int run_clock_set_delay(void *ignore)
+{
+ while (!kthread_should_stop()) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (do_clock_set_delay) {
+ do_clock_set_delay = false;
+ schedule_work(&hrtimer_work);
+ }
+ schedule();
+ }
+ __set_current_state(TASK_RUNNING);
+ return 0;
+}
+
+void clock_was_set_delayed(void)
+{
+ do_clock_set_delay = true;
+ /* Make visible before waking up process */
+ smp_wmb();
+ wake_up_process(clock_set_delay_thread);
+}
+
+static __init int create_clock_set_delay_thread(void)
+{
+ clock_set_delay_thread = kthread_run(run_clock_set_delay, NULL, "kclksetdelayd");
+ BUG_ON(!clock_set_delay_thread);
+ return 0;
+}
+early_initcall(create_clock_set_delay_thread);
+#else /* PREEMPT_RT_FULL */
+/*
+ * Called from timekeeping and resume code to reprogramm the hrtimer
+ * interrupt device on all cpus.
+ */
+void clock_was_set_delayed(void)
+{
+ schedule_work(&hrtimer_work);
+}
+#endif
+
+#else
+
+static inline int hrtimer_hres_active(void) { return 0; }
+static inline int hrtimer_is_hres_enabled(void) { return 0; }
+static inline int hrtimer_switch_to_hres(void) { return 0; }
+static inline void
+hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
+static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
+ struct hrtimer_clock_base *base,
+ int wakeup)
+{
+ return 0;
+}
+
+static inline int hrtimer_reprogram(struct hrtimer *timer,
+ struct hrtimer_clock_base *base)
+{
+ return 0;
+}
+static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
+static inline void retrigger_next_event(void *arg) { }
+#endif /* CONFIG_HIGH_RES_TIMERS */
+
+/*
+ * Clock realtime was set
+ *
+ * Change the offset of the realtime clock vs. the monotonic
+ * clock.
+ *
+ * We might have to reprogram the high resolution timer interrupt. On
+ * SMP we call the architecture specific code to retrigger _all_ high
+ * resolution timer interrupts. On UP we just disable interrupts and
+ * call the high resolution interrupt code.
+ */
+void clock_was_set(void)
+{
+#ifdef CONFIG_HIGH_RES_TIMERS
+ /* Retrigger the CPU local events everywhere */
+ on_each_cpu(retrigger_next_event, NULL, 1);
+#endif
+ timerfd_clock_was_set();
+}
+
+/*
+ * During resume we might have to reprogram the high resolution timer
+ * interrupt on all online CPUs. However, all other CPUs will be
+ * stopped with IRQs interrupts disabled so the clock_was_set() call
+ * must be deferred.
+ */
+void hrtimers_resume(void)
+{
+ WARN_ONCE(!irqs_disabled(),
+ KERN_INFO "hrtimers_resume() called with IRQs enabled!");
+
+ /* Retrigger on the local CPU */
+ retrigger_next_event(NULL);
+ /* And schedule a retrigger for all others */
+ clock_was_set_delayed();
+}
+
+static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
+{
+#ifdef CONFIG_TIMER_STATS
+ if (timer->start_site)
+ return;
+ timer->start_site = __builtin_return_address(0);
+ memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
+ timer->start_pid = current->pid;
+#endif
+}
+
+static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
+{
+#ifdef CONFIG_TIMER_STATS
+ timer->start_site = NULL;
+#endif
+}
+
+static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
+{
+#ifdef CONFIG_TIMER_STATS
+ if (likely(!timer_stats_active))
+ return;
+ timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
+ timer->function, timer->start_comm, 0);
+#endif
+}
+
+/*
+ * Counterpart to lock_hrtimer_base above:
+ */
+static inline
+void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
+{
+ raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
+}
+
+/**
+ * hrtimer_forward - forward the timer expiry
+ * @timer: hrtimer to forward
+ * @now: forward past this time
+ * @interval: the interval to forward
+ *
+ * Forward the timer expiry so it will expire in the future.
+ * Returns the number of overruns.
+ */
+u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
+{
+ u64 orun = 1;
+ ktime_t delta;
+
+ delta = ktime_sub(now, hrtimer_get_expires(timer));
+
+ if (delta.tv64 < 0)
+ return 0;
+
+ if (interval.tv64 < timer->base->resolution.tv64)
+ interval.tv64 = timer->base->resolution.tv64;
+
+ if (unlikely(delta.tv64 >= interval.tv64)) {
+ s64 incr = ktime_to_ns(interval);
+
+ orun = ktime_divns(delta, incr);
+ hrtimer_add_expires_ns(timer, incr * orun);
+ if (hrtimer_get_expires_tv64(timer) > now.tv64)
+ return orun;
+ /*
+ * This (and the ktime_add() below) is the
+ * correction for exact:
+ */
+ orun++;
+ }
+ hrtimer_add_expires(timer, interval);
+
+ return orun;
+}
+EXPORT_SYMBOL_GPL(hrtimer_forward);
+
+#ifdef CONFIG_PREEMPT_RT_BASE
+# define wake_up_timer_waiters(b) wake_up(&(b)->wait)
+
+/**
+ * hrtimer_wait_for_timer - Wait for a running timer
+ *
+ * @timer: timer to wait for
+ *
+ * The function waits in case the timers callback function is
+ * currently executed on the waitqueue of the timer base. The
+ * waitqueue is woken up after the timer callback function has
+ * finished execution.
+ */
+void hrtimer_wait_for_timer(const struct hrtimer *timer)
+{
+ struct hrtimer_clock_base *base = timer->base;
+
+ if (base && base->cpu_base && !timer->irqsafe)
+ wait_event(base->cpu_base->wait,
+ !(timer->state & HRTIMER_STATE_CALLBACK));
+}
+
+#else
+# define wake_up_timer_waiters(b) do { } while (0)
+#endif
+
+/*
+ * enqueue_hrtimer - internal function to (re)start a timer
+ *
+ * The timer is inserted in expiry order. Insertion into the
+ * red black tree is O(log(n)). Must hold the base lock.
+ *
+ * Returns 1 when the new timer is the leftmost timer in the tree.
+ */
+static int enqueue_hrtimer(struct hrtimer *timer,
+ struct hrtimer_clock_base *base)
+{
+ debug_activate(timer);
+
+ timerqueue_add(&base->active, &timer->node);
+ base->cpu_base->active_bases |= 1 << base->index;
+
+ /*
+ * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
+ * state of a possibly running callback.
+ */
+ timer->state |= HRTIMER_STATE_ENQUEUED;
+
+ return (&timer->node == base->active.next);
+}
+
+/*
+ * __remove_hrtimer - internal function to remove a timer
+ *
+ * Caller must hold the base lock.
+ *
+ * High resolution timer mode reprograms the clock event device when the
+ * timer is the one which expires next. The caller can disable this by setting
+ * reprogram to zero. This is useful, when the context does a reprogramming
+ * anyway (e.g. timer interrupt)
+ */
+static void __remove_hrtimer(struct hrtimer *timer,
+ struct hrtimer_clock_base *base,
+ unsigned long newstate, int reprogram)
+{
+ struct timerqueue_node *next_timer;
+ if (!(timer->state & HRTIMER_STATE_ENQUEUED))
+ goto out;
+
+ if (unlikely(!list_empty(&timer->cb_entry))) {
+ list_del_init(&timer->cb_entry);
+ goto out;
+ }
+
+ next_timer = timerqueue_getnext(&base->active);
+ timerqueue_del(&base->active, &timer->node);
+ if (&timer->node == next_timer) {
+#ifdef CONFIG_HIGH_RES_TIMERS
+ /* Reprogram the clock event device. if enabled */
+ if (reprogram && hrtimer_hres_active()) {
+ ktime_t expires;
+
+ expires = ktime_sub(hrtimer_get_expires(timer),
+ base->offset);
+ if (base->cpu_base->expires_next.tv64 == expires.tv64)
+ hrtimer_force_reprogram(base->cpu_base, 1);
+ }
+#endif
+ }
+ if (!timerqueue_getnext(&base->active))
+ base->cpu_base->active_bases &= ~(1 << base->index);
+out:
+ timer->state = newstate;
+}
+
+/*
+ * remove hrtimer, called with base lock held
+ */
+static inline int
+remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
+{
+ if (hrtimer_is_queued(timer)) {
+ unsigned long state;
+ int reprogram;
+
+ /*
+ * Remove the timer and force reprogramming when high
+ * resolution mode is active and the timer is on the current
+ * CPU. If we remove a timer on another CPU, reprogramming is
+ * skipped. The interrupt event on this CPU is fired and
+ * reprogramming happens in the interrupt handler. This is a
+ * rare case and less expensive than a smp call.
+ */
+ debug_deactivate(timer);
+ timer_stats_hrtimer_clear_start_info(timer);
+ reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
+ /*
+ * We must preserve the CALLBACK state flag here,
+ * otherwise we could move the timer base in
+ * switch_hrtimer_base.
+ */
+ state = timer->state & HRTIMER_STATE_CALLBACK;
+ __remove_hrtimer(timer, base, state, reprogram);
+ return 1;
+ }
+ return 0;
+}
+
+int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
+ unsigned long delta_ns, const enum hrtimer_mode mode,
+ int wakeup)
+{
+ struct hrtimer_clock_base *base, *new_base;
+ unsigned long flags;
+ int ret, leftmost;
+
+ base = lock_hrtimer_base(timer, &flags);
+
+ /* Remove an active timer from the queue: */
+ ret = remove_hrtimer(timer, base);
+
+ if (mode & HRTIMER_MODE_REL) {
+ tim = ktime_add_safe(tim, base->get_time());
+ /*
+ * CONFIG_TIME_LOW_RES is a temporary way for architectures
+ * to signal that they simply return xtime in
+ * do_gettimeoffset(). In this case we want to round up by
+ * resolution when starting a relative timer, to avoid short
+ * timeouts. This will go away with the GTOD framework.
+ */
+#ifdef CONFIG_TIME_LOW_RES
+ tim = ktime_add_safe(tim, base->resolution);
+#endif
+ }
+
+ hrtimer_set_expires_range_ns(timer, tim, delta_ns);
+
+ /* Switch the timer base, if necessary: */
+ new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
+
+ timer_stats_hrtimer_set_start_info(timer);
+#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
+ {
+ ktime_t now = new_base->get_time();
+
+ if (ktime_to_ns(tim) < ktime_to_ns(now))
+ timer->praecox = now;
+ else
+ timer->praecox = ktime_set(0, 0);
+ }
+#endif
+ leftmost = enqueue_hrtimer(timer, new_base);
+
+ if (!leftmost) {
+ unlock_hrtimer_base(timer, &flags);
+ return ret;
+ }
+
+ if (!hrtimer_is_hres_active(timer)) {
+ /*
+ * Kick to reschedule the next tick to handle the new timer
+ * on dynticks target.
+ */
+ wake_up_nohz_cpu(new_base->cpu_base->cpu);
+ } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases)) {
+
+ ret = hrtimer_enqueue_reprogram(timer, new_base, wakeup);
+ if (ret < 0) {
+ /*
+ * In case we failed to reprogram the timer (mostly
+ * because out current timer is already elapsed),
+ * remove it again and report a failure. This avoids
+ * stale base->first entries.
+ */
+ debug_deactivate(timer);
+ __remove_hrtimer(timer, new_base,
+ timer->state & HRTIMER_STATE_CALLBACK, 0);
+ } else if (ret > 0) {
+ /*
+ * Only allow reprogramming if the new base is on this CPU.
+ * (it might still be on another CPU if the timer was pending)
+ *
+ * XXX send_remote_softirq() ?
+ */
+ /*
+ * We need to drop cpu_base->lock to avoid a
+ * lock ordering issue vs. rq->lock.
+ */
+ raw_spin_unlock(&new_base->cpu_base->lock);
+ raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+ local_irq_restore(flags);
+ return 0;
+ }
+ }
+
+ unlock_hrtimer_base(timer, &flags);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
+
+/**
+ * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
+ * @timer: the timer to be added
+ * @tim: expiry time
+ * @delta_ns: "slack" range for the timer
+ * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
+ * relative (HRTIMER_MODE_REL)
+ *
+ * Returns:
+ * 0 on success
+ * 1 when the timer was active
+ */
+int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
+ unsigned long delta_ns, const enum hrtimer_mode mode)
+{
+ return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
+}
+EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
+
+/**
+ * hrtimer_start - (re)start an hrtimer on the current CPU
+ * @timer: the timer to be added
+ * @tim: expiry time
+ * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
+ * relative (HRTIMER_MODE_REL)
+ *
+ * Returns:
+ * 0 on success
+ * 1 when the timer was active
+ */
+int
+hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
+{
+ return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
+}
+EXPORT_SYMBOL_GPL(hrtimer_start);
+
+
+/**
+ * hrtimer_try_to_cancel - try to deactivate a timer
+ * @timer: hrtimer to stop
+ *
+ * Returns:
+ * 0 when the timer was not active
+ * 1 when the timer was active
+ * -1 when the timer is currently excuting the callback function and
+ * cannot be stopped
+ */
+int hrtimer_try_to_cancel(struct hrtimer *timer)
+{
+ struct hrtimer_clock_base *base;
+ unsigned long flags;
+ int ret = -1;
+
+ base = lock_hrtimer_base(timer, &flags);
+
+ if (!hrtimer_callback_running(timer))
+ ret = remove_hrtimer(timer, base);
+
+ unlock_hrtimer_base(timer, &flags);
+
+ return ret;
+
+}
+EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
+
+/**
+ * hrtimer_cancel - cancel a timer and wait for the handler to finish.
+ * @timer: the timer to be cancelled
+ *
+ * Returns:
+ * 0 when the timer was not active
+ * 1 when the timer was active
+ */
+int hrtimer_cancel(struct hrtimer *timer)
+{
+ for (;;) {
+ int ret = hrtimer_try_to_cancel(timer);
+
+ if (ret >= 0)
+ return ret;
+ hrtimer_wait_for_timer(timer);
+ }
+}
+EXPORT_SYMBOL_GPL(hrtimer_cancel);
+
+/**
+ * hrtimer_get_remaining - get remaining time for the timer
+ * @timer: the timer to read
+ */
+ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
+{
+ unsigned long flags;
+ ktime_t rem;
+
+ lock_hrtimer_base(timer, &flags);
+ rem = hrtimer_expires_remaining(timer);
+ unlock_hrtimer_base(timer, &flags);
+
+ return rem;
+}
+EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
+
+#ifdef CONFIG_NO_HZ_COMMON
+/**
+ * hrtimer_get_next_event - get the time until next expiry event
+ *
+ * Returns the delta to the next expiry event or KTIME_MAX if no timer
+ * is pending.
+ */
+ktime_t hrtimer_get_next_event(void)
+{
+ struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+ ktime_t mindelta = { .tv64 = KTIME_MAX };
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&cpu_base->lock, flags);
+
+ if (!hrtimer_hres_active())
+ mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
+ ktime_get());
+
+ raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
+
+ if (mindelta.tv64 < 0)
+ mindelta.tv64 = 0;
+ return mindelta;
+}
+#endif
+
+static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
+ enum hrtimer_mode mode)
+{
+ struct hrtimer_cpu_base *cpu_base;
+ int base;
+
+ memset(timer, 0, sizeof(struct hrtimer));
+
+ cpu_base = raw_cpu_ptr(&hrtimer_bases);
+
+ if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
+ clock_id = CLOCK_MONOTONIC;
+
+ base = hrtimer_clockid_to_base(clock_id);
+ timer->base = &cpu_base->clock_base[base];
+ INIT_LIST_HEAD(&timer->cb_entry);
+ timerqueue_init(&timer->node);
+
+#ifdef CONFIG_TIMER_STATS
+ timer->start_site = NULL;
+ timer->start_pid = -1;
+ memset(timer->start_comm, 0, TASK_COMM_LEN);
+#endif
+}
+
+/**
+ * hrtimer_init - initialize a timer to the given clock
+ * @timer: the timer to be initialized
+ * @clock_id: the clock to be used
+ * @mode: timer mode abs/rel
+ */
+void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
+ enum hrtimer_mode mode)
+{
+ debug_init(timer, clock_id, mode);
+ __hrtimer_init(timer, clock_id, mode);
+}
+EXPORT_SYMBOL_GPL(hrtimer_init);
+
+/**
+ * hrtimer_get_res - get the timer resolution for a clock
+ * @which_clock: which clock to query
+ * @tp: pointer to timespec variable to store the resolution
+ *
+ * Store the resolution of the clock selected by @which_clock in the
+ * variable pointed to by @tp.
+ */
+int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
+{
+ struct hrtimer_cpu_base *cpu_base;
+ int base = hrtimer_clockid_to_base(which_clock);
+
+ cpu_base = raw_cpu_ptr(&hrtimer_bases);
+ *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(hrtimer_get_res);
+
+static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
+{
+ struct hrtimer_clock_base *base = timer->base;
+ struct hrtimer_cpu_base *cpu_base = base->cpu_base;
+ enum hrtimer_restart (*fn)(struct hrtimer *);
+ int restart;
+
+ WARN_ON(!irqs_disabled());
+
+ debug_deactivate(timer);
+ __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
+ timer_stats_account_hrtimer(timer);
+ fn = timer->function;
+
+ /*
+ * Because we run timers from hardirq context, there is no chance
+ * they get migrated to another cpu, therefore its safe to unlock
+ * the timer base.
+ */
+ raw_spin_unlock(&cpu_base->lock);
+ trace_hrtimer_expire_entry(timer, now);
+ restart = fn(timer);
+ trace_hrtimer_expire_exit(timer);
+ raw_spin_lock(&cpu_base->lock);
+
+ /*
+ * Note: We clear the CALLBACK bit after enqueue_hrtimer and
+ * we do not reprogramm the event hardware. Happens either in
+ * hrtimer_start_range_ns() or in hrtimer_interrupt()
+ */
+ if (restart != HRTIMER_NORESTART) {
+ BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
+ enqueue_hrtimer(timer, base);
+ }
+
+ WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
+
+ timer->state &= ~HRTIMER_STATE_CALLBACK;
+}
+
+static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer);
+
+#ifdef CONFIG_PREEMPT_RT_BASE
+static void hrtimer_rt_reprogram(int restart, struct hrtimer *timer,
+ struct hrtimer_clock_base *base)
+{
+ /*
+ * Note, we clear the callback flag before we requeue the
+ * timer otherwise we trigger the callback_running() check
+ * in hrtimer_reprogram().
+ */
+ timer->state &= ~HRTIMER_STATE_CALLBACK;
+
+ if (restart != HRTIMER_NORESTART) {
+ BUG_ON(hrtimer_active(timer));
+ /*
+ * Enqueue the timer, if it's the leftmost timer then
+ * we need to reprogram it.
+ */
+ if (!enqueue_hrtimer(timer, base))
+ return;
+
+#ifndef CONFIG_HIGH_RES_TIMERS
+ }
+#else
+ if (base->cpu_base->hres_active &&
+ hrtimer_reprogram(timer, base))
+ goto requeue;
+
+ } else if (hrtimer_active(timer)) {
+ /*
+ * If the timer was rearmed on another CPU, reprogram
+ * the event device.
+ */
+ if (&timer->node == base->active.next &&
+ base->cpu_base->hres_active &&
+ hrtimer_reprogram(timer, base))
+ goto requeue;
+ }
+ return;
+
+requeue:
+ /*
+ * Timer is expired. Thus move it from tree to pending list
+ * again.
+ */
+ __remove_hrtimer(timer, base, timer->state, 0);
+ list_add_tail(&timer->cb_entry, &base->expired);
+#endif
+}
+
+/*
+ * The changes in mainline which removed the callback modes from
+ * hrtimer are not yet working with -rt. The non wakeup_process()
+ * based callbacks which involve sleeping locks need to be treated
+ * seperately.
+ */
+static void hrtimer_rt_run_pending(void)
+{
+ enum hrtimer_restart (*fn)(struct hrtimer *);
+ struct hrtimer_cpu_base *cpu_base;
+ struct hrtimer_clock_base *base;
+ struct hrtimer *timer;
+ int index, restart;
+
+ local_irq_disable();
+ cpu_base = &per_cpu(hrtimer_bases, smp_processor_id());
+
+ raw_spin_lock(&cpu_base->lock);
+
+ for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
+ base = &cpu_base->clock_base[index];
+
+ while (!list_empty(&base->expired)) {
+ timer = list_first_entry(&base->expired,
+ struct hrtimer, cb_entry);
+
+ /*
+ * Same as the above __run_hrtimer function
+ * just we run with interrupts enabled.
+ */
+ debug_hrtimer_deactivate(timer);
+ __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
+ timer_stats_account_hrtimer(timer);
+ fn = timer->function;
+
+ raw_spin_unlock_irq(&cpu_base->lock);
+ restart = fn(timer);
+ raw_spin_lock_irq(&cpu_base->lock);
+
+ hrtimer_rt_reprogram(restart, timer, base);
+ }
+ }
+
+ raw_spin_unlock_irq(&cpu_base->lock);
+
+ wake_up_timer_waiters(cpu_base);
+}
+
+static int hrtimer_rt_defer(struct hrtimer *timer)
+{
+ if (timer->irqsafe)
+ return 0;
+
+ __remove_hrtimer(timer, timer->base, timer->state, 0);
+ list_add_tail(&timer->cb_entry, &timer->base->expired);
+ return 1;
+}
+
+#else
+
+static inline void hrtimer_rt_run_pending(void)
+{
+ hrtimer_peek_ahead_timers();
+}
+
+static inline int hrtimer_rt_defer(struct hrtimer *timer) { return 0; }
+
+#endif
+
+#ifdef CONFIG_HIGH_RES_TIMERS
+
+/*
+ * High resolution timer interrupt
+ * Called with interrupts disabled
+ */
+void hrtimer_interrupt(struct clock_event_device *dev)
+{
+ struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+ ktime_t expires_next, now, entry_time, delta;
+ int i, retries = 0, raise = 0;
+
+ BUG_ON(!cpu_base->hres_active);
+ cpu_base->nr_events++;
+ dev->next_event.tv64 = KTIME_MAX;
+
+ raw_spin_lock(&cpu_base->lock);
+ entry_time = now = hrtimer_update_base(cpu_base);
+retry:
+ cpu_base->in_hrtirq = 1;
+ /*
+ * We set expires_next to KTIME_MAX here with cpu_base->lock
+ * held to prevent that a timer is enqueued in our queue via
+ * the migration code. This does not affect enqueueing of
+ * timers which run their callback and need to be requeued on
+ * this CPU.
+ */
+ cpu_base->expires_next.tv64 = KTIME_MAX;
+
+ for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
+ struct hrtimer_clock_base *base;
+ struct timerqueue_node *node;
+ ktime_t basenow;
+
+ if (!(cpu_base->active_bases & (1 << i)))
+ continue;
+
+ base = cpu_base->clock_base + i;
+ basenow = ktime_add(now, base->offset);
+
+ while ((node = timerqueue_getnext(&base->active))) {
+ struct hrtimer *timer;
+
+ timer = container_of(node, struct hrtimer, node);
+
+ trace_hrtimer_interrupt(raw_smp_processor_id(),
+ ktime_to_ns(ktime_sub(ktime_to_ns(timer->praecox) ?
+ timer->praecox : hrtimer_get_expires(timer),
+ basenow)),
+ current,
+ timer->function == hrtimer_wakeup ?
+ container_of(timer, struct hrtimer_sleeper,
+ timer)->task : NULL);
+
+ /*
+ * The immediate goal for using the softexpires is
+ * minimizing wakeups, not running timers at the
+ * earliest interrupt after their soft expiration.
+ * This allows us to avoid using a Priority Search
+ * Tree, which can answer a stabbing querry for
+ * overlapping intervals and instead use the simple
+ * BST we already have.
+ * We don't add extra wakeups by delaying timers that
+ * are right-of a not yet expired timer, because that
+ * timer will have to trigger a wakeup anyway.
+ */
+ if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
+ break;
+
+ if (!hrtimer_rt_defer(timer))
+ __run_hrtimer(timer, &basenow);
+ else
+ raise = 1;
+ }
+ }
+ /* Reevaluate the clock bases for the next expiry */
+ expires_next = __hrtimer_get_next_event(cpu_base);
+ /*
+ * Store the new expiry value so the migration code can verify
+ * against it.
+ */
+ cpu_base->expires_next = expires_next;
+ cpu_base->in_hrtirq = 0;
+ raw_spin_unlock(&cpu_base->lock);
+
+ /* Reprogramming necessary ? */
+ if (expires_next.tv64 == KTIME_MAX ||
+ !tick_program_event(expires_next, 0)) {
+ cpu_base->hang_detected = 0;
+ goto out;
+ }
+
+ /*
+ * The next timer was already expired due to:
+ * - tracing
+ * - long lasting callbacks
+ * - being scheduled away when running in a VM
+ *
+ * We need to prevent that we loop forever in the hrtimer
+ * interrupt routine. We give it 3 attempts to avoid
+ * overreacting on some spurious event.
+ *
+ * Acquire base lock for updating the offsets and retrieving
+ * the current time.
+ */
+ raw_spin_lock(&cpu_base->lock);
+ now = hrtimer_update_base(cpu_base);
+ cpu_base->nr_retries++;
+ if (++retries < 3)
+ goto retry;
+ /*
+ * Give the system a chance to do something else than looping
+ * here. We stored the entry time, so we know exactly how long
+ * we spent here. We schedule the next event this amount of
+ * time away.
+ */
+ cpu_base->nr_hangs++;
+ cpu_base->hang_detected = 1;
+ raw_spin_unlock(&cpu_base->lock);
+ delta = ktime_sub(now, entry_time);
+ if (delta.tv64 > cpu_base->max_hang_time.tv64)
+ cpu_base->max_hang_time = delta;
+ /*
+ * Limit it to a sensible value as we enforce a longer
+ * delay. Give the CPU at least 100ms to catch up.
+ */
+ if (delta.tv64 > 100 * NSEC_PER_MSEC)
+ expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
+ else
+ expires_next = ktime_add(now, delta);
+ tick_program_event(expires_next, 1);
+ printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
+ ktime_to_ns(delta));
+out:
+ if (raise)
+ raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+}
+
+/*
+ * local version of hrtimer_peek_ahead_timers() called with interrupts
+ * disabled.
+ */
+static void __hrtimer_peek_ahead_timers(void)
+{
+ struct tick_device *td;
+
+ if (!hrtimer_hres_active())
+ return;
+
+ td = this_cpu_ptr(&tick_cpu_device);
+ if (td && td->evtdev)
+ hrtimer_interrupt(td->evtdev);
+}
+
+/**
+ * hrtimer_peek_ahead_timers -- run soft-expired timers now
+ *
+ * hrtimer_peek_ahead_timers will peek at the timer queue of
+ * the current cpu and check if there are any timers for which
+ * the soft expires time has passed. If any such timers exist,
+ * they are run immediately and then removed from the timer queue.
+ *
+ */
+void hrtimer_peek_ahead_timers(void)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ __hrtimer_peek_ahead_timers();
+ local_irq_restore(flags);
+}
+#else /* CONFIG_HIGH_RES_TIMERS */
+
+static inline void __hrtimer_peek_ahead_timers(void) { }
+
+#endif /* !CONFIG_HIGH_RES_TIMERS */
+
+
+static void run_hrtimer_softirq(struct softirq_action *h)
+{
+ hrtimer_rt_run_pending();
+}
+
+/*
+ * Called from timer softirq every jiffy, expire hrtimers:
+ *
+ * For HRT its the fall back code to run the softirq in the timer
+ * softirq context in case the hrtimer initialization failed or has
+ * not been done yet.
+ */
+void hrtimer_run_pending(void)
+{
+ if (hrtimer_hres_active())
+ return;
+
+ /*
+ * This _is_ ugly: We have to check in the softirq context,
+ * whether we can switch to highres and / or nohz mode. The
+ * clocksource switch happens in the timer interrupt with
+ * xtime_lock held. Notification from there only sets the
+ * check bit in the tick_oneshot code, otherwise we might
+ * deadlock vs. xtime_lock.
+ */
+ if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
+ hrtimer_switch_to_hres();
+}
+
+/*
+ * Called from hardirq context every jiffy
+ */
+void hrtimer_run_queues(void)
+{
+ struct timerqueue_node *node;
+ struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+ struct hrtimer_clock_base *base;
+ int index, gettime = 1, raise = 0;
+
+ if (hrtimer_hres_active())
+ return;
+
+ for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
+ base = &cpu_base->clock_base[index];
+ if (!timerqueue_getnext(&base->active))
+ continue;
+
+ if (gettime) {
+ hrtimer_get_softirq_time(cpu_base);
+ gettime = 0;
+ }
+
+ raw_spin_lock(&cpu_base->lock);
+
+ while ((node = timerqueue_getnext(&base->active))) {
+ struct hrtimer *timer;
+
+ timer = container_of(node, struct hrtimer, node);
+ if (base->softirq_time.tv64 <=
+ hrtimer_get_expires_tv64(timer))
+ break;
+
+ if (!hrtimer_rt_defer(timer))
+ __run_hrtimer(timer, &base->softirq_time);
+ else
+ raise = 1;
+ }
+ raw_spin_unlock(&cpu_base->lock);
+ }
+
+ if (raise)
+ raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+}
+
+/*
+ * Sleep related functions:
+ */
+static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
+{
+ struct hrtimer_sleeper *t =
+ container_of(timer, struct hrtimer_sleeper, timer);
+ struct task_struct *task = t->task;
+
+ t->task = NULL;
+ if (task)
+ wake_up_process(task);
+
+ return HRTIMER_NORESTART;
+}
+
+void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
+{
+ sl->timer.function = hrtimer_wakeup;
+ sl->timer.irqsafe = 1;
+ sl->task = task;
+}
+EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
+
+static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode,
+ unsigned long state)
+{
+ hrtimer_init_sleeper(t, current);
+
+ do {
+ set_current_state(state);
+ hrtimer_start_expires(&t->timer, mode);
+ if (!hrtimer_active(&t->timer))
+ t->task = NULL;
+
+ if (likely(t->task))
+ freezable_schedule();
+
+ hrtimer_cancel(&t->timer);
+ mode = HRTIMER_MODE_ABS;
+
+ } while (t->task && !signal_pending(current));
+
+ __set_current_state(TASK_RUNNING);
+
+ return t->task == NULL;
+}
+
+static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
+{
+ struct timespec rmt;
+ ktime_t rem;
+
+ rem = hrtimer_expires_remaining(timer);
+ if (rem.tv64 <= 0)
+ return 0;
+ rmt = ktime_to_timespec(rem);
+
+ if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
+ return -EFAULT;
+
+ return 1;
+}
+
+long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
+{
+ struct hrtimer_sleeper t;
+ struct timespec __user *rmtp;
+ int ret = 0;
+
+ hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
+ HRTIMER_MODE_ABS);
+ hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
+
+ /* cpu_chill() does not care about restart state. */
+ if (do_nanosleep(&t, HRTIMER_MODE_ABS, TASK_INTERRUPTIBLE))
+ goto out;
+
+ rmtp = restart->nanosleep.rmtp;
+ if (rmtp) {
+ ret = update_rmtp(&t.timer, rmtp);
+ if (ret <= 0)
+ goto out;
+ }
+
+ /* The other values in restart are already filled in */
+ ret = -ERESTART_RESTARTBLOCK;
+out:
+ destroy_hrtimer_on_stack(&t.timer);
+ return ret;
+}
+
+static long
+__hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
+ const enum hrtimer_mode mode, const clockid_t clockid,
+ unsigned long state)
+{
+ struct restart_block *restart;
+ struct hrtimer_sleeper t;
+ int ret = 0;
+ unsigned long slack;
+
+ slack = current->timer_slack_ns;
+ if (dl_task(current) || rt_task(current))
+ slack = 0;
+
+ hrtimer_init_on_stack(&t.timer, clockid, mode);
+ hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
+ if (do_nanosleep(&t, mode, state))
+ goto out;
+
+ /* Absolute timers do not update the rmtp value and restart: */
+ if (mode == HRTIMER_MODE_ABS) {
+ ret = -ERESTARTNOHAND;
+ goto out;
+ }
+
+ if (rmtp) {
+ ret = update_rmtp(&t.timer, rmtp);
+ if (ret <= 0)
+ goto out;
+ }
+
+ restart = &current->restart_block;
+ restart->fn = hrtimer_nanosleep_restart;
+ restart->nanosleep.clockid = t.timer.base->clockid;
+ restart->nanosleep.rmtp = rmtp;
+ restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
+
+ ret = -ERESTART_RESTARTBLOCK;
+out:
+ destroy_hrtimer_on_stack(&t.timer);
+ return ret;
+}
+
+long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
+ const enum hrtimer_mode mode, const clockid_t clockid)
+{
+ return __hrtimer_nanosleep(rqtp, rmtp, mode, clockid, TASK_INTERRUPTIBLE);
+}
+
+SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
+ struct timespec __user *, rmtp)
+{
+ struct timespec tu;
+
+ if (copy_from_user(&tu, rqtp, sizeof(tu)))
+ return -EFAULT;
+
+ if (!timespec_valid(&tu))
+ return -EINVAL;
+
+ return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
+}
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+/*
+ * Sleep for 1 ms in hope whoever holds what we want will let it go.
+ */
+void cpu_chill(void)
+{
+ struct timespec tu = {
+ .tv_nsec = NSEC_PER_MSEC,
+ };
+ unsigned int freeze_flag = current->flags & PF_NOFREEZE;
+
+ current->flags |= PF_NOFREEZE;
+ __hrtimer_nanosleep(&tu, NULL, HRTIMER_MODE_REL, CLOCK_MONOTONIC,
+ TASK_UNINTERRUPTIBLE);
+ if (!freeze_flag)
+ current->flags &= ~PF_NOFREEZE;
+}
+EXPORT_SYMBOL(cpu_chill);
+#endif
+
+/*
+ * Functions related to boot-time initialization:
+ */
+static void init_hrtimers_cpu(int cpu)
+{
+ struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
+ int i;
+
+ for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
+ cpu_base->clock_base[i].cpu_base = cpu_base;
+ timerqueue_init_head(&cpu_base->clock_base[i].active);
+ INIT_LIST_HEAD(&cpu_base->clock_base[i].expired);
+ }
+
+ cpu_base->cpu = cpu;
+ hrtimer_init_hres(cpu_base);
+#ifdef CONFIG_PREEMPT_RT_BASE
+ init_waitqueue_head(&cpu_base->wait);
+#endif
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+
+static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
+ struct hrtimer_clock_base *new_base)
+{
+ struct hrtimer *timer;
+ struct timerqueue_node *node;
+
+ while ((node = timerqueue_getnext(&old_base->active))) {
+ timer = container_of(node, struct hrtimer, node);
+ BUG_ON(hrtimer_callback_running(timer));
+ debug_deactivate(timer);
+
+ /*
+ * Mark it as STATE_MIGRATE not INACTIVE otherwise the
+ * timer could be seen as !active and just vanish away
+ * under us on another CPU
+ */
+ __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
+ timer->base = new_base;
+ /*
+ * Enqueue the timers on the new cpu. This does not
+ * reprogram the event device in case the timer
+ * expires before the earliest on this CPU, but we run
+ * hrtimer_interrupt after we migrated everything to
+ * sort out already expired timers and reprogram the
+ * event device.
+ */
+ enqueue_hrtimer(timer, new_base);
+
+ /* Clear the migration state bit */
+ timer->state &= ~HRTIMER_STATE_MIGRATE;
+ }
+}
+
+static void migrate_hrtimers(int scpu)
+{
+ struct hrtimer_cpu_base *old_base, *new_base;
+ int i;
+
+ BUG_ON(cpu_online(scpu));
+ tick_cancel_sched_timer(scpu);
+
+ local_irq_disable();
+ old_base = &per_cpu(hrtimer_bases, scpu);
+ new_base = this_cpu_ptr(&hrtimer_bases);
+ /*
+ * The caller is globally serialized and nobody else
+ * takes two locks at once, deadlock is not possible.
+ */
+ raw_spin_lock(&new_base->lock);
+ raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
+
+ for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
+ migrate_hrtimer_list(&old_base->clock_base[i],
+ &new_base->clock_base[i]);
+ }
+
+ raw_spin_unlock(&old_base->lock);
+ raw_spin_unlock(&new_base->lock);
+
+ /* Check, if we got expired work to do */
+ __hrtimer_peek_ahead_timers();
+ local_irq_enable();
+}
+
+#endif /* CONFIG_HOTPLUG_CPU */
+
+static int hrtimer_cpu_notify(struct notifier_block *self,
+ unsigned long action, void *hcpu)
+{
+ int scpu = (long)hcpu;
+
+ switch (action) {
+
+ case CPU_UP_PREPARE:
+ case CPU_UP_PREPARE_FROZEN:
+ init_hrtimers_cpu(scpu);
+ break;
+
+#ifdef CONFIG_HOTPLUG_CPU
+ case CPU_DEAD:
+ case CPU_DEAD_FROZEN:
+ migrate_hrtimers(scpu);
+ break;
+#endif
+
+ default:
+ break;
+ }
+
+ return NOTIFY_OK;
+}
+
+static struct notifier_block hrtimers_nb = {
+ .notifier_call = hrtimer_cpu_notify,
+};
+
+void __init hrtimers_init(void)
+{
+ hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
+ (void *)(long)smp_processor_id());
+ register_cpu_notifier(&hrtimers_nb);
+ open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
+}
+
+/**
+ * schedule_hrtimeout_range_clock - sleep until timeout
+ * @expires: timeout value (ktime_t)
+ * @delta: slack in expires timeout (ktime_t)
+ * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
+ */
+int __sched
+schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
+ const enum hrtimer_mode mode, int clock)
+{
+ struct hrtimer_sleeper t;
+
+ /*
+ * Optimize when a zero timeout value is given. It does not
+ * matter whether this is an absolute or a relative time.
+ */
+ if (expires && !expires->tv64) {
+ __set_current_state(TASK_RUNNING);
+ return 0;
+ }
+
+ /*
+ * A NULL parameter means "infinite"
+ */
+ if (!expires) {
+ schedule();
+ return -EINTR;
+ }
+
+ hrtimer_init_on_stack(&t.timer, clock, mode);
+ hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
+
+ hrtimer_init_sleeper(&t, current);
+
+ hrtimer_start_expires(&t.timer, mode);
+ if (!hrtimer_active(&t.timer))
+ t.task = NULL;
+
+ if (likely(t.task))
+ schedule();
+
+ hrtimer_cancel(&t.timer);
+ destroy_hrtimer_on_stack(&t.timer);
+
+ __set_current_state(TASK_RUNNING);
+
+ return !t.task ? 0 : -EINTR;
+}
+
+/**
+ * schedule_hrtimeout_range - sleep until timeout
+ * @expires: timeout value (ktime_t)
+ * @delta: slack in expires timeout (ktime_t)
+ * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ *
+ * Make the current task sleep until the given expiry time has
+ * elapsed. The routine will return immediately unless
+ * the current task state has been set (see set_current_state()).
+ *
+ * The @delta argument gives the kernel the freedom to schedule the
+ * actual wakeup to a time that is both power and performance friendly.
+ * The kernel give the normal best effort behavior for "@expires+@delta",
+ * but may decide to fire the timer earlier, but no earlier than @expires.
+ *
+ * You can set the task state as follows -
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
+ * pass before the routine returns.
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task.
+ *
+ * The current task state is guaranteed to be TASK_RUNNING when this
+ * routine returns.
+ *
+ * Returns 0 when the timer has expired otherwise -EINTR
+ */
+int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
+ const enum hrtimer_mode mode)
+{
+ return schedule_hrtimeout_range_clock(expires, delta, mode,
+ CLOCK_MONOTONIC);
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
+
+/**
+ * schedule_hrtimeout - sleep until timeout
+ * @expires: timeout value (ktime_t)
+ * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ *
+ * Make the current task sleep until the given expiry time has
+ * elapsed. The routine will return immediately unless
+ * the current task state has been set (see set_current_state()).
+ *
+ * You can set the task state as follows -
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
+ * pass before the routine returns.
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task.
+ *
+ * The current task state is guaranteed to be TASK_RUNNING when this
+ * routine returns.
+ *
+ * Returns 0 when the timer has expired otherwise -EINTR
+ */
+int __sched schedule_hrtimeout(ktime_t *expires,
+ const enum hrtimer_mode mode)
+{
+ return schedule_hrtimeout_range(expires, 0, mode);
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout);