summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorWolfgang Denk <wd@pollux.denx.de>2005-08-17 12:55:25 +0200
committerWolfgang Denk <wd@pollux.denx.de>2005-08-17 12:55:25 +0200
commit932394ac43e2e778e664eeb6e456fecd0fae6e59 (patch)
tree170e594a6818d35081c9184f5b7dc06eaf0497af
parent024447b186cca55c2d803ab96b4c8f8674363b86 (diff)
Rewrite of NAND code based on what is in 2.6.12 Linux kernel
Patch by Ladislav Michl, 29 Jun 2005
-rw-r--r--CHANGELOG7
-rw-r--r--common/cmd_nand.c2039
-rw-r--r--drivers/nand/Makefile17
-rw-r--r--drivers/nand/diskonchip.c1782
-rw-r--r--drivers/nand/nand.c71
-rw-r--r--drivers/nand/nand_base.c2630
-rw-r--r--drivers/nand/nand_bbt.c1056
-rw-r--r--drivers/nand/nand_ecc.c244
-rw-r--r--drivers/nand/nand_ids.c127
-rw-r--r--fs/jffs2/jffs2_nand_1pass.c1045
-rw-r--r--fs/jffs2/jffs2_nand_private.h133
-rw-r--r--include/linux/mtd/compat.h44
-rw-r--r--include/linux/mtd/mtd-abi.h99
-rw-r--r--include/linux/mtd/mtd.h214
-rw-r--r--include/linux/mtd/nand.h503
-rw-r--r--include/linux/mtd/nand_ecc.h30
-rw-r--r--include/linux/mtd/nand_ids.h1
-rw-r--r--include/nand.h56
18 files changed, 8220 insertions, 1878 deletions
diff --git a/CHANGELOG b/CHANGELOG
index cd2697abb7..5e7016137a 100644
--- a/CHANGELOG
+++ b/CHANGELOG
@@ -1,4 +1,11 @@
======================================================================
+Changes for U-Boot 1.1.4:
+======================================================================
+
+* Rewrite of NAND code based on what is in 2.6.12 Linux kernel
+ Patch by Ladislav Michl, 29 Jun 2005
+
+======================================================================
Changes for U-Boot 1.1.3:
======================================================================
diff --git a/common/cmd_nand.c b/common/cmd_nand.c
index 449991785c..ae4c68ac1f 100644
--- a/common/cmd_nand.c
+++ b/common/cmd_nand.c
@@ -1,18 +1,15 @@
/*
- * Driver for NAND support, Rick Bronson
- * borrowed heavily from:
- * (c) 1999 Machine Vision Holdings, Inc.
- * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
- *
- * Added 16-bit nand support
- * (C) 2004 Texas Instruments
+ * Rick Bronson and Pantelis Antoniou
*/
#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
#include <command.h>
-#include <malloc.h>
-#include <asm/io.h>
#include <watchdog.h>
+#include <malloc.h>
+#include <asm/byteorder.h>
#ifdef CONFIG_SHOW_BOOT_PROGRESS
# include <status_led.h>
@@ -21,289 +18,311 @@
# define SHOW_BOOT_PROGRESS(arg)
#endif
-#if (CONFIG_COMMANDS & CFG_CMD_NAND)
-
-#include <linux/mtd/nand.h>
-#include <linux/mtd/nand_ids.h>
#include <jffs2/jffs2.h>
+#include <nand.h>
-#ifdef CONFIG_OMAP1510
-void archflashwp(void *archdata, int wp);
-#endif
+extern nand_info_t nand_info[]; /* info for NAND chips */
-#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1)))
+static int nand_dump_oob(nand_info_t *nand, ulong off)
+{
+ return 0;
+}
-/*
- * Definition of the out of band configuration structure
- */
-struct nand_oob_config {
- int ecc_pos[6]; /* position of ECC bytes inside oob */
- int badblock_pos; /* position of bad block flag inside oob -1 = inactive */
- int eccvalid_pos; /* position of ECC valid flag inside oob -1 = inactive */
-} oob_config = { {0}, 0, 0};
-
-#undef NAND_DEBUG
-#undef PSYCHO_DEBUG
-
-/* ****************** WARNING *********************
- * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
- * erase (or at least attempt to erase) blocks that are marked
- * bad. This can be very handy if you are _sure_ that the block
- * is OK, say because you marked a good block bad to test bad
- * block handling and you are done testing, or if you have
- * accidentally marked blocks bad.
- *
- * Erasing factory marked bad blocks is a _bad_ idea. If the
- * erase succeeds there is no reliable way to find them again,
- * and attempting to program or erase bad blocks can affect
- * the data in _other_ (good) blocks.
- */
-#define ALLOW_ERASE_BAD_DEBUG 0
+static int nand_dump(nand_info_t *nand, ulong off)
+{
+ int i;
+ u_char *buf, *p;
+
+ buf = malloc(nand->oobblock + nand->oobsize);
+ if (!buf) {
+ puts("No memory for page buffer\n");
+ return 1;
+ }
+ off &= ~(nand->oobblock - 1);
+ i = nand_read_raw(nand, buf, off, nand->oobblock, nand->oobsize);
+ if (i < 0) {
+ printf("Error (%d) reading page %08x\n", i, off);
+ free(buf);
+ return 1;
+ }
+ printf("Page %08x dump:\n", off);
+ i = nand->oobblock >> 4; p = buf;
+ while (i--) {
+ printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x"
+ " %02x %02x %02x %02x %02x %02x %02x %02x\n",
+ p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
+ p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
+ p += 16;
+ }
+ puts("OOB:\n");
+ i = nand->oobsize >> 3;
+ while (i--) {
+ printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x\n",
+ p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
+ p += 8;
+ }
+ free(buf);
-#define CONFIG_MTD_NAND_ECC /* enable ECC */
-#define CONFIG_MTD_NAND_ECC_JFFS2
+ return 0;
+}
-/* bits for nand_rw() `cmd'; or together as needed */
-#define NANDRW_READ 0x01
-#define NANDRW_WRITE 0x00
-#define NANDRW_JFFS2 0x02
-#define NANDRW_JFFS2_SKIP 0x04
+/* ------------------------------------------------------------------------- */
-/*
- * Function Prototypes
- */
-static void nand_print(struct nand_chip *nand);
-int nand_rw (struct nand_chip* nand, int cmd,
- size_t start, size_t len,
- size_t * retlen, u_char * buf);
-int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean);
-static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
- size_t * retlen, u_char *buf, u_char *ecc_code);
-static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
- size_t * retlen, const u_char * buf, u_char * ecc_code);
-static void nand_print_bad(struct nand_chip *nand);
-static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
- size_t * retlen, u_char * buf);
-static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
- size_t * retlen, const u_char * buf);
-static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
-#ifdef CONFIG_MTD_NAND_ECC
-static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
-static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
+static void
+arg_off_size(int argc, char *argv[], ulong *off, ulong *size, ulong totsize)
+{
+ *off = 0;
+ *size = 0;
+
+#if defined(CONFIG_JFFS2_NAND) && defined(CFG_JFFS_CUSTOM_PART)
+ if (argc >= 1 && strcmp(argv[0], "partition") == 0) {
+ int part_num;
+ struct part_info *part;
+ const char *partstr;
+
+ if (argc >= 2)
+ partstr = argv[1];
+ else
+ partstr = getenv("partition");
+
+ if (partstr)
+ part_num = (int)simple_strtoul(partstr, NULL, 10);
+ else
+ part_num = 0;
+
+ part = jffs2_part_info(part_num);
+ if (part == NULL) {
+ printf("\nInvalid partition %d\n", part_num);
+ return;
+ }
+ *size = part->size;
+ *off = (ulong)part->offset;
+ } else
#endif
+ {
+ if (argc >= 1)
+ *off = (ulong)simple_strtoul(argv[0], NULL, 16);
+ else
+ *off = 0;
-struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
+ if (argc >= 2)
+ *size = (ulong)simple_strtoul(argv[1], NULL, 16);
+ else
+ *size = totsize - *off;
-/* Current NAND Device */
-static int curr_device = -1;
+ }
-/* ------------------------------------------------------------------------- */
+}
-int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+int do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
- int rcode = 0;
+ int i, dev, ret;
+ ulong addr, off, size;
+ char *cmd, *s;
+ nand_info_t *nand;
- switch (argc) {
- case 0:
- case 1:
- printf ("Usage:\n%s\n", cmdtp->usage);
- return 1;
- case 2:
- if (strcmp(argv[1],"info") == 0) {
- int i;
+ /* at least two arguments please */
+ if (argc < 2)
+ goto usage;
- putc ('\n');
+ cmd = argv[1];
- for (i=0; i<CFG_MAX_NAND_DEVICE; ++i) {
- if(nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN)
- continue; /* list only known devices */
- printf ("Device %d: ", i);
- nand_print(&nand_dev_desc[i]);
- }
- return 0;
+ if (strcmp(cmd, "info") == 0) {
- } else if (strcmp(argv[1],"device") == 0) {
- if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
- puts ("\nno devices available\n");
- return 1;
+ putc('\n');
+ for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) {
+ if (nand_info[i].name)
+ printf("Device %d: %s\n", i, nand_info[i].name);
}
- printf ("\nDevice %d: ", curr_device);
- nand_print(&nand_dev_desc[curr_device]);
return 0;
+ }
- } else if (strcmp(argv[1],"bad") == 0) {
- if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
- puts ("\nno devices available\n");
+ if (strcmp(cmd, "device") == 0) {
+
+ if (argc < 3) {
+ if ((nand_curr_device < 0) ||
+ (nand_curr_device >= CFG_MAX_NAND_DEVICE))
+ puts("\nno devices available\n");
+ else
+ printf("\nDevice %d: %s\n", nand_curr_device,
+ nand_info[nand_curr_device].name);
+ return 0;
+ }
+ dev = (int)simple_strtoul(argv[2], NULL, 10);
+ if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
+ puts("No such device\n");
return 1;
}
- printf ("\nDevice %d bad blocks:\n", curr_device);
- nand_print_bad(&nand_dev_desc[curr_device]);
+ printf("Device %d: %s", dev, nand_info[dev].name);
+ puts("... is now current device\n");
+ nand_curr_device = dev;
return 0;
+ }
+
+ if (strcmp(cmd, "bad") != 0 && strcmp(cmd, "erase") != 0 &&
+ strncmp(cmd, "dump", 4) != 0 &&
+ strncmp(cmd, "read", 4) != 0 && strncmp(cmd, "write", 5) != 0
+#ifdef CONFIG_MTD_NAND_UNSAFE
+ && strcmp(cmd, "scrub") != 0 && strcmp(cmd, "biterr") != 0
+ && strcmp(cmd, "markbad") != 0
+#endif
+ )
+ goto usage;
+ /* the following commands operate on the current device */
+ if (nand_curr_device < 0 || nand_curr_device >= CFG_MAX_NAND_DEVICE ||
+ !nand_info[nand_curr_device].name) {
+ puts("\nno devices available\n");
+ return 1;
}
- printf ("Usage:\n%s\n", cmdtp->usage);
- return 1;
- case 3:
- if (strcmp(argv[1],"device") == 0) {
- int dev = (int)simple_strtoul(argv[2], NULL, 10);
+ nand = &nand_info[nand_curr_device];
- printf ("\nDevice %d: ", dev);
- if (dev >= CFG_MAX_NAND_DEVICE) {
- puts ("unknown device\n");
- return 1;
- }
- nand_print(&nand_dev_desc[dev]);
- /*nand_print (dev);*/
+ if (strcmp(cmd, "bad") == 0) {
+ printf("\nDevice %d bad blocks:\n", nand_curr_device);
+ for (off = 0; off < nand->size; off += nand->erasesize)
+ if (nand_block_isbad(nand, off))
+ printf(" %08x\n", off);
+ return 0;
+ }
+
+ if (strcmp(cmd, "erase") == 0
+#ifdef CONFIG_MTD_NAND_UNSAFE
+ || strcmp(cmd, "scrub") == 0
+#endif
+ ) {
- if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) {
+#ifdef CONFIG_MTD_NAND_UNSAFE
+ i = strcmp(cmd, "scrub") == 0; /* 1 scrub, 0 = erase */
+#endif
+
+ arg_off_size(argc - 2, argv + 2, &off, &size, nand->size);
+ if (off == 0 && size == 0)
return 1;
- }
- curr_device = dev;
+ printf("\nNAND %s: device %d offset 0x%x, size 0x%x ",
+#ifdef CONFIG_MTD_NAND_UNSAFE
+ i ? "scrub" :
+#endif
+ "erase",
+ nand_curr_device, off, size);
- puts ("... is now current device\n");
+#ifdef CONFIG_MTD_NAND_UNSAFE
+ if (i)
+ ret = nand_scrub(nand, off, size);
+ else
+#endif
+ ret = nand_erase(nand, off, size);
- return 0;
+ printf("%s\n", ret ? "ERROR" : "OK");
+
+ return ret == 0 ? 0 : 1;
}
- else if (strcmp(argv[1],"erase") == 0 && strcmp(argv[2], "clean") == 0) {
- struct nand_chip* nand = &nand_dev_desc[curr_device];
- ulong off = 0;
- ulong size = nand->totlen;
- int ret;
- printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
- curr_device, off, size);
+ if (strncmp(cmd, "dump", 4) == 0) {
+ if (argc < 3)
+ goto usage;
- ret = nand_erase (nand, off, size, 1);
+ s = strchr(cmd, '.');
+ off = (int)simple_strtoul(argv[2], NULL, 16);
- printf("%s\n", ret ? "ERROR" : "OK");
+ if (s != NULL && strcmp(s, ".oob") == 0)
+ ret = nand_dump_oob(nand, off);
+ else
+ ret = nand_dump(nand, off);
+
+ return ret == 0 ? 1 : 0;
- return ret;
}
- printf ("Usage:\n%s\n", cmdtp->usage);
- return 1;
- default:
- /* at least 4 args */
-
- if (strncmp(argv[1], "read", 4) == 0 ||
- strncmp(argv[1], "write", 5) == 0) {
- ulong addr = simple_strtoul(argv[2], NULL, 16);
- ulong off = simple_strtoul(argv[3], NULL, 16);
- ulong size = simple_strtoul(argv[4], NULL, 16);
- int cmd = (strncmp(argv[1], "read", 4) == 0) ?
- NANDRW_READ : NANDRW_WRITE;
- int ret, total;
- char* cmdtail = strchr(argv[1], '.');
-
- if (cmdtail && !strncmp(cmdtail, ".oob", 2)) {
- /* read out-of-band data */
- if (cmd & NANDRW_READ) {
- ret = nand_read_oob(nand_dev_desc + curr_device,
- off, size, &total,
- (u_char*)addr);
- }
- else {
- ret = nand_write_oob(nand_dev_desc + curr_device,
- off, size, &total,
- (u_char*)addr);
- }
- return ret;
- }
- else if (cmdtail && !strncmp(cmdtail, ".jffs2", 2))
- cmd |= NANDRW_JFFS2; /* skip bad blocks */
- else if (cmdtail && !strncmp(cmdtail, ".jffs2s", 2)) {
- cmd |= NANDRW_JFFS2; /* skip bad blocks (on read too) */
- if (cmd & NANDRW_READ)
- cmd |= NANDRW_JFFS2_SKIP; /* skip bad blocks (on read too) */
- }
-#ifdef SXNI855T
- /* need ".e" same as ".j" for compatibility with older units */
- else if (cmdtail && !strcmp(cmdtail, ".e"))
- cmd |= NANDRW_JFFS2; /* skip bad blocks */
-#endif
-#ifdef CFG_NAND_SKIP_BAD_DOT_I
- /* need ".i" same as ".jffs2s" for compatibility with older units (esd) */
- /* ".i" for image -> read skips bad block (no 0xff) */
- else if (cmdtail && !strcmp(cmdtail, ".i"))
- cmd |= NANDRW_JFFS2; /* skip bad blocks (on read too) */
- if (cmd & NANDRW_READ)
- cmd |= NANDRW_JFFS2_SKIP; /* skip bad blocks (on read too) */
-#endif /* CFG_NAND_SKIP_BAD_DOT_I */
- else if (cmdtail) {
- printf ("Usage:\n%s\n", cmdtp->usage);
+ /* read write */
+ if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) {
+ if (argc < 4)
+ goto usage;
+/*
+ s = strchr(cmd, '.');
+ clean = CLEAN_NONE;
+ if (s != NULL) {
+ if (strcmp(s, ".jffs2") == 0 || strcmp(s, ".e") == 0
+ || strcmp(s, ".i"))
+ clean = CLEAN_JFFS2;
+ }
+*/
+ addr = (ulong)simple_strtoul(argv[2], NULL, 16);
+
+ arg_off_size(argc - 3, argv + 3, &off, &size, nand->size);
+ if (off == 0 && size == 0)
return 1;
- }
- printf ("\nNAND %s: device %d offset %ld, size %ld ... ",
- (cmd & NANDRW_READ) ? "read" : "write",
- curr_device, off, size);
+ i = strncmp(cmd, "read", 4) == 0; /* 1 = read, 0 = write */
+ printf("\nNAND %s: device %d offset %u, size %u ... ",
+ i ? "read" : "write", nand_curr_device, off, size);
- ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size,
- &total, (u_char*)addr);
+ if (i)
+ ret = nand_read(nand, off, &size, (u_char *)addr);
+ else
+ ret = nand_write(nand, off, &size, (u_char *)addr);
- printf (" %d bytes %s: %s\n", total,
- (cmd & NANDRW_READ) ? "read" : "written",
- ret ? "ERROR" : "OK");
+ printf(" %d bytes %s: %s\n", size,
+ i ? "read" : "written", ret ? "ERROR" : "OK");
- return ret;
- } else if (strcmp(argv[1],"erase") == 0 &&
- (argc == 4 || strcmp("clean", argv[2]) == 0)) {
- int clean = argc == 5;
- ulong off = simple_strtoul(argv[2 + clean], NULL, 16);
- ulong size = simple_strtoul(argv[3 + clean], NULL, 16);
- int ret;
+ return ret == 0 ? 0 : 1;
+ }
+#ifdef CONFIG_MTD_NAND_UNSAFE
+ if (strcmp(cmd, "markbad") == 0 || strcmp(cmd, "biterr") == 0) {
+ if (argc < 3)
+ goto usage;
- printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
- curr_device, off, size);
+ i = strcmp(cmd, "biterr") == 0;
- ret = nand_erase (nand_dev_desc + curr_device, off, size, clean);
+ off = (int)simple_strtoul(argv[2], NULL, 16);
- printf("%s\n", ret ? "ERROR" : "OK");
+ if (i)
+ ret = nand_make_bit_error(nand, off);
+ else
+ ret = nand_mark_bad(nand, off);
- return ret;
- } else {
- printf ("Usage:\n%s\n", cmdtp->usage);
- rcode = 1;
+ return ret == 0 ? 0 : 1;
}
+#endif
- return rcode;
- }
+usage:
+ printf("Usage:\n%s\n", cmdtp->usage);
+ return 1;
}
-U_BOOT_CMD(
- nand, 5, 1, do_nand,
+U_BOOT_CMD(nand, 5, 1, do_nand,
"nand - NAND sub-system\n",
- "info - show available NAND devices\n"
- "nand device [dev] - show or set current device\n"
- "nand read[.jffs2[s]] addr off size\n"
- "nand write[.jffs2] addr off size - read/write `size' bytes starting\n"
+ "info - show available NAND devices\n"
+ "nand device [dev] - show or set current device\n"
+ "nand read[.jffs2] - addr off size\n"
+ "nand write[.jffs2] - addr off size - read/write `size' bytes starting\n"
" at offset `off' to/from memory address `addr'\n"
"nand erase [clean] [off size] - erase `size' bytes from\n"
" offset `off' (entire device if not specified)\n"
"nand bad - show bad blocks\n"
- "nand read.oob addr off size - read out-of-band data\n"
- "nand write.oob addr off size - read out-of-band data\n"
-);
+ "nand dump[.oob] off - dump page\n"
+ "nand scrub - really clean NAND erasing bad blocks (UNSAFE)\n"
+ "nand markbad off - mark bad block at offset (UNSAFE)\n"
+ "nand biterr off - make a bit error at offset (UNSAFE)\n");
-int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+int do_nandboot(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
char *boot_device = NULL;
char *ep;
int dev;
- ulong cnt;
- ulong addr;
- ulong offset = 0;
+ int r;
+ ulong addr, cnt, offset = 0;
image_header_t *hdr;
- int rcode = 0;
+ nand_info_t *nand;
+
switch (argc) {
case 1:
addr = CFG_LOAD_ADDR;
- boot_device = getenv ("bootdevice");
+ boot_device = getenv("bootdevice");
break;
case 2:
addr = simple_strtoul(argv[1], NULL, 16);
- boot_device = getenv ("bootdevice");
+ boot_device = getenv("bootdevice");
break;
case 3:
addr = simple_strtoul(argv[1], NULL, 16);
@@ -315,55 +334,53 @@ int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
offset = simple_strtoul(argv[3], NULL, 16);
break;
default:
- printf ("Usage:\n%s\n", cmdtp->usage);
- SHOW_BOOT_PROGRESS (-1);
+ printf("Usage:\n%s\n", cmdtp->usage);
+ SHOW_BOOT_PROGRESS(-1);
return 1;
}
if (!boot_device) {
- puts ("\n** No boot device **\n");
- SHOW_BOOT_PROGRESS (-1);
+ puts("\n** No boot device **\n");
+ SHOW_BOOT_PROGRESS(-1);
return 1;
}
dev = simple_strtoul(boot_device, &ep, 16);
- if ((dev >= CFG_MAX_NAND_DEVICE) ||
- (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) {
- printf ("\n** Device %d not available\n", dev);
- SHOW_BOOT_PROGRESS (-1);
+ if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
+ printf("\n** Device %d not available\n", dev);
+ SHOW_BOOT_PROGRESS(-1);
return 1;
}
- printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n",
- dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR,
- offset);
+ nand = &nand_info[dev];
+ printf("\nLoading from device %d: %s (offset 0x%lx)\n",
+ dev, nand->name, offset);
- if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset,
- SECTORSIZE, NULL, (u_char *)addr)) {
- printf ("** Read error on %d\n", dev);
- SHOW_BOOT_PROGRESS (-1);
+ cnt = nand->oobblock;
+ r = nand_read(nand, offset, &cnt, (u_char *) addr);
+ if (r) {
+ printf("** Read error on %d\n", dev);
+ SHOW_BOOT_PROGRESS(-1);
return 1;
}
- hdr = (image_header_t *)addr;
-
- if (ntohl(hdr->ih_magic) == IH_MAGIC) {
+ hdr = (image_header_t *) addr;
- print_image_hdr (hdr);
-
- cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t));
- cnt -= SECTORSIZE;
- } else {
- printf ("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
- SHOW_BOOT_PROGRESS (-1);
+ if (ntohl(hdr->ih_magic) != IH_MAGIC) {
+ printf("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
+ SHOW_BOOT_PROGRESS(-1);
return 1;
}
- if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset + SECTORSIZE, cnt,
- NULL, (u_char *)(addr+SECTORSIZE))) {
- printf ("** Read error on %d\n", dev);
- SHOW_BOOT_PROGRESS (-1);
+ print_image_hdr(hdr);
+
+ cnt = (ntohl(hdr->ih_size) + sizeof (image_header_t));
+
+ r = nand_read(nand, offset, &cnt, (u_char *) addr);
+ if (r) {
+ printf("** Read error on %d\n", dev);
+ SHOW_BOOT_PROGRESS(-1);
return 1;
}
@@ -372,1526 +389,24 @@ int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
load_addr = addr;
/* Check if we should attempt an auto-start */
- if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
+ if (((ep = getenv("autostart")) != NULL) && (strcmp(ep, "yes") == 0)) {
char *local_args[2];
- extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
+ extern int do_bootm(cmd_tbl_t *, int, int, char *[]);
local_args[0] = argv[0];
local_args[1] = NULL;
- printf ("Automatic boot of image at addr 0x%08lx ...\n", addr);
-
- do_bootm (cmdtp, 0, 1, local_args);
- rcode = 1;
- }
- return rcode;
-}
-
-U_BOOT_CMD(
- nboot, 4, 1, do_nandboot,
- "nboot - boot from NAND device\n",
- "loadAddr dev\n"
-);
+ printf("Automatic boot of image at addr 0x%08lx ...\n", addr);
-/* returns 0 if block containing pos is OK:
- * valid erase block and
- * not marked bad, or no bad mark position is specified
- * returns 1 if marked bad or otherwise invalid
- */
-int check_block (struct nand_chip *nand, unsigned long pos)
-{
- int retlen;
- uint8_t oob_data;
- uint16_t oob_data16[6];
- int page0 = pos & (-nand->erasesize);
- int page1 = page0 + nand->oobblock;
- int badpos = oob_config.badblock_pos;
-
- if (pos >= nand->totlen)
+ do_bootm(cmdtp, 0, 1, local_args);
return 1;
-
- if (badpos < 0)
- return 0; /* no way to check, assume OK */
-
- if (nand->bus16) {
- if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
- || (oob_data16[2] & 0xff00) != 0xff00)
- return 1;
- if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
- || (oob_data16[2] & 0xff00) != 0xff00)
- return 1;
- } else {
- /* Note - bad block marker can be on first or second page */
- if (nand_read_oob(nand, page0 + badpos, 1, &retlen, &oob_data)
- || oob_data != 0xff
- || nand_read_oob (nand, page1 + badpos, 1, &retlen, &oob_data)
- || oob_data != 0xff)
- return 1;
- }
-
- return 0;
-}
-
-/* print bad blocks in NAND flash */
-static void nand_print_bad(struct nand_chip* nand)
-{
- unsigned long pos;
-
- for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
- if (check_block(nand, pos))
- printf(" 0x%8.8lx\n", pos);
- }
- puts("\n");
-}
-
-/* cmd: 0: NANDRW_WRITE write, fail on bad block
- * 1: NANDRW_READ read, fail on bad block
- * 2: NANDRW_WRITE | NANDRW_JFFS2 write, skip bad blocks
- * 3: NANDRW_READ | NANDRW_JFFS2 read, data all 0xff for bad blocks
- * 7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
- */
-int nand_rw (struct nand_chip* nand, int cmd,
- size_t start, size_t len,
- size_t * retlen, u_char * buf)
-{
- int ret = 0, n, total = 0;
- char eccbuf[6];
- /* eblk (once set) is the start of the erase block containing the
- * data being processed.
- */
- unsigned long eblk = ~0; /* force mismatch on first pass */
- unsigned long erasesize = nand->erasesize;
-
- while (len) {
- if ((start & (-erasesize)) != eblk) {
- /* have crossed into new erase block, deal with
- * it if it is sure marked bad.
- */
- eblk = start & (-erasesize); /* start of block */
- if (check_block(nand, eblk)) {
- if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
- while (len > 0 &&
- start - eblk < erasesize) {
- *(buf++) = 0xff;
- ++start;
- ++total;
- --len;
- }
- continue;
- } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
- start += erasesize;
- continue;
- } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
- /* skip bad block */
- start += erasesize;
- continue;
- } else {
- ret = 1;
- break;
- }
- }
- }
- /* The ECC will not be calculated correctly if
- less than 512 is written or read */
- /* Is request at least 512 bytes AND it starts on a proper boundry */
- if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
- printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");
-
- if (cmd & NANDRW_READ) {
- ret = nand_read_ecc(nand, start,
- min(len, eblk + erasesize - start),
- &n, (u_char*)buf, eccbuf);
- } else {
- ret = nand_write_ecc(nand, start,
- min(len, eblk + erasesize - start),
- &n, (u_char*)buf, eccbuf);
- }
-
- if (ret)
- break;
-
- start += n;
- buf += n;
- total += n;
- len -= n;
- }
- if (retlen)
- *retlen = total;
-
- return ret;
-}
-
-static void nand_print(struct nand_chip *nand)
-{
- if (nand->numchips > 1) {
- printf("%s at 0x%lx,\n"
- "\t %d chips %s, size %d MB, \n"
- "\t total size %ld MB, sector size %ld kB\n",
- nand->name, nand->IO_ADDR, nand->numchips,
- nand->chips_name, 1 << (nand->chipshift - 20),
- nand->totlen >> 20, nand->erasesize >> 10);
- }
- else {
- printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
- print_size(nand->totlen, ", ");
- print_size(nand->erasesize, " sector)\n");
- }
-}
-
-/* ------------------------------------------------------------------------- */
-
-static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
-{
- /* This is inline, to optimise the common case, where it's ready instantly */
- int ret = 0;
-
-#ifdef NAND_NO_RB /* in config file, shorter delays currently wrap accesses */
- if(ale_wait)
- NAND_WAIT_READY(nand); /* do the worst case 25us wait */
- else
- udelay(10);
-#else /* has functional r/b signal */
- NAND_WAIT_READY(nand);
-#endif
- return ret;
-}
-
-/* NanD_Command: Send a flash command to the flash chip */
-
-static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
-{
- unsigned long nandptr = nand->IO_ADDR;
-
- /* Assert the CLE (Command Latch Enable) line to the flash chip */
- NAND_CTL_SETCLE(nandptr);
-
- /* Send the command */
- WRITE_NAND_COMMAND(command, nandptr);
-
- /* Lower the CLE line */
- NAND_CTL_CLRCLE(nandptr);
-
-#ifdef NAND_NO_RB
- if(command == NAND_CMD_RESET){
- u_char ret_val;
- NanD_Command(nand, NAND_CMD_STATUS);
- do {
- ret_val = READ_NAND(nandptr);/* wait till ready */
- } while((ret_val & 0x40) != 0x40);
- }
-#endif
- return NanD_WaitReady(nand, 0);
-}
-
-/* NanD_Address: Set the current address for the flash chip */
-
-static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
-{
- unsigned long nandptr;
- int i;
-
- nandptr = nand->IO_ADDR;
-
- /* Assert the ALE (Address Latch Enable) line to the flash chip */
- NAND_CTL_SETALE(nandptr);
-
- /* Send the address */
- /* Devices with 256-byte page are addressed as:
- * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
- * there is no device on the market with page256
- * and more than 24 bits.
- * Devices with 512-byte page are addressed as:
- * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
- * 25-31 is sent only if the chip support it.
- * bit 8 changes the read command to be sent
- * (NAND_CMD_READ0 or NAND_CMD_READ1).
- */
-
- if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
- WRITE_NAND_ADDRESS(ofs, nandptr);
-
- ofs = ofs >> nand->page_shift;
-
- if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
- for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
- WRITE_NAND_ADDRESS(ofs, nandptr);
- }
- }
-
- /* Lower the ALE line */
- NAND_CTL_CLRALE(nandptr);
-
- /* Wait for the chip to respond */
- return NanD_WaitReady(nand, 1);
-}
-
-/* NanD_SelectChip: Select a given flash chip within the current floor */
-
-static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
-{
- /* Wait for it to be ready */
- return NanD_WaitReady(nand, 0);
-}
-
-/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
-
-static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
-{
- int mfr, id, i;
-
- NAND_ENABLE_CE(nand); /* set pin low */
- /* Reset the chip */
- if (NanD_Command(nand, NAND_CMD_RESET)) {
-#ifdef NAND_DEBUG
- printf("NanD_Command (reset) for %d,%d returned true\n",
- floor, chip);
-#endif
- NAND_DISABLE_CE(nand); /* set pin high */
- return 0;
- }
-
- /* Read the NAND chip ID: 1. Send ReadID command */
- if (NanD_Command(nand, NAND_CMD_READID)) {
-#ifdef NAND_DEBUG
- printf("NanD_Command (ReadID) for %d,%d returned true\n",
- floor, chip);
-#endif
- NAND_DISABLE_CE(nand); /* set pin high */
- return 0;
- }
-
- /* Read the NAND chip ID: 2. Send address byte zero */
- NanD_Address(nand, ADDR_COLUMN, 0);
-
- /* Read the manufacturer and device id codes from the device */
-
- mfr = READ_NAND(nand->IO_ADDR);
-
- id = READ_NAND(nand->IO_ADDR);
-
- NAND_DISABLE_CE(nand); /* set pin high */
-
-#ifdef NAND_DEBUG
- printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
-#endif
- if (mfr == 0xff || mfr == 0) {
- /* No response - return failure */
- return 0;
- }
-
- /* Check it's the same as the first chip we identified.
- * M-Systems say that any given nand_chip device should only
- * contain _one_ type of flash part, although that's not a
- * hardware restriction. */
- if (nand->mfr) {
- if (nand->mfr == mfr && nand->id == id) {
- return 1; /* This is another the same the first */
- } else {
- printf("Flash chip at floor %d, chip %d is different:\n",
- floor, chip);
- }
- }
-
- /* Print and store the manufacturer and ID codes. */
- for (i = 0; nand_flash_ids[i].name != NULL; i++) {
- if (mfr == nand_flash_ids[i].manufacture_id &&
- id == nand_flash_ids[i].model_id) {
-#ifdef NAND_DEBUG
- printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
- "Chip ID: 0x%2.2X (%s)\n", mfr, id,
- nand_flash_ids[i].name);
-#endif
- if (!nand->mfr) {
- nand->mfr = mfr;
- nand->id = id;
- nand->chipshift =
- nand_flash_ids[i].chipshift;
- nand->page256 = nand_flash_ids[i].page256;
- nand->eccsize = 256;
- if (nand->page256) {
- nand->oobblock = 256;
- nand->oobsize = 8;
- nand->page_shift = 8;
- } else {
- nand->oobblock = 512;
- nand->oobsize = 16;
- nand->page_shift = 9;
- }
- nand->pageadrlen = nand_flash_ids[i].pageadrlen;
- nand->erasesize = nand_flash_ids[i].erasesize;
- nand->chips_name = nand_flash_ids[i].name;
- nand->bus16 = nand_flash_ids[i].bus16;
- return 1;
- }
- return 0;
- }
- }
-
-
-#ifdef NAND_DEBUG
- /* We haven't fully identified the chip. Print as much as we know. */
- printf("Unknown flash chip found: %2.2X %2.2X\n",
- id, mfr);
-#endif
-
- return 0;
-}
-
-/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
-
-static void NanD_ScanChips(struct nand_chip *nand)
-{
- int floor, chip;
- int numchips[NAND_MAX_FLOORS];
- int maxchips = NAND_MAX_CHIPS;
- int ret = 1;
-
- nand->numchips = 0;
- nand->mfr = 0;
- nand->id = 0;
-
-
- /* For each floor, find the number of valid chips it contains */
- for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
- ret = 1;
- numchips[floor] = 0;
- for (chip = 0; chip < maxchips && ret != 0; chip++) {
-
- ret = NanD_IdentChip(nand, floor, chip);
- if (ret) {
- numchips[floor]++;
- nand->numchips++;
- }
- }
- }
-
- /* If there are none at all that we recognise, bail */
- if (!nand->numchips) {
-#ifdef NAND_DEBUG
- puts ("No NAND flash chips recognised.\n");
-#endif
- return;
- }
-
- /* Allocate an array to hold the information for each chip */
- nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
- if (!nand->chips) {
- puts ("No memory for allocating chip info structures\n");
- return;
- }
-
- ret = 0;
-
- /* Fill out the chip array with {floor, chipno} for each
- * detected chip in the device. */
- for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
- for (chip = 0; chip < numchips[floor]; chip++) {
- nand->chips[ret].floor = floor;
- nand->chips[ret].chip = chip;
- nand->chips[ret].curadr = 0;
- nand->chips[ret].curmode = 0x50;
- ret++;
- }
- }
-
- /* Calculate and print the total size of the device */
- nand->totlen = nand->numchips * (1 << nand->chipshift);
-
-#ifdef NAND_DEBUG
- printf("%d flash chips found. Total nand_chip size: %ld MB\n",
- nand->numchips, nand->totlen >> 20);
-#endif
-}
-
-/* we need to be fast here, 1 us per read translates to 1 second per meg */
-static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
-{
- unsigned long nandptr = nand->IO_ADDR;
-
- NanD_Command (nand, NAND_CMD_READ0);
-
- if (nand->bus16) {
- u16 val;
-
- while (cntr >= 16) {
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- cntr -= 16;
- }
-
- while (cntr > 0) {
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- cntr -= 2;
- }
- } else {
- while (cntr >= 16) {
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- cntr -= 16;
- }
-
- while (cntr > 0) {
- *data_buf++ = READ_NAND (nandptr);
- cntr--;
- }
- }
-}
-
-/*
- * NAND read with ECC
- */
-static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
- size_t * retlen, u_char *buf, u_char *ecc_code)
-{
- int col, page;
- int ecc_status = 0;
-#ifdef CONFIG_MTD_NAND_ECC
- int j;
- int ecc_failed = 0;
- u_char *data_poi;
- u_char ecc_calc[6];
-#endif
-
- /* Do not allow reads past end of device */
- if ((start + len) > nand->totlen) {
- printf ("%s: Attempt read beyond end of device %x %x %x\n",
- __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
- *retlen = 0;
- return -1;
}
-
- /* First we calculate the starting page */
- /*page = shr(start, nand->page_shift);*/
- page = start >> nand->page_shift;
-
- /* Get raw starting column */
- col = start & (nand->oobblock - 1);
-
- /* Initialize return value */
- *retlen = 0;
-
- /* Select the NAND device */
- NAND_ENABLE_CE(nand); /* set pin low */
-
- /* Loop until all data read */
- while (*retlen < len) {
-
-#ifdef CONFIG_MTD_NAND_ECC
- /* Do we have this page in cache ? */
- if (nand->cache_page == page)
- goto readdata;
- /* Send the read command */
- NanD_Command(nand, NAND_CMD_READ0);
- if (nand->bus16) {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + (col >> 1));
- } else {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + col);
- }
-
- /* Read in a page + oob data */
- NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);
-
- /* copy data into cache, for read out of cache and if ecc fails */
- if (nand->data_cache) {
- memcpy (nand->data_cache, nand->data_buf,
- nand->oobblock + nand->oobsize);
- }
-
- /* Pick the ECC bytes out of the oob data */
- for (j = 0; j < 6; j++) {
- ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
- }
-
- /* Calculate the ECC and verify it */
- /* If block was not written with ECC, skip ECC */
- if (oob_config.eccvalid_pos != -1 &&
- (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
-
- nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
- switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
- case -1:
- printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
- ecc_failed++;
- break;
- case 1:
- case 2: /* transfer ECC corrected data to cache */
- if (nand->data_cache)
- memcpy (nand->data_cache, nand->data_buf, 256);
- break;
- }
- }
-
- if (oob_config.eccvalid_pos != -1 &&
- nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
-
- nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
- switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
- case -1:
- printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
- ecc_failed++;
- break;
- case 1:
- case 2: /* transfer ECC corrected data to cache */
- if (nand->data_cache)
- memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
- break;
- }
- }
-readdata:
- /* Read the data from ECC data buffer into return buffer */
- data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
- data_poi += col;
- if ((*retlen + (nand->oobblock - col)) >= len) {
- memcpy (buf + *retlen, data_poi, len - *retlen);
- *retlen = len;
- } else {
- memcpy (buf + *retlen, data_poi, nand->oobblock - col);
- *retlen += nand->oobblock - col;
- }
- /* Set cache page address, invalidate, if ecc_failed */
- nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
-
- ecc_status += ecc_failed;
- ecc_failed = 0;
-
-#else
- /* Send the read command */
- NanD_Command(nand, NAND_CMD_READ0);
- if (nand->bus16) {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + (col >> 1));
- } else {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + col);
- }
-
- /* Read the data directly into the return buffer */
- if ((*retlen + (nand->oobblock - col)) >= len) {
- NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
- *retlen = len;
- /* We're done */
- continue;
- } else {
- NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
- *retlen += nand->oobblock - col;
- }
-#endif
- /* For subsequent reads align to page boundary. */
- col = 0;
- /* Increment page address */
- page++;
- }
-
- /* De-select the NAND device */
- NAND_DISABLE_CE(nand); /* set pin high */
-
- /*
- * Return success, if no ECC failures, else -EIO
- * fs driver will take care of that, because
- * retlen == desired len and result == -EIO
- */
- return ecc_status ? -1 : 0;
-}
-
-/*
- * Nand_page_program function is used for write and writev !
- */
-static int nand_write_page (struct nand_chip *nand,
- int page, int col, int last, u_char * ecc_code)
-{
-
- int i;
- unsigned long nandptr = nand->IO_ADDR;
-
-#ifdef CONFIG_MTD_NAND_ECC
-#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
- int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
-#endif
-#endif
- /* pad oob area */
- for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
- nand->data_buf[i] = 0xff;
-
-#ifdef CONFIG_MTD_NAND_ECC
- /* Zero out the ECC array */
- for (i = 0; i < 6; i++)
- ecc_code[i] = 0x00;
-
- /* Read back previous written data, if col > 0 */
- if (col) {
- NanD_Command (nand, NAND_CMD_READ0);
- if (nand->bus16) {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + (col >> 1));
- } else {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + col);
- }
-
- if (nand->bus16) {
- u16 val;
-
- for (i = 0; i < col; i += 2) {
- val = READ_NAND (nandptr);
- nand->data_buf[i] = val & 0xff;
- nand->data_buf[i + 1] = val >> 8;
- }
- } else {
- for (i = 0; i < col; i++)
- nand->data_buf[i] = READ_NAND (nandptr);
- }
- }
-
- /* Calculate and write the ECC if we have enough data */
- if ((col < nand->eccsize) && (last >= nand->eccsize)) {
- nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
- for (i = 0; i < 3; i++) {
- nand->data_buf[(nand->oobblock +
- oob_config.ecc_pos[i])] = ecc_code[i];
- }
- if (oob_config.eccvalid_pos != -1) {
- nand->data_buf[nand->oobblock +
- oob_config.eccvalid_pos] = 0xf0;
- }
- }
-
- /* Calculate and write the second ECC if we have enough data */
- if ((nand->oobblock == 512) && (last == nand->oobblock)) {
- nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
- for (i = 3; i < 6; i++) {
- nand->data_buf[(nand->oobblock +
- oob_config.ecc_pos[i])] = ecc_code[i];
- }
- if (oob_config.eccvalid_pos != -1) {
- nand->data_buf[nand->oobblock +
- oob_config.eccvalid_pos] &= 0x0f;
- }
- }
-#endif
- /* Prepad for partial page programming !!! */
- for (i = 0; i < col; i++)
- nand->data_buf[i] = 0xff;
-
- /* Postpad for partial page programming !!! oob is already padded */
- for (i = last; i < nand->oobblock; i++)
- nand->data_buf[i] = 0xff;
-
- /* Send command to begin auto page programming */
- NanD_Command (nand, NAND_CMD_READ0);
- NanD_Command (nand, NAND_CMD_SEQIN);
- if (nand->bus16) {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + (col >> 1));
- } else {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + col);
- }
-
- /* Write out complete page of data */
- if (nand->bus16) {
- for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
- WRITE_NAND (nand->data_buf[i] +
- (nand->data_buf[i + 1] << 8),
- nand->IO_ADDR);
- }
- } else {
- for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
- WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
- }
-
- /* Send command to actually program the data */
- NanD_Command (nand, NAND_CMD_PAGEPROG);
- NanD_Command (nand, NAND_CMD_STATUS);
-#ifdef NAND_NO_RB
- {
- u_char ret_val;
-
- do {
- ret_val = READ_NAND (nandptr); /* wait till ready */
- } while ((ret_val & 0x40) != 0x40);
- }
-#endif
- /* See if device thinks it succeeded */
- if (READ_NAND (nand->IO_ADDR) & 0x01) {
- printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
- page);
- return -1;
- }
-#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
- /*
- * The NAND device assumes that it is always writing to
- * a cleanly erased page. Hence, it performs its internal
- * write verification only on bits that transitioned from
- * 1 to 0. The device does NOT verify the whole page on a
- * byte by byte basis. It is possible that the page was
- * not completely erased or the page is becoming unusable
- * due to wear. The read with ECC would catch the error
- * later when the ECC page check fails, but we would rather
- * catch it early in the page write stage. Better to write
- * no data than invalid data.
- */
-
- /* Send command to read back the page */
- if (col < nand->eccsize)
- NanD_Command (nand, NAND_CMD_READ0);
- else
- NanD_Command (nand, NAND_CMD_READ1);
- if (nand->bus16) {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + (col >> 1));
- } else {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + col);
- }
-
- /* Loop through and verify the data */
- if (nand->bus16) {
- for (i = col; i < last; i = +2) {
- if ((nand->data_buf[i] +
- (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
- printf ("%s: Failed write verify, page 0x%08x ",
- __FUNCTION__, page);
- return -1;
- }
- }
- } else {
- for (i = col; i < last; i++) {
- if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
- printf ("%s: Failed write verify, page 0x%08x ",
- __FUNCTION__, page);
- return -1;
- }
- }
- }
-
-#ifdef CONFIG_MTD_NAND_ECC
- /*
- * We also want to check that the ECC bytes wrote
- * correctly for the same reasons stated above.
- */
- NanD_Command (nand, NAND_CMD_READOOB);
- if (nand->bus16) {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + (col >> 1));
- } else {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + col);
- }
- if (nand->bus16) {
- for (i = 0; i < nand->oobsize; i += 2) {
- u16 val;
-
- val = READ_NAND (nand->IO_ADDR);
- nand->data_buf[i] = val & 0xff;
- nand->data_buf[i + 1] = val >> 8;
- }
- } else {
- for (i = 0; i < nand->oobsize; i++) {
- nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
- }
- }
- for (i = 0; i < ecc_bytes; i++) {
- if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
- printf ("%s: Failed ECC write "
- "verify, page 0x%08x, "
- "%6i bytes were succesful\n",
- __FUNCTION__, page, i);
- return -1;
- }
- }
-#endif /* CONFIG_MTD_NAND_ECC */
-#endif /* CONFIG_MTD_NAND_VERIFY_WRITE */
return 0;
}
-static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
- size_t * retlen, const u_char * buf, u_char * ecc_code)
-{
- int i, page, col, cnt, ret = 0;
-
- /* Do not allow write past end of device */
- if ((to + len) > nand->totlen) {
- printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
- return -1;
- }
-
- /* Shift to get page */
- page = ((int) to) >> nand->page_shift;
-
- /* Get the starting column */
- col = to & (nand->oobblock - 1);
-
- /* Initialize return length value */
- *retlen = 0;
-
- /* Select the NAND device */
-#ifdef CONFIG_OMAP1510
- archflashwp(0,0);
-#endif
-#ifdef CFG_NAND_WP
- NAND_WP_OFF();
-#endif
-
- NAND_ENABLE_CE(nand); /* set pin low */
-
- /* Check the WP bit */
- NanD_Command(nand, NAND_CMD_STATUS);
- if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
- printf ("%s: Device is write protected!!!\n", __FUNCTION__);
- ret = -1;
- goto out;
- }
-
- /* Loop until all data is written */
- while (*retlen < len) {
- /* Invalidate cache, if we write to this page */
- if (nand->cache_page == page)
- nand->cache_page = -1;
-
- /* Write data into buffer */
- if ((col + len) >= nand->oobblock) {
- for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
- nand->data_buf[i] = buf[(*retlen + cnt)];
- }
- } else {
- for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
- nand->data_buf[i] = buf[(*retlen + cnt)];
- }
- }
- /* We use the same function for write and writev !) */
- ret = nand_write_page (nand, page, col, i, ecc_code);
- if (ret)
- goto out;
-
- /* Next data start at page boundary */
- col = 0;
-
- /* Update written bytes count */
- *retlen += cnt;
-
- /* Increment page address */
- page++;
- }
-
- /* Return happy */
- *retlen = len;
-
-out:
- /* De-select the NAND device */
- NAND_DISABLE_CE(nand); /* set pin high */
-#ifdef CONFIG_OMAP1510
- archflashwp(0,1);
-#endif
-#ifdef CFG_NAND_WP
- NAND_WP_ON();
-#endif
-
- return ret;
-}
-
-/* read from the 16 bytes of oob data that correspond to a 512 byte
- * page or 2 256-byte pages.
- */
-static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
- size_t * retlen, u_char * buf)
-{
- int len256 = 0;
- struct Nand *mychip;
- int ret = 0;
-
- mychip = &nand->chips[ofs >> nand->chipshift];
-
- /* update address for 2M x 8bit devices. OOB starts on the second */
- /* page to maintain compatibility with nand_read_ecc. */
- if (nand->page256) {
- if (!(ofs & 0x8))
- ofs += 0x100;
- else
- ofs -= 0x8;
- }
-
- NAND_ENABLE_CE(nand); /* set pin low */
- NanD_Command(nand, NAND_CMD_READOOB);
- if (nand->bus16) {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- ((ofs >> nand->page_shift) << nand->page_shift) +
- ((ofs & (nand->oobblock - 1)) >> 1));
- } else {
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
- }
-
- /* treat crossing 8-byte OOB data for 2M x 8bit devices */
- /* Note: datasheet says it should automaticaly wrap to the */
- /* next OOB block, but it didn't work here. mf. */
- if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
- len256 = (ofs | 0x7) + 1 - ofs;
- NanD_ReadBuf(nand, buf, len256);
-
- NanD_Command(nand, NAND_CMD_READOOB);
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
- }
-
- NanD_ReadBuf(nand, &buf[len256], len - len256);
-
- *retlen = len;
- /* Reading the full OOB data drops us off of the end of the page,
- * causing the flash device to go into busy mode, so we need
- * to wait until ready 11.4.1 and Toshiba TC58256FT nands */
-
- ret = NanD_WaitReady(nand, 1);
- NAND_DISABLE_CE(nand); /* set pin high */
-
- return ret;
-
-}
-
-/* write to the 16 bytes of oob data that correspond to a 512 byte
- * page or 2 256-byte pages.
- */
-static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
- size_t * retlen, const u_char * buf)
-{
- int len256 = 0;
- int i;
- unsigned long nandptr = nand->IO_ADDR;
-
-#ifdef PSYCHO_DEBUG
- printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
- (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
- buf[8], buf[9], buf[14],buf[15]);
-#endif
-
- NAND_ENABLE_CE(nand); /* set pin low to enable chip */
-
- /* Reset the chip */
- NanD_Command(nand, NAND_CMD_RESET);
-
- /* issue the Read2 command to set the pointer to the Spare Data Area. */
- NanD_Command(nand, NAND_CMD_READOOB);
- if (nand->bus16) {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- ((ofs >> nand->page_shift) << nand->page_shift) +
- ((ofs & (nand->oobblock - 1)) >> 1));
- } else {
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
- }
-
- /* update address for 2M x 8bit devices. OOB starts on the second */
- /* page to maintain compatibility with nand_read_ecc. */
- if (nand->page256) {
- if (!(ofs & 0x8))
- ofs += 0x100;
- else
- ofs -= 0x8;
- }
-
- /* issue the Serial Data In command to initial the Page Program process */
- NanD_Command(nand, NAND_CMD_SEQIN);
- if (nand->bus16) {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- ((ofs >> nand->page_shift) << nand->page_shift) +
- ((ofs & (nand->oobblock - 1)) >> 1));
- } else {
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
- }
-
- /* treat crossing 8-byte OOB data for 2M x 8bit devices */
- /* Note: datasheet says it should automaticaly wrap to the */
- /* next OOB block, but it didn't work here. mf. */
- if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
- len256 = (ofs | 0x7) + 1 - ofs;
- for (i = 0; i < len256; i++)
- WRITE_NAND(buf[i], nandptr);
-
- NanD_Command(nand, NAND_CMD_PAGEPROG);
- NanD_Command(nand, NAND_CMD_STATUS);
-#ifdef NAND_NO_RB
- { u_char ret_val;
- do {
- ret_val = READ_NAND(nandptr); /* wait till ready */
- } while ((ret_val & 0x40) != 0x40);
- }
-#endif
- if (READ_NAND(nandptr) & 1) {
- puts ("Error programming oob data\n");
- /* There was an error */
- NAND_DISABLE_CE(nand); /* set pin high */
- *retlen = 0;
- return -1;
- }
- NanD_Command(nand, NAND_CMD_SEQIN);
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
- }
-
- if (nand->bus16) {
- for (i = len256; i < len; i += 2) {
- WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
- }
- } else {
- for (i = len256; i < len; i++)
- WRITE_NAND(buf[i], nandptr);
- }
-
- NanD_Command(nand, NAND_CMD_PAGEPROG);
- NanD_Command(nand, NAND_CMD_STATUS);
-#ifdef NAND_NO_RB
- { u_char ret_val;
- do {
- ret_val = READ_NAND(nandptr); /* wait till ready */
- } while ((ret_val & 0x40) != 0x40);
- }
-#endif
- if (READ_NAND(nandptr) & 1) {
- puts ("Error programming oob data\n");
- /* There was an error */
- NAND_DISABLE_CE(nand); /* set pin high */
- *retlen = 0;
- return -1;
- }
-
- NAND_DISABLE_CE(nand); /* set pin high */
- *retlen = len;
- return 0;
-
-}
-
-int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
-{
- /* This is defined as a structure so it will work on any system
- * using native endian jffs2 (the default).
- */
- static struct jffs2_unknown_node clean_marker = {
- JFFS2_MAGIC_BITMASK,
- JFFS2_NODETYPE_CLEANMARKER,
- 8 /* 8 bytes in this node */
- };
- unsigned long nandptr;
- struct Nand *mychip;
- int ret = 0;
-
- if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
- printf ("Offset and size must be sector aligned, erasesize = %d\n",
- (int) nand->erasesize);
- return -1;
- }
-
- nandptr = nand->IO_ADDR;
-
- /* Select the NAND device */
-#ifdef CONFIG_OMAP1510
- archflashwp(0,0);
-#endif
-#ifdef CFG_NAND_WP
- NAND_WP_OFF();
-#endif
- NAND_ENABLE_CE(nand); /* set pin low */
-
- /* Check the WP bit */
- NanD_Command(nand, NAND_CMD_STATUS);
- if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
- printf ("nand_write_ecc: Device is write protected!!!\n");
- ret = -1;
- goto out;
- }
-
- /* Check the WP bit */
- NanD_Command(nand, NAND_CMD_STATUS);
- if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
- printf ("%s: Device is write protected!!!\n", __FUNCTION__);
- ret = -1;
- goto out;
- }
-
- /* FIXME: Do nand in the background. Use timers or schedule_task() */
- while(len) {
- /*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
- mychip = &nand->chips[ofs >> nand->chipshift];
-
- /* always check for bad block first, genuine bad blocks
- * should _never_ be erased.
- */
- if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
- /* Select the NAND device */
- NAND_ENABLE_CE(nand); /* set pin low */
-
- NanD_Command(nand, NAND_CMD_ERASE1);
- NanD_Address(nand, ADDR_PAGE, ofs);
- NanD_Command(nand, NAND_CMD_ERASE2);
-
- NanD_Command(nand, NAND_CMD_STATUS);
-
-#ifdef NAND_NO_RB
- { u_char ret_val;
- do {
- ret_val = READ_NAND(nandptr); /* wait till ready */
- } while ((ret_val & 0x40) != 0x40);
- }
-#endif
- if (READ_NAND(nandptr) & 1) {
- printf ("%s: Error erasing at 0x%lx\n",
- __FUNCTION__, (long)ofs);
- /* There was an error */
- ret = -1;
- goto out;
- }
- if (clean) {
- int n; /* return value not used */
- int p, l;
-
- /* clean marker position and size depend
- * on the page size, since 256 byte pages
- * only have 8 bytes of oob data
- */
- if (nand->page256) {
- p = NAND_JFFS2_OOB8_FSDAPOS;
- l = NAND_JFFS2_OOB8_FSDALEN;
- } else {
- p = NAND_JFFS2_OOB16_FSDAPOS;
- l = NAND_JFFS2_OOB16_FSDALEN;
- }
-
- ret = nand_write_oob(nand, ofs + p, l, &n,
- (u_char *)&clean_marker);
- /* quit here if write failed */
- if (ret)
- goto out;
- }
- }
- ofs += nand->erasesize;
- len -= nand->erasesize;
- }
-
-out:
- /* De-select the NAND device */
- NAND_DISABLE_CE(nand); /* set pin high */
-#ifdef CONFIG_OMAP1510
- archflashwp(0,1);
-#endif
-#ifdef CFG_NAND_WP
- NAND_WP_ON();
-#endif
-
- return ret;
-}
-
-static inline int nandcheck(unsigned long potential, unsigned long physadr)
-{
- return 0;
-}
-
-unsigned long nand_probe(unsigned long physadr)
-{
- struct nand_chip *nand = NULL;
- int i = 0, ChipID = 1;
-
-#ifdef CONFIG_MTD_NAND_ECC_JFFS2
- oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
- oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
- oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
- oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
- oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
- oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
- oob_config.eccvalid_pos = 4;
-#else
- oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
- oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
- oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
- oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
- oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
- oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
- oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
-#endif
- oob_config.badblock_pos = 5;
-
- for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {
- if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
- nand = &nand_dev_desc[i];
- break;
- }
- }
- if (!nand)
- return (0);
-
- memset((char *)nand, 0, sizeof(struct nand_chip));
-
- nand->IO_ADDR = physadr;
- nand->cache_page = -1; /* init the cache page */
- NanD_ScanChips(nand);
-
- if (nand->totlen == 0) {
- /* no chips found, clean up and quit */
- memset((char *)nand, 0, sizeof(struct nand_chip));
- nand->ChipID = NAND_ChipID_UNKNOWN;
- return (0);
- }
-
- nand->ChipID = ChipID;
- if (curr_device == -1)
- curr_device = i;
-
- nand->data_buf = malloc (nand->oobblock + nand->oobsize);
- if (!nand->data_buf) {
- puts ("Cannot allocate memory for data structures.\n");
- return (0);
- }
-
- return (nand->totlen);
-}
-
-#ifdef CONFIG_MTD_NAND_ECC
-/*
- * Pre-calculated 256-way 1 byte column parity
- */
-static const u_char nand_ecc_precalc_table[] = {
- 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
- 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
- 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
- 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
- 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
- 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
- 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
- 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
- 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
- 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
- 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
- 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
- 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
- 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
- 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
- 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
- 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
- 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
- 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
- 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
- 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
- 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
- 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
- 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
- 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
- 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
- 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
- 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
- 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
- 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
- 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
- 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
-};
-
-
-/*
- * Creates non-inverted ECC code from line parity
- */
-static void nand_trans_result(u_char reg2, u_char reg3,
- u_char *ecc_code)
-{
- u_char a, b, i, tmp1, tmp2;
-
- /* Initialize variables */
- a = b = 0x80;
- tmp1 = tmp2 = 0;
-
- /* Calculate first ECC byte */
- for (i = 0; i < 4; i++) {
- if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */
- tmp1 |= b;
- b >>= 1;
- if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */
- tmp1 |= b;
- b >>= 1;
- a >>= 1;
- }
-
- /* Calculate second ECC byte */
- b = 0x80;
- for (i = 0; i < 4; i++) {
- if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */
- tmp2 |= b;
- b >>= 1;
- if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */
- tmp2 |= b;
- b >>= 1;
- a >>= 1;
- }
-
- /* Store two of the ECC bytes */
- ecc_code[0] = tmp1;
- ecc_code[1] = tmp2;
-}
-
-/*
- * Calculate 3 byte ECC code for 256 byte block
- */
-static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
-{
- u_char idx, reg1, reg3;
- int j;
-
- /* Initialize variables */
- reg1 = reg3 = 0;
- ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
-
- /* Build up column parity */
- for(j = 0; j < 256; j++) {
-
- /* Get CP0 - CP5 from table */
- idx = nand_ecc_precalc_table[dat[j]];
- reg1 ^= idx;
-
- /* All bit XOR = 1 ? */
- if (idx & 0x40) {
- reg3 ^= (u_char) j;
- }
- }
-
- /* Create non-inverted ECC code from line parity */
- nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);
-
- /* Calculate final ECC code */
- ecc_code[0] = ~ecc_code[0];
- ecc_code[1] = ~ecc_code[1];
- ecc_code[2] = ((~reg1) << 2) | 0x03;
-}
-
-/*
- * Detect and correct a 1 bit error for 256 byte block
- */
-static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
-{
- u_char a, b, c, d1, d2, d3, add, bit, i;
-
- /* Do error detection */
- d1 = calc_ecc[0] ^ read_ecc[0];
- d2 = calc_ecc[1] ^ read_ecc[1];
- d3 = calc_ecc[2] ^ read_ecc[2];
-
- if ((d1 | d2 | d3) == 0) {
- /* No errors */
- return 0;
- } else {
- a = (d1 ^ (d1 >> 1)) & 0x55;
- b = (d2 ^ (d2 >> 1)) & 0x55;
- c = (d3 ^ (d3 >> 1)) & 0x54;
-
- /* Found and will correct single bit error in the data */
- if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
- c = 0x80;
- add = 0;
- a = 0x80;
- for (i=0; i<4; i++) {
- if (d1 & c)
- add |= a;
- c >>= 2;
- a >>= 1;
- }
- c = 0x80;
- for (i=0; i<4; i++) {
- if (d2 & c)
- add |= a;
- c >>= 2;
- a >>= 1;
- }
- bit = 0;
- b = 0x04;
- c = 0x80;
- for (i=0; i<3; i++) {
- if (d3 & c)
- bit |= b;
- c >>= 2;
- b >>= 1;
- }
- b = 0x01;
- a = dat[add];
- a ^= (b << bit);
- dat[add] = a;
- return 1;
- }
- else {
- i = 0;
- while (d1) {
- if (d1 & 0x01)
- ++i;
- d1 >>= 1;
- }
- while (d2) {
- if (d2 & 0x01)
- ++i;
- d2 >>= 1;
- }
- while (d3) {
- if (d3 & 0x01)
- ++i;
- d3 >>= 1;
- }
- if (i == 1) {
- /* ECC Code Error Correction */
- read_ecc[0] = calc_ecc[0];
- read_ecc[1] = calc_ecc[1];
- read_ecc[2] = calc_ecc[2];
- return 2;
- }
- else {
- /* Uncorrectable Error */
- return -1;
- }
- }
- }
-
- /* Should never happen */
- return -1;
-}
-
-#endif
-
-#ifdef CONFIG_JFFS2_NAND
-
-int read_jffs2_nand(size_t start, size_t len,
- size_t * retlen, u_char * buf, int nanddev)
-{
- return nand_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,
- start, len, retlen, buf);
-}
+U_BOOT_CMD(nboot, 4, 1, do_nandboot,
+ "nboot - boot from NAND device\n", "loadAddr dev\n");
-#endif /* CONFIG_JFFS2_NAND */
+#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */
-#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */
diff --git a/drivers/nand/Makefile b/drivers/nand/Makefile
new file mode 100644
index 0000000000..3906bf951d
--- /dev/null
+++ b/drivers/nand/Makefile
@@ -0,0 +1,17 @@
+include $(TOPDIR)/config.mk
+
+LIB := libnand.a
+
+OBJS := nand.o nand_base.o nand_ids.o nand_ecc.o nand_bbt.o
+all: $(LIB)
+
+$(LIB): $(OBJS)
+ $(AR) crv $@ $(OBJS)
+
+#########################################################################
+
+.depend: Makefile $(OBJS:.o=.c)
+ $(CC) -M $(CFLAGS) $(OBJS:.o=.c) > $@
+
+sinclude .depend
+
diff --git a/drivers/nand/diskonchip.c b/drivers/nand/diskonchip.c
new file mode 100644
index 0000000000..02135c3ac2
--- /dev/null
+++ b/drivers/nand/diskonchip.c
@@ -0,0 +1,1782 @@
+/*
+ * drivers/mtd/nand/diskonchip.c
+ *
+ * (C) 2003 Red Hat, Inc.
+ * (C) 2004 Dan Brown <dan_brown@ieee.org>
+ * (C) 2004 Kalev Lember <kalev@smartlink.ee>
+ *
+ * Author: David Woodhouse <dwmw2@infradead.org>
+ * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
+ * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
+ *
+ * Error correction code lifted from the old docecc code
+ * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
+ * Copyright (C) 2000 Netgem S.A.
+ * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
+ *
+ * Interface to generic NAND code for M-Systems DiskOnChip devices
+ *
+ * $Id: diskonchip.c,v 1.45 2005/01/05 18:05:14 dwmw2 Exp $
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/rslib.h>
+#include <linux/moduleparam.h>
+#include <asm/io.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/doc2000.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/inftl.h>
+
+/* Where to look for the devices? */
+#ifndef CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS
+#define CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS 0
+#endif
+
+static unsigned long __initdata doc_locations[] = {
+#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
+#ifdef CONFIG_MTD_DISKONCHIP_PROBE_HIGH
+ 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
+ 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
+ 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
+ 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
+ 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
+#else /* CONFIG_MTD_DOCPROBE_HIGH */
+ 0xc8000, 0xca000, 0xcc000, 0xce000,
+ 0xd0000, 0xd2000, 0xd4000, 0xd6000,
+ 0xd8000, 0xda000, 0xdc000, 0xde000,
+ 0xe0000, 0xe2000, 0xe4000, 0xe6000,
+ 0xe8000, 0xea000, 0xec000, 0xee000,
+#endif /* CONFIG_MTD_DOCPROBE_HIGH */
+#elif defined(__PPC__)
+ 0xe4000000,
+#elif defined(CONFIG_MOMENCO_OCELOT)
+ 0x2f000000,
+ 0xff000000,
+#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
+ 0xff000000,
+##else
+#warning Unknown architecture for DiskOnChip. No default probe locations defined
+#endif
+ 0xffffffff };
+
+static struct mtd_info *doclist = NULL;
+
+struct doc_priv {
+ void __iomem *virtadr;
+ unsigned long physadr;
+ u_char ChipID;
+ u_char CDSNControl;
+ int chips_per_floor; /* The number of chips detected on each floor */
+ int curfloor;
+ int curchip;
+ int mh0_page;
+ int mh1_page;
+ struct mtd_info *nextdoc;
+};
+
+/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL
+ MediaHeader. The spec says to just keep going, I think, but that's just
+ silly. */
+#define MAX_MEDIAHEADER_SCAN 8
+
+/* This is the syndrome computed by the HW ecc generator upon reading an empty
+ page, one with all 0xff for data and stored ecc code. */
+static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
+/* This is the ecc value computed by the HW ecc generator upon writing an empty
+ page, one with all 0xff for data. */
+static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
+
+#define INFTL_BBT_RESERVED_BLOCKS 4
+
+#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
+#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
+#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
+static void doc200x_select_chip(struct mtd_info *mtd, int chip);
+
+static int debug=0;
+module_param(debug, int, 0);
+
+static int try_dword=1;
+module_param(try_dword, int, 0);
+
+static int no_ecc_failures=0;
+module_param(no_ecc_failures, int, 0);
+
+#ifdef CONFIG_MTD_PARTITIONS
+static int no_autopart=0;
+module_param(no_autopart, int, 0);
+#endif
+
+#ifdef MTD_NAND_DISKONCHIP_BBTWRITE
+static int inftl_bbt_write=1;
+#else
+static int inftl_bbt_write=0;
+#endif
+module_param(inftl_bbt_write, int, 0);
+
+static unsigned long doc_config_location = CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS;
+module_param(doc_config_location, ulong, 0);
+MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
+
+
+/* Sector size for HW ECC */
+#define SECTOR_SIZE 512
+/* The sector bytes are packed into NB_DATA 10 bit words */
+#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
+/* Number of roots */
+#define NROOTS 4
+/* First consective root */
+#define FCR 510
+/* Number of symbols */
+#define NN 1023
+
+/* the Reed Solomon control structure */
+static struct rs_control *rs_decoder;
+
+/*
+ * The HW decoder in the DoC ASIC's provides us a error syndrome,
+ * which we must convert to a standard syndrom usable by the generic
+ * Reed-Solomon library code.
+ *
+ * Fabrice Bellard figured this out in the old docecc code. I added
+ * some comments, improved a minor bit and converted it to make use
+ * of the generic Reed-Solomon libary. tglx
+ */
+static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
+{
+ int i, j, nerr, errpos[8];
+ uint8_t parity;
+ uint16_t ds[4], s[5], tmp, errval[8], syn[4];
+
+ /* Convert the ecc bytes into words */
+ ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
+ ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
+ ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
+ ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
+ parity = ecc[1];
+
+ /* Initialize the syndrom buffer */
+ for (i = 0; i < NROOTS; i++)
+ s[i] = ds[0];
+ /*
+ * Evaluate
+ * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
+ * where x = alpha^(FCR + i)
+ */
+ for(j = 1; j < NROOTS; j++) {
+ if(ds[j] == 0)
+ continue;
+ tmp = rs->index_of[ds[j]];
+ for(i = 0; i < NROOTS; i++)
+ s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
+ }
+
+ /* Calc s[i] = s[i] / alpha^(v + i) */
+ for (i = 0; i < NROOTS; i++) {
+ if (syn[i])
+ syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
+ }
+ /* Call the decoder library */
+ nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
+
+ /* Incorrectable errors ? */
+ if (nerr < 0)
+ return nerr;
+
+ /*
+ * Correct the errors. The bitpositions are a bit of magic,
+ * but they are given by the design of the de/encoder circuit
+ * in the DoC ASIC's.
+ */
+ for(i = 0;i < nerr; i++) {
+ int index, bitpos, pos = 1015 - errpos[i];
+ uint8_t val;
+ if (pos >= NB_DATA && pos < 1019)
+ continue;
+ if (pos < NB_DATA) {
+ /* extract bit position (MSB first) */
+ pos = 10 * (NB_DATA - 1 - pos) - 6;
+ /* now correct the following 10 bits. At most two bytes
+ can be modified since pos is even */
+ index = (pos >> 3) ^ 1;
+ bitpos = pos & 7;
+ if ((index >= 0 && index < SECTOR_SIZE) ||
+ index == (SECTOR_SIZE + 1)) {
+ val = (uint8_t) (errval[i] >> (2 + bitpos));
+ parity ^= val;
+ if (index < SECTOR_SIZE)
+ data[index] ^= val;
+ }
+ index = ((pos >> 3) + 1) ^ 1;
+ bitpos = (bitpos + 10) & 7;
+ if (bitpos == 0)
+ bitpos = 8;
+ if ((index >= 0 && index < SECTOR_SIZE) ||
+ index == (SECTOR_SIZE + 1)) {
+ val = (uint8_t)(errval[i] << (8 - bitpos));
+ parity ^= val;
+ if (index < SECTOR_SIZE)
+ data[index] ^= val;
+ }
+ }
+ }
+ /* If the parity is wrong, no rescue possible */
+ return parity ? -1 : nerr;
+}
+
+static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
+{
+ volatile char dummy;
+ int i;
+
+ for (i = 0; i < cycles; i++) {
+ if (DoC_is_Millennium(doc))
+ dummy = ReadDOC(doc->virtadr, NOP);
+ else if (DoC_is_MillenniumPlus(doc))
+ dummy = ReadDOC(doc->virtadr, Mplus_NOP);
+ else
+ dummy = ReadDOC(doc->virtadr, DOCStatus);
+ }
+
+}
+
+#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
+
+/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
+static int _DoC_WaitReady(struct doc_priv *doc)
+{
+ void __iomem *docptr = doc->virtadr;
+ unsigned long timeo = jiffies + (HZ * 10);
+
+ if(debug) printk("_DoC_WaitReady...\n");
+ /* Out-of-line routine to wait for chip response */
+ if (DoC_is_MillenniumPlus(doc)) {
+ while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+ if (time_after(jiffies, timeo)) {
+ printk("_DoC_WaitReady timed out.\n");
+ return -EIO;
+ }
+ udelay(1);
+ cond_resched();
+ }
+ } else {
+ while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+ if (time_after(jiffies, timeo)) {
+ printk("_DoC_WaitReady timed out.\n");
+ return -EIO;
+ }
+ udelay(1);
+ cond_resched();
+ }
+ }
+
+ return 0;
+}
+
+static inline int DoC_WaitReady(struct doc_priv *doc)
+{
+ void __iomem *docptr = doc->virtadr;
+ int ret = 0;
+
+ if (DoC_is_MillenniumPlus(doc)) {
+ DoC_Delay(doc, 4);
+
+ if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
+ /* Call the out-of-line routine to wait */
+ ret = _DoC_WaitReady(doc);
+ } else {
+ DoC_Delay(doc, 4);
+
+ if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
+ /* Call the out-of-line routine to wait */
+ ret = _DoC_WaitReady(doc);
+ DoC_Delay(doc, 2);
+ }
+
+ if(debug) printk("DoC_WaitReady OK\n");
+ return ret;
+}
+
+static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ if(debug)printk("write_byte %02x\n", datum);
+ WriteDOC(datum, docptr, CDSNSlowIO);
+ WriteDOC(datum, docptr, 2k_CDSN_IO);
+}
+
+static u_char doc2000_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ u_char ret;
+
+ ReadDOC(docptr, CDSNSlowIO);
+ DoC_Delay(doc, 2);
+ ret = ReadDOC(docptr, 2k_CDSN_IO);
+ if (debug) printk("read_byte returns %02x\n", ret);
+ return ret;
+}
+
+static void doc2000_writebuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+ if (debug)printk("writebuf of %d bytes: ", len);
+ for (i=0; i < len; i++) {
+ WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
+ if (debug && i < 16)
+ printk("%02x ", buf[i]);
+ }
+ if (debug) printk("\n");
+}
+
+static void doc2000_readbuf(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("readbuf of %d bytes: ", len);
+
+ for (i=0; i < len; i++) {
+ buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
+ }
+}
+
+static void doc2000_readbuf_dword(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug) printk("readbuf_dword of %d bytes: ", len);
+
+ if (unlikely((((unsigned long)buf)|len) & 3)) {
+ for (i=0; i < len; i++) {
+ *(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
+ }
+ } else {
+ for (i=0; i < len; i+=4) {
+ *(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
+ }
+ }
+}
+
+static int doc2000_verifybuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ for (i=0; i < len; i++)
+ if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
+ return -EFAULT;
+ return 0;
+}
+
+static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ uint16_t ret;
+
+ doc200x_select_chip(mtd, nr);
+ doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_READID);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+ doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+ this->write_byte(mtd, 0);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+ ret = this->read_byte(mtd) << 8;
+ ret |= this->read_byte(mtd);
+
+ if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
+ /* First chip probe. See if we get same results by 32-bit access */
+ union {
+ uint32_t dword;
+ uint8_t byte[4];
+ } ident;
+ void __iomem *docptr = doc->virtadr;
+
+ doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+ doc2000_write_byte(mtd, NAND_CMD_READID);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+ doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+ doc2000_write_byte(mtd, 0);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+ ident.dword = readl(docptr + DoC_2k_CDSN_IO);
+ if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
+ printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
+ this->read_buf = &doc2000_readbuf_dword;
+ }
+ }
+
+ return ret;
+}
+
+static void __init doc2000_count_chips(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ uint16_t mfrid;
+ int i;
+
+ /* Max 4 chips per floor on DiskOnChip 2000 */
+ doc->chips_per_floor = 4;
+
+ /* Find out what the first chip is */
+ mfrid = doc200x_ident_chip(mtd, 0);
+
+ /* Find how many chips in each floor. */
+ for (i = 1; i < 4; i++) {
+ if (doc200x_ident_chip(mtd, i) != mfrid)
+ break;
+ }
+ doc->chips_per_floor = i;
+ printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
+}
+
+static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+ struct doc_priv *doc = this->priv;
+
+ int status;
+
+ DoC_WaitReady(doc);
+ this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+ DoC_WaitReady(doc);
+ status = (int)this->read_byte(mtd);
+
+ return status;
+}
+
+static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ WriteDOC(datum, docptr, CDSNSlowIO);
+ WriteDOC(datum, docptr, Mil_CDSN_IO);
+ WriteDOC(datum, docptr, WritePipeTerm);
+}
+
+static u_char doc2001_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ //ReadDOC(docptr, CDSNSlowIO);
+ /* 11.4.5 -- delay twice to allow extended length cycle */
+ DoC_Delay(doc, 2);
+ ReadDOC(docptr, ReadPipeInit);
+ //return ReadDOC(docptr, Mil_CDSN_IO);
+ return ReadDOC(docptr, LastDataRead);
+}
+
+static void doc2001_writebuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ for (i=0; i < len; i++)
+ WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+ /* Terminate write pipeline */
+ WriteDOC(0x00, docptr, WritePipeTerm);
+}
+
+static void doc2001_readbuf(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ /* Start read pipeline */
+ ReadDOC(docptr, ReadPipeInit);
+
+ for (i=0; i < len-1; i++)
+ buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
+
+ /* Terminate read pipeline */
+ buf[i] = ReadDOC(docptr, LastDataRead);
+}
+
+static int doc2001_verifybuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ /* Start read pipeline */
+ ReadDOC(docptr, ReadPipeInit);
+
+ for (i=0; i < len-1; i++)
+ if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+ ReadDOC(docptr, LastDataRead);
+ return i;
+ }
+ if (buf[i] != ReadDOC(docptr, LastDataRead))
+ return i;
+ return 0;
+}
+
+static u_char doc2001plus_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ u_char ret;
+
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ret = ReadDOC(docptr, Mplus_LastDataRead);
+ if (debug) printk("read_byte returns %02x\n", ret);
+ return ret;
+}
+
+static void doc2001plus_writebuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("writebuf of %d bytes: ", len);
+ for (i=0; i < len; i++) {
+ WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+ if (debug && i < 16)
+ printk("%02x ", buf[i]);
+ }
+ if (debug) printk("\n");
+}
+
+static void doc2001plus_readbuf(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("readbuf of %d bytes: ", len);
+
+ /* Start read pipeline */
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+
+ for (i=0; i < len-2; i++) {
+ buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
+ if (debug && i < 16)
+ printk("%02x ", buf[i]);
+ }
+
+ /* Terminate read pipeline */
+ buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
+ if (debug && i < 16)
+ printk("%02x ", buf[len-2]);
+ buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
+ if (debug && i < 16)
+ printk("%02x ", buf[len-1]);
+ if (debug) printk("\n");
+}
+
+static int doc2001plus_verifybuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("verifybuf of %d bytes: ", len);
+
+ /* Start read pipeline */
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+
+ for (i=0; i < len-2; i++)
+ if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+ ReadDOC(docptr, Mplus_LastDataRead);
+ ReadDOC(docptr, Mplus_LastDataRead);
+ return i;
+ }
+ if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
+ return len-2;
+ if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
+ return len-1;
+ return 0;
+}
+
+static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int floor = 0;
+
+ if(debug)printk("select chip (%d)\n", chip);
+
+ if (chip == -1) {
+ /* Disable flash internally */
+ WriteDOC(0, docptr, Mplus_FlashSelect);
+ return;
+ }
+
+ floor = chip / doc->chips_per_floor;
+ chip -= (floor * doc->chips_per_floor);
+
+ /* Assert ChipEnable and deassert WriteProtect */
+ WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
+ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ doc->curchip = chip;
+ doc->curfloor = floor;
+}
+
+static void doc200x_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int floor = 0;
+
+ if(debug)printk("select chip (%d)\n", chip);
+
+ if (chip == -1)
+ return;
+
+ floor = chip / doc->chips_per_floor;
+ chip -= (floor * doc->chips_per_floor);
+
+ /* 11.4.4 -- deassert CE before changing chip */
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
+
+ WriteDOC(floor, docptr, FloorSelect);
+ WriteDOC(chip, docptr, CDSNDeviceSelect);
+
+ doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
+
+ doc->curchip = chip;
+ doc->curfloor = floor;
+}
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ switch(cmd) {
+ case NAND_CTL_SETNCE:
+ doc->CDSNControl |= CDSN_CTRL_CE;
+ break;
+ case NAND_CTL_CLRNCE:
+ doc->CDSNControl &= ~CDSN_CTRL_CE;
+ break;
+ case NAND_CTL_SETCLE:
+ doc->CDSNControl |= CDSN_CTRL_CLE;
+ break;
+ case NAND_CTL_CLRCLE:
+ doc->CDSNControl &= ~CDSN_CTRL_CLE;
+ break;
+ case NAND_CTL_SETALE:
+ doc->CDSNControl |= CDSN_CTRL_ALE;
+ break;
+ case NAND_CTL_CLRALE:
+ doc->CDSNControl &= ~CDSN_CTRL_ALE;
+ break;
+ case NAND_CTL_SETWP:
+ doc->CDSNControl |= CDSN_CTRL_WP;
+ break;
+ case NAND_CTL_CLRWP:
+ doc->CDSNControl &= ~CDSN_CTRL_WP;
+ break;
+ }
+ if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
+ WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+ /* 11.4.3 -- 4 NOPs after CSDNControl write */
+ DoC_Delay(doc, 4);
+}
+
+static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /*
+ * Must terminate write pipeline before sending any commands
+ * to the device.
+ */
+ if (command == NAND_CMD_PAGEPROG) {
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+ }
+
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->oobblock) {
+ /* OOB area */
+ column -= mtd->oobblock;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ WriteDOC(readcmd, docptr, Mplus_FlashCmd);
+ }
+ WriteDOC(command, docptr, Mplus_FlashCmd);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+
+ if (column != -1 || page_addr != -1) {
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ WriteDOC(column, docptr, Mplus_FlashAddress);
+ }
+ if (page_addr != -1) {
+ WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
+ WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
+ /* One more address cycle for higher density devices */
+ if (this->chipsize & 0x0c000000) {
+ WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
+ printk("high density\n");
+ }
+ }
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ /* deassert ALE */
+ if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
+ WriteDOC(0, docptr, Mplus_FlashControl);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ udelay(this->chip_delay);
+ WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+static int doc200x_dev_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ if (DoC_is_MillenniumPlus(doc)) {
+ /* 11.4.2 -- must NOP four times before checking FR/B# */
+ DoC_Delay(doc, 4);
+ if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+ if(debug)
+ printk("not ready\n");
+ return 0;
+ }
+ if (debug)printk("was ready\n");
+ return 1;
+ } else {
+ /* 11.4.2 -- must NOP four times before checking FR/B# */
+ DoC_Delay(doc, 4);
+ if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+ if(debug)
+ printk("not ready\n");
+ return 0;
+ }
+ /* 11.4.2 -- Must NOP twice if it's ready */
+ DoC_Delay(doc, 2);
+ if (debug)printk("was ready\n");
+ return 1;
+ }
+}
+
+static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ /* This is our last resort if we couldn't find or create a BBT. Just
+ pretend all blocks are good. */
+ return 0;
+}
+
+static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /* Prime the ECC engine */
+ switch(mode) {
+ case NAND_ECC_READ:
+ WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC(DOC_ECC_EN, docptr, ECCConf);
+ break;
+ case NAND_ECC_WRITE:
+ WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
+ break;
+ }
+}
+
+static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /* Prime the ECC engine */
+ switch(mode) {
+ case NAND_ECC_READ:
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+ WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
+ break;
+ case NAND_ECC_WRITE:
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+ WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
+ break;
+ }
+}
+
+/* This code is only called on write */
+static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+ unsigned char *ecc_code)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+ int emptymatch = 1;
+
+ /* flush the pipeline */
+ if (DoC_is_2000(doc)) {
+ WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
+ WriteDOC(0, docptr, 2k_CDSN_IO);
+ WriteDOC(0, docptr, 2k_CDSN_IO);
+ WriteDOC(0, docptr, 2k_CDSN_IO);
+ WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+ } else if (DoC_is_MillenniumPlus(doc)) {
+ WriteDOC(0, docptr, Mplus_NOP);
+ WriteDOC(0, docptr, Mplus_NOP);
+ WriteDOC(0, docptr, Mplus_NOP);
+ } else {
+ WriteDOC(0, docptr, NOP);
+ WriteDOC(0, docptr, NOP);
+ WriteDOC(0, docptr, NOP);
+ }
+
+ for (i = 0; i < 6; i++) {
+ if (DoC_is_MillenniumPlus(doc))
+ ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+ else
+ ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+ if (ecc_code[i] != empty_write_ecc[i])
+ emptymatch = 0;
+ }
+ if (DoC_is_MillenniumPlus(doc))
+ WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+ else
+ WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+#if 0
+ /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
+ if (emptymatch) {
+ /* Note: this somewhat expensive test should not be triggered
+ often. It could be optimized away by examining the data in
+ the writebuf routine, and remembering the result. */
+ for (i = 0; i < 512; i++) {
+ if (dat[i] == 0xff) continue;
+ emptymatch = 0;
+ break;
+ }
+ }
+ /* If emptymatch still =1, we do have an all-0xff data buffer.
+ Return all-0xff ecc value instead of the computed one, so
+ it'll look just like a freshly-erased page. */
+ if (emptymatch) memset(ecc_code, 0xff, 6);
+#endif
+ return 0;
+}
+
+static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+ int i, ret = 0;
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ volatile u_char dummy;
+ int emptymatch = 1;
+
+ /* flush the pipeline */
+ if (DoC_is_2000(doc)) {
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ } else if (DoC_is_MillenniumPlus(doc)) {
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ } else {
+ dummy = ReadDOC(docptr, ECCConf);
+ dummy = ReadDOC(docptr, ECCConf);
+ dummy = ReadDOC(docptr, ECCConf);
+ }
+
+ /* Error occured ? */
+ if (dummy & 0x80) {
+ for (i = 0; i < 6; i++) {
+ if (DoC_is_MillenniumPlus(doc))
+ calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+ else
+ calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+ if (calc_ecc[i] != empty_read_syndrome[i])
+ emptymatch = 0;
+ }
+ /* If emptymatch=1, the read syndrome is consistent with an
+ all-0xff data and stored ecc block. Check the stored ecc. */
+ if (emptymatch) {
+ for (i = 0; i < 6; i++) {
+ if (read_ecc[i] == 0xff) continue;
+ emptymatch = 0;
+ break;
+ }
+ }
+ /* If emptymatch still =1, check the data block. */
+ if (emptymatch) {
+ /* Note: this somewhat expensive test should not be triggered
+ often. It could be optimized away by examining the data in
+ the readbuf routine, and remembering the result. */
+ for (i = 0; i < 512; i++) {
+ if (dat[i] == 0xff) continue;
+ emptymatch = 0;
+ break;
+ }
+ }
+ /* If emptymatch still =1, this is almost certainly a freshly-
+ erased block, in which case the ECC will not come out right.
+ We'll suppress the error and tell the caller everything's
+ OK. Because it is. */
+ if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
+ if (ret > 0)
+ printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
+ }
+ if (DoC_is_MillenniumPlus(doc))
+ WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+ else
+ WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+ if (no_ecc_failures && (ret == -1)) {
+ printk(KERN_ERR "suppressing ECC failure\n");
+ ret = 0;
+ }
+ return ret;
+}
+
+//u_char mydatabuf[528];
+
+static struct nand_oobinfo doc200x_oobinfo = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 6,
+ .eccpos = {0, 1, 2, 3, 4, 5},
+ .oobfree = { {8, 8} }
+};
+
+/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
+ On sucessful return, buf will contain a copy of the media header for
+ further processing. id is the string to scan for, and will presumably be
+ either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
+ header. The page #s of the found media headers are placed in mh0_page and
+ mh1_page in the DOC private structure. */
+static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
+ const char *id, int findmirror)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift);
+ int ret;
+ size_t retlen;
+
+ end = min(end, mtd->size); // paranoia
+ for (offs = 0; offs < end; offs += mtd->erasesize) {
+ ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+ if (retlen != mtd->oobblock) continue;
+ if (ret) {
+ printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
+ offs);
+ }
+ if (memcmp(buf, id, 6)) continue;
+ printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
+ if (doc->mh0_page == -1) {
+ doc->mh0_page = offs >> this->page_shift;
+ if (!findmirror) return 1;
+ continue;
+ }
+ doc->mh1_page = offs >> this->page_shift;
+ return 2;
+ }
+ if (doc->mh0_page == -1) {
+ printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
+ return 0;
+ }
+ /* Only one mediaheader was found. We want buf to contain a
+ mediaheader on return, so we'll have to re-read the one we found. */
+ offs = doc->mh0_page << this->page_shift;
+ ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+ if (retlen != mtd->oobblock) {
+ /* Insanity. Give up. */
+ printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
+ return 0;
+ }
+ return 1;
+}
+
+static inline int __init nftl_partscan(struct mtd_info *mtd,
+ struct mtd_partition *parts)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ int ret = 0;
+ u_char *buf;
+ struct NFTLMediaHeader *mh;
+ const unsigned psize = 1 << this->page_shift;
+ unsigned blocks, maxblocks;
+ int offs, numheaders;
+
+ buf = kmalloc(mtd->oobblock, GFP_KERNEL);
+ if (!buf) {
+ printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
+ return 0;
+ }
+ if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
+ mh = (struct NFTLMediaHeader *) buf;
+
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+// if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+ printk(KERN_INFO " DataOrgID = %s\n"
+ " NumEraseUnits = %d\n"
+ " FirstPhysicalEUN = %d\n"
+ " FormattedSize = %d\n"
+ " UnitSizeFactor = %d\n",
+ mh->DataOrgID, mh->NumEraseUnits,
+ mh->FirstPhysicalEUN, mh->FormattedSize,
+ mh->UnitSizeFactor);
+//#endif
+
+ blocks = mtd->size >> this->phys_erase_shift;
+ maxblocks = min(32768U, mtd->erasesize - psize);
+
+ if (mh->UnitSizeFactor == 0x00) {
+ /* Auto-determine UnitSizeFactor. The constraints are:
+ - There can be at most 32768 virtual blocks.
+ - There can be at most (virtual block size - page size)
+ virtual blocks (because MediaHeader+BBT must fit in 1).
+ */
+ mh->UnitSizeFactor = 0xff;
+ while (blocks > maxblocks) {
+ blocks >>= 1;
+ maxblocks = min(32768U, (maxblocks << 1) + psize);
+ mh->UnitSizeFactor--;
+ }
+ printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
+ }
+
+ /* NOTE: The lines below modify internal variables of the NAND and MTD
+ layers; variables with have already been configured by nand_scan.
+ Unfortunately, we didn't know before this point what these values
+ should be. Thus, this code is somewhat dependant on the exact
+ implementation of the NAND layer. */
+ if (mh->UnitSizeFactor != 0xff) {
+ this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
+ mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
+ printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
+ blocks = mtd->size >> this->bbt_erase_shift;
+ maxblocks = min(32768U, mtd->erasesize - psize);
+ }
+
+ if (blocks > maxblocks) {
+ printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
+ goto out;
+ }
+
+ /* Skip past the media headers. */
+ offs = max(doc->mh0_page, doc->mh1_page);
+ offs <<= this->page_shift;
+ offs += mtd->erasesize;
+
+ //parts[0].name = " DiskOnChip Boot / Media Header partition";
+ //parts[0].offset = 0;
+ //parts[0].size = offs;
+
+ parts[0].name = " DiskOnChip BDTL partition";
+ parts[0].offset = offs;
+ parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
+
+ offs += parts[0].size;
+ if (offs < mtd->size) {
+ parts[1].name = " DiskOnChip Remainder partition";
+ parts[1].offset = offs;
+ parts[1].size = mtd->size - offs;
+ ret = 2;
+ goto out;
+ }
+ ret = 1;
+out:
+ kfree(buf);
+ return ret;
+}
+
+/* This is a stripped-down copy of the code in inftlmount.c */
+static inline int __init inftl_partscan(struct mtd_info *mtd,
+ struct mtd_partition *parts)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ int ret = 0;
+ u_char *buf;
+ struct INFTLMediaHeader *mh;
+ struct INFTLPartition *ip;
+ int numparts = 0;
+ int blocks;
+ int vshift, lastvunit = 0;
+ int i;
+ int end = mtd->size;
+
+ if (inftl_bbt_write)
+ end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
+
+ buf = kmalloc(mtd->oobblock, GFP_KERNEL);
+ if (!buf) {
+ printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
+ return 0;
+ }
+
+ if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
+ doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
+ mh = (struct INFTLMediaHeader *) buf;
+
+ mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
+ mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
+ mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
+ mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
+ mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
+ mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
+
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+// if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+ printk(KERN_INFO " bootRecordID = %s\n"
+ " NoOfBootImageBlocks = %d\n"
+ " NoOfBinaryPartitions = %d\n"
+ " NoOfBDTLPartitions = %d\n"
+ " BlockMultiplerBits = %d\n"
+ " FormatFlgs = %d\n"
+ " OsakVersion = %d.%d.%d.%d\n"
+ " PercentUsed = %d\n",
+ mh->bootRecordID, mh->NoOfBootImageBlocks,
+ mh->NoOfBinaryPartitions,
+ mh->NoOfBDTLPartitions,
+ mh->BlockMultiplierBits, mh->FormatFlags,
+ ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
+ ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
+ ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
+ ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
+ mh->PercentUsed);
+//#endif
+
+ vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
+
+ blocks = mtd->size >> vshift;
+ if (blocks > 32768) {
+ printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
+ goto out;
+ }
+
+ blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
+ if (inftl_bbt_write && (blocks > mtd->erasesize)) {
+ printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
+ goto out;
+ }
+
+ /* Scan the partitions */
+ for (i = 0; (i < 4); i++) {
+ ip = &(mh->Partitions[i]);
+ ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
+ ip->firstUnit = le32_to_cpu(ip->firstUnit);
+ ip->lastUnit = le32_to_cpu(ip->lastUnit);
+ ip->flags = le32_to_cpu(ip->flags);
+ ip->spareUnits = le32_to_cpu(ip->spareUnits);
+ ip->Reserved0 = le32_to_cpu(ip->Reserved0);
+
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+// if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+ printk(KERN_INFO " PARTITION[%d] ->\n"
+ " virtualUnits = %d\n"
+ " firstUnit = %d\n"
+ " lastUnit = %d\n"
+ " flags = 0x%x\n"
+ " spareUnits = %d\n",
+ i, ip->virtualUnits, ip->firstUnit,
+ ip->lastUnit, ip->flags,
+ ip->spareUnits);
+//#endif
+
+/*
+ if ((i == 0) && (ip->firstUnit > 0)) {
+ parts[0].name = " DiskOnChip IPL / Media Header partition";
+ parts[0].offset = 0;
+ parts[0].size = mtd->erasesize * ip->firstUnit;
+ numparts = 1;
+ }
+*/
+
+ if (ip->flags & INFTL_BINARY)
+ parts[numparts].name = " DiskOnChip BDK partition";
+ else
+ parts[numparts].name = " DiskOnChip BDTL partition";
+ parts[numparts].offset = ip->firstUnit << vshift;
+ parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
+ numparts++;
+ if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
+ if (ip->flags & INFTL_LAST) break;
+ }
+ lastvunit++;
+ if ((lastvunit << vshift) < end) {
+ parts[numparts].name = " DiskOnChip Remainder partition";
+ parts[numparts].offset = lastvunit << vshift;
+ parts[numparts].size = end - parts[numparts].offset;
+ numparts++;
+ }
+ ret = numparts;
+out:
+ kfree(buf);
+ return ret;
+}
+
+static int __init nftl_scan_bbt(struct mtd_info *mtd)
+{
+ int ret, numparts;
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ struct mtd_partition parts[2];
+
+ memset((char *) parts, 0, sizeof(parts));
+ /* On NFTL, we have to find the media headers before we can read the
+ BBTs, since they're stored in the media header eraseblocks. */
+ numparts = nftl_partscan(mtd, parts);
+ if (!numparts) return -EIO;
+ this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+ NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+ NAND_BBT_VERSION;
+ this->bbt_td->veroffs = 7;
+ this->bbt_td->pages[0] = doc->mh0_page + 1;
+ if (doc->mh1_page != -1) {
+ this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+ NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+ NAND_BBT_VERSION;
+ this->bbt_md->veroffs = 7;
+ this->bbt_md->pages[0] = doc->mh1_page + 1;
+ } else {
+ this->bbt_md = NULL;
+ }
+
+ /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+ At least as nand_bbt.c is currently written. */
+ if ((ret = nand_scan_bbt(mtd, NULL)))
+ return ret;
+ add_mtd_device(mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+ if (!no_autopart)
+ add_mtd_partitions(mtd, parts, numparts);
+#endif
+ return 0;
+}
+
+static int __init inftl_scan_bbt(struct mtd_info *mtd)
+{
+ int ret, numparts;
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ struct mtd_partition parts[5];
+
+ if (this->numchips > doc->chips_per_floor) {
+ printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
+ return -EIO;
+ }
+
+ if (DoC_is_MillenniumPlus(doc)) {
+ this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
+ if (inftl_bbt_write)
+ this->bbt_td->options |= NAND_BBT_WRITE;
+ this->bbt_td->pages[0] = 2;
+ this->bbt_md = NULL;
+ } else {
+ this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+ NAND_BBT_VERSION;
+ if (inftl_bbt_write)
+ this->bbt_td->options |= NAND_BBT_WRITE;
+ this->bbt_td->offs = 8;
+ this->bbt_td->len = 8;
+ this->bbt_td->veroffs = 7;
+ this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+ this->bbt_td->reserved_block_code = 0x01;
+ this->bbt_td->pattern = "MSYS_BBT";
+
+ this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+ NAND_BBT_VERSION;
+ if (inftl_bbt_write)
+ this->bbt_md->options |= NAND_BBT_WRITE;
+ this->bbt_md->offs = 8;
+ this->bbt_md->len = 8;
+ this->bbt_md->veroffs = 7;
+ this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+ this->bbt_md->reserved_block_code = 0x01;
+ this->bbt_md->pattern = "TBB_SYSM";
+ }
+
+ /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+ At least as nand_bbt.c is currently written. */
+ if ((ret = nand_scan_bbt(mtd, NULL)))
+ return ret;
+ memset((char *) parts, 0, sizeof(parts));
+ numparts = inftl_partscan(mtd, parts);
+ /* At least for now, require the INFTL Media Header. We could probably
+ do without it for non-INFTL use, since all it gives us is
+ autopartitioning, but I want to give it more thought. */
+ if (!numparts) return -EIO;
+ add_mtd_device(mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+ if (!no_autopart)
+ add_mtd_partitions(mtd, parts, numparts);
+#endif
+ return 0;
+}
+
+static inline int __init doc2000_init(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+
+ this->write_byte = doc2000_write_byte;
+ this->read_byte = doc2000_read_byte;
+ this->write_buf = doc2000_writebuf;
+ this->read_buf = doc2000_readbuf;
+ this->verify_buf = doc2000_verifybuf;
+ this->scan_bbt = nftl_scan_bbt;
+
+ doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
+ doc2000_count_chips(mtd);
+ mtd->name = "DiskOnChip 2000 (NFTL Model)";
+ return (4 * doc->chips_per_floor);
+}
+
+static inline int __init doc2001_init(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+
+ this->write_byte = doc2001_write_byte;
+ this->read_byte = doc2001_read_byte;
+ this->write_buf = doc2001_writebuf;
+ this->read_buf = doc2001_readbuf;
+ this->verify_buf = doc2001_verifybuf;
+
+ ReadDOC(doc->virtadr, ChipID);
+ ReadDOC(doc->virtadr, ChipID);
+ ReadDOC(doc->virtadr, ChipID);
+ if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
+ /* It's not a Millennium; it's one of the newer
+ DiskOnChip 2000 units with a similar ASIC.
+ Treat it like a Millennium, except that it
+ can have multiple chips. */
+ doc2000_count_chips(mtd);
+ mtd->name = "DiskOnChip 2000 (INFTL Model)";
+ this->scan_bbt = inftl_scan_bbt;
+ return (4 * doc->chips_per_floor);
+ } else {
+ /* Bog-standard Millennium */
+ doc->chips_per_floor = 1;
+ mtd->name = "DiskOnChip Millennium";
+ this->scan_bbt = nftl_scan_bbt;
+ return 1;
+ }
+}
+
+static inline int __init doc2001plus_init(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+
+ this->write_byte = NULL;
+ this->read_byte = doc2001plus_read_byte;
+ this->write_buf = doc2001plus_writebuf;
+ this->read_buf = doc2001plus_readbuf;
+ this->verify_buf = doc2001plus_verifybuf;
+ this->scan_bbt = inftl_scan_bbt;
+ this->hwcontrol = NULL;
+ this->select_chip = doc2001plus_select_chip;
+ this->cmdfunc = doc2001plus_command;
+ this->enable_hwecc = doc2001plus_enable_hwecc;
+
+ doc->chips_per_floor = 1;
+ mtd->name = "DiskOnChip Millennium Plus";
+
+ return 1;
+}
+
+static inline int __init doc_probe(unsigned long physadr)
+{
+ unsigned char ChipID;
+ struct mtd_info *mtd;
+ struct nand_chip *nand;
+ struct doc_priv *doc;
+ void __iomem *virtadr;
+ unsigned char save_control;
+ unsigned char tmp, tmpb, tmpc;
+ int reg, len, numchips;
+ int ret = 0;
+
+ virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
+ if (!virtadr) {
+ printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
+ return -EIO;
+ }
+
+ /* It's not possible to cleanly detect the DiskOnChip - the
+ * bootup procedure will put the device into reset mode, and
+ * it's not possible to talk to it without actually writing
+ * to the DOCControl register. So we store the current contents
+ * of the DOCControl register's location, in case we later decide
+ * that it's not a DiskOnChip, and want to put it back how we
+ * found it.
+ */
+ save_control = ReadDOC(virtadr, DOCControl);
+
+ /* Reset the DiskOnChip ASIC */
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
+ virtadr, DOCControl);
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
+ virtadr, DOCControl);
+
+ /* Enable the DiskOnChip ASIC */
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
+ virtadr, DOCControl);
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
+ virtadr, DOCControl);
+
+ ChipID = ReadDOC(virtadr, ChipID);
+
+ switch(ChipID) {
+ case DOC_ChipID_Doc2k:
+ reg = DoC_2k_ECCStatus;
+ break;
+ case DOC_ChipID_DocMil:
+ reg = DoC_ECCConf;
+ break;
+ case DOC_ChipID_DocMilPlus16:
+ case DOC_ChipID_DocMilPlus32:
+ case 0:
+ /* Possible Millennium Plus, need to do more checks */
+ /* Possibly release from power down mode */
+ for (tmp = 0; (tmp < 4); tmp++)
+ ReadDOC(virtadr, Mplus_Power);
+
+ /* Reset the Millennium Plus ASIC */
+ tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+ DOC_MODE_BDECT;
+ WriteDOC(tmp, virtadr, Mplus_DOCControl);
+ WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+
+ mdelay(1);
+ /* Enable the Millennium Plus ASIC */
+ tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+ DOC_MODE_BDECT;
+ WriteDOC(tmp, virtadr, Mplus_DOCControl);
+ WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+ mdelay(1);
+
+ ChipID = ReadDOC(virtadr, ChipID);
+
+ switch (ChipID) {
+ case DOC_ChipID_DocMilPlus16:
+ reg = DoC_Mplus_Toggle;
+ break;
+ case DOC_ChipID_DocMilPlus32:
+ printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
+ default:
+ ret = -ENODEV;
+ goto notfound;
+ }
+ break;
+
+ default:
+ ret = -ENODEV;
+ goto notfound;
+ }
+ /* Check the TOGGLE bit in the ECC register */
+ tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+ tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+ tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+ if ((tmp == tmpb) || (tmp != tmpc)) {
+ printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
+ ret = -ENODEV;
+ goto notfound;
+ }
+
+ for (mtd = doclist; mtd; mtd = doc->nextdoc) {
+ unsigned char oldval;
+ unsigned char newval;
+ nand = mtd->priv;
+ doc = nand->priv;
+ /* Use the alias resolution register to determine if this is
+ in fact the same DOC aliased to a new address. If writes
+ to one chip's alias resolution register change the value on
+ the other chip, they're the same chip. */
+ if (ChipID == DOC_ChipID_DocMilPlus16) {
+ oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+ newval = ReadDOC(virtadr, Mplus_AliasResolution);
+ } else {
+ oldval = ReadDOC(doc->virtadr, AliasResolution);
+ newval = ReadDOC(virtadr, AliasResolution);
+ }
+ if (oldval != newval)
+ continue;
+ if (ChipID == DOC_ChipID_DocMilPlus16) {
+ WriteDOC(~newval, virtadr, Mplus_AliasResolution);
+ oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+ WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
+ } else {
+ WriteDOC(~newval, virtadr, AliasResolution);
+ oldval = ReadDOC(doc->virtadr, AliasResolution);
+ WriteDOC(newval, virtadr, AliasResolution); // restore it
+ }
+ newval = ~newval;
+ if (oldval == newval) {
+ printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
+ goto notfound;
+ }
+ }
+
+ printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
+
+ len = sizeof(struct mtd_info) +
+ sizeof(struct nand_chip) +
+ sizeof(struct doc_priv) +
+ (2 * sizeof(struct nand_bbt_descr));
+ mtd = kmalloc(len, GFP_KERNEL);
+ if (!mtd) {
+ printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
+ ret = -ENOMEM;
+ goto fail;
+ }
+ memset(mtd, 0, len);
+
+ nand = (struct nand_chip *) (mtd + 1);
+ doc = (struct doc_priv *) (nand + 1);
+ nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
+ nand->bbt_md = nand->bbt_td + 1;
+
+ mtd->priv = nand;
+ mtd->owner = THIS_MODULE;
+
+ nand->priv = doc;
+ nand->select_chip = doc200x_select_chip;
+ nand->hwcontrol = doc200x_hwcontrol;
+ nand->dev_ready = doc200x_dev_ready;
+ nand->waitfunc = doc200x_wait;
+ nand->block_bad = doc200x_block_bad;
+ nand->enable_hwecc = doc200x_enable_hwecc;
+ nand->calculate_ecc = doc200x_calculate_ecc;
+ nand->correct_data = doc200x_correct_data;
+
+ nand->autooob = &doc200x_oobinfo;
+ nand->eccmode = NAND_ECC_HW6_512;
+ nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
+
+ doc->physadr = physadr;
+ doc->virtadr = virtadr;
+ doc->ChipID = ChipID;
+ doc->curfloor = -1;
+ doc->curchip = -1;
+ doc->mh0_page = -1;
+ doc->mh1_page = -1;
+ doc->nextdoc = doclist;
+
+ if (ChipID == DOC_ChipID_Doc2k)
+ numchips = doc2000_init(mtd);
+ else if (ChipID == DOC_ChipID_DocMilPlus16)
+ numchips = doc2001plus_init(mtd);
+ else
+ numchips = doc2001_init(mtd);
+
+ if ((ret = nand_scan(mtd, numchips))) {
+ /* DBB note: i believe nand_release is necessary here, as
+ buffers may have been allocated in nand_base. Check with
+ Thomas. FIX ME! */
+ /* nand_release will call del_mtd_device, but we haven't yet
+ added it. This is handled without incident by
+ del_mtd_device, as far as I can tell. */
+ nand_release(mtd);
+ kfree(mtd);
+ goto fail;
+ }
+
+ /* Success! */
+ doclist = mtd;
+ return 0;
+
+notfound:
+ /* Put back the contents of the DOCControl register, in case it's not
+ actually a DiskOnChip. */
+ WriteDOC(save_control, virtadr, DOCControl);
+fail:
+ iounmap(virtadr);
+ return ret;
+}
+
+static void release_nanddoc(void)
+{
+ struct mtd_info *mtd, *nextmtd;
+ struct nand_chip *nand;
+ struct doc_priv *doc;
+
+ for (mtd = doclist; mtd; mtd = nextmtd) {
+ nand = mtd->priv;
+ doc = nand->priv;
+
+ nextmtd = doc->nextdoc;
+ nand_release(mtd);
+ iounmap(doc->virtadr);
+ kfree(mtd);
+ }
+}
+
+static int __init init_nanddoc(void)
+{
+ int i, ret = 0;
+
+ /* We could create the decoder on demand, if memory is a concern.
+ * This way we have it handy, if an error happens
+ *
+ * Symbolsize is 10 (bits)
+ * Primitve polynomial is x^10+x^3+1
+ * first consecutive root is 510
+ * primitve element to generate roots = 1
+ * generator polinomial degree = 4
+ */
+ rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
+ if (!rs_decoder) {
+ printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
+ return -ENOMEM;
+ }
+
+ if (doc_config_location) {
+ printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
+ ret = doc_probe(doc_config_location);
+ if (ret < 0)
+ goto outerr;
+ } else {
+ for (i=0; (doc_locations[i] != 0xffffffff); i++) {
+ doc_probe(doc_locations[i]);
+ }
+ }
+ /* No banner message any more. Print a message if no DiskOnChip
+ found, so the user knows we at least tried. */
+ if (!doclist) {
+ printk(KERN_INFO "No valid DiskOnChip devices found\n");
+ ret = -ENODEV;
+ goto outerr;
+ }
+ return 0;
+outerr:
+ free_rs(rs_decoder);
+ return ret;
+}
+
+static void __exit cleanup_nanddoc(void)
+{
+ /* Cleanup the nand/DoC resources */
+ release_nanddoc();
+
+ /* Free the reed solomon resources */
+ if (rs_decoder) {
+ free_rs(rs_decoder);
+ }
+}
+
+module_init(init_nanddoc);
+module_exit(cleanup_nanddoc);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");
diff --git a/drivers/nand/nand.c b/drivers/nand/nand.c
new file mode 100644
index 0000000000..d187c89ea1
--- /dev/null
+++ b/drivers/nand/nand.c
@@ -0,0 +1,71 @@
+/*
+ * (C) Copyright 2005
+ * 2N Telekomunikace, a.s. <www.2n.cz>
+ * Ladislav Michl <michl@2n.cz>
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <nand.h>
+
+#ifndef CFG_NAND_BASE_LIST
+#define CFG_NAND_BASE_LIST { CFG_NAND_BASE }
+#endif
+
+int nand_curr_device = -1;
+nand_info_t nand_info[CFG_MAX_NAND_DEVICE];
+
+static struct nand_chip nand_chip[CFG_MAX_NAND_DEVICE];
+static ulong base_address[CFG_MAX_NAND_DEVICE] = CFG_NAND_BASE_LIST;
+
+static const char default_nand_name[] = "nand";
+
+extern void board_nand_init(struct nand_chip *nand);
+
+static void nand_init_chip(struct mtd_info *mtd, struct nand_chip *nand,
+ ulong base_addr)
+{
+ mtd->priv = nand;
+
+ nand->IO_ADDR_R = nand->IO_ADDR_W = base_addr;
+ board_nand_init(nand);
+
+ if (nand_scan(mtd, 1) == 0) {
+ if (!mtd->name)
+ mtd->name = default_nand_name;
+ } else
+ mtd->name = NULL;
+
+}
+
+void nand_init(void)
+{
+ int i;
+
+ for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) {
+ nand_init_chip(&nand_info[i], &nand_chip[i], base_address[i]);
+ if (nand_curr_device == -1)
+ nand_curr_device = i;
+ }
+}
+
+#endif
diff --git a/drivers/nand/nand_base.c b/drivers/nand/nand_base.c
new file mode 100644
index 0000000000..c423512f18
--- /dev/null
+++ b/drivers/nand/nand_base.c
@@ -0,0 +1,2630 @@
+/*
+ * drivers/mtd/nand.c
+ *
+ * Overview:
+ * This is the generic MTD driver for NAND flash devices. It should be
+ * capable of working with almost all NAND chips currently available.
+ * Basic support for AG-AND chips is provided.
+ *
+ * Additional technical information is available on
+ * http://www.linux-mtd.infradead.org/tech/nand.html
+ *
+ * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ * 2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * 02-08-2004 tglx: support for strange chips, which cannot auto increment
+ * pages on read / read_oob
+ *
+ * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
+ * pointed this out, as he marked an auto increment capable chip
+ * as NOAUTOINCR in the board driver.
+ * Make reads over block boundaries work too
+ *
+ * 04-14-2004 tglx: first working version for 2k page size chips
+ *
+ * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
+ *
+ * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
+ * among multiple independend devices. Suggestions and initial patch
+ * from Ben Dooks <ben-mtd@fluff.org>
+ *
+ * Credits:
+ * David Woodhouse for adding multichip support
+ *
+ * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ * rework for 2K page size chips
+ *
+ * TODO:
+ * Enable cached programming for 2k page size chips
+ * Check, if mtd->ecctype should be set to MTD_ECC_HW
+ * if we have HW ecc support.
+ * The AG-AND chips have nice features for speed improvement,
+ * which are not supported yet. Read / program 4 pages in one go.
+ *
+ * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+/* XXX U-BOOT XXX */
+#if 0
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/interrupt.h>
+#include <linux/bitops.h>
+#include <asm/io.h>
+
+#ifdef CONFIG_MTD_PARTITIONS
+#include <linux/mtd/partitions.h>
+#endif
+
+#else
+
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <malloc.h>
+#include <watchdog.h>
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+
+#include <asm/io.h>
+#include <asm/errno.h>
+
+#ifdef CONFIG_JFFS2_NAND
+#include <jffs2/jffs2.h>
+#endif
+
+#endif
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_oobinfo nand_oob_8 = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 3,
+ .eccpos = {0, 1, 2},
+ .oobfree = { {3, 2}, {6, 2} }
+};
+
+static struct nand_oobinfo nand_oob_16 = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 6,
+ .eccpos = {0, 1, 2, 3, 6, 7},
+ .oobfree = { {8, 8} }
+};
+
+static struct nand_oobinfo nand_oob_64 = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 24,
+ .eccpos = {
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63},
+ .oobfree = { {2, 38} }
+};
+
+/* This is used for padding purposes in nand_write_oob */
+static u_char ffchars[] = {
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+};
+
+/*
+ * NAND low-level MTD interface functions
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
+
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
+/* XXX U-BOOT XXX */
+#if 0
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t * retlen);
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+#endif
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
+static void nand_sync (struct mtd_info *mtd);
+
+/* Some internal functions */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
+ struct nand_oobinfo *oobsel, int mode);
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
+ u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
+#else
+#define nand_verify_pages(...) (0)
+#endif
+
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
+
+/**
+ * nand_release_device - [GENERIC] release chip
+ * @mtd: MTD device structure
+ *
+ * Deselect, release chip lock and wake up anyone waiting on the device
+ */
+/* XXX U-BOOT XXX */
+#if 0
+static void nand_release_device (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* De-select the NAND device */
+ this->select_chip(mtd, -1);
+ /* Do we have a hardware controller ? */
+ if (this->controller) {
+ spin_lock(&this->controller->lock);
+ this->controller->active = NULL;
+ spin_unlock(&this->controller->lock);
+ }
+ /* Release the chip */
+ spin_lock (&this->chip_lock);
+ this->state = FL_READY;
+ wake_up (&this->wq);
+ spin_unlock (&this->chip_lock);
+}
+#else
+#define nand_release_device(mtd) do {} while(0)
+#endif
+
+/**
+ * nand_read_byte - [DEFAULT] read one byte from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 8bit buswith
+ */
+static u_char nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_byte - [DEFAULT] write one byte to the chip
+ * @mtd: MTD device structure
+ * @byte: pointer to data byte to write
+ *
+ * Default write function for 8it buswith
+ */
+static void nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+ struct nand_chip *this = mtd->priv;
+ writeb(byte, this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswith with
+ * endianess conversion
+ */
+static u_char nand_read_byte16(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
+}
+
+/**
+ * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
+ * @mtd: MTD device structure
+ * @byte: pointer to data byte to write
+ *
+ * Default write function for 16bit buswith with
+ * endianess conversion
+ */
+static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
+{
+ struct nand_chip *this = mtd->priv;
+ writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_word - [DEFAULT] read one word from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswith without
+ * endianess conversion
+ */
+static u16 nand_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_word - [DEFAULT] write one word to the chip
+ * @mtd: MTD device structure
+ * @word: data word to write
+ *
+ * Default write function for 16bit buswith without
+ * endianess conversion
+ */
+static void nand_write_word(struct mtd_info *mtd, u16 word)
+{
+ struct nand_chip *this = mtd->priv;
+ writew(word, this->IO_ADDR_W);
+}
+
+/**
+ * nand_select_chip - [DEFAULT] control CE line
+ * @mtd: MTD device structure
+ * @chip: chipnumber to select, -1 for deselect
+ *
+ * Default select function for 1 chip devices.
+ */
+static void nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ switch(chip) {
+ case -1:
+ this->hwcontrol(mtd, NAND_CTL_CLRNCE);
+ break;
+ case 0:
+ this->hwcontrol(mtd, NAND_CTL_SETNCE);
+ break;
+
+ default:
+ BUG();
+ }
+}
+
+/**
+ * nand_write_buf - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 8bit buswith
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ writeb(buf[i], this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_buf - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 8bit buswith
+ */
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ buf[i] = readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf - [DEFAULT] Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * Default verify function for 8bit buswith
+ */
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ if (buf[i] != readb(this->IO_ADDR_R))
+ return -EFAULT;
+
+ return 0;
+}
+
+/**
+ * nand_write_buf16 - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 16bit buswith
+ */
+static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++)
+ writew(p[i], this->IO_ADDR_W);
+
+}
+
+/**
+ * nand_read_buf16 - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 16bit buswith
+ */
+static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++)
+ p[i] = readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * Default verify function for 16bit buswith
+ */
+static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++)
+ if (p[i] != readw(this->IO_ADDR_R))
+ return -EFAULT;
+
+ return 0;
+}
+
+/**
+ * nand_block_bad - [DEFAULT] Read bad block marker from the chip
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @getchip: 0, if the chip is already selected
+ *
+ * Check, if the block is bad.
+ */
+static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ int page, chipnr, res = 0;
+ struct nand_chip *this = mtd->priv;
+ u16 bad;
+
+ if (getchip) {
+ page = (int)(ofs >> this->page_shift);
+ chipnr = (int)(ofs >> this->chip_shift);
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_READING);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+ } else
+ page = (int) ofs;
+
+ if (this->options & NAND_BUSWIDTH_16) {
+ this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
+ bad = cpu_to_le16(this->read_word(mtd));
+ if (this->badblockpos & 0x1)
+ bad >>= 1;
+ if ((bad & 0xFF) != 0xff)
+ res = 1;
+ } else {
+ this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
+ if (this->read_byte(mtd) != 0xff)
+ res = 1;
+ }
+
+ if (getchip) {
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+ }
+
+ return res;
+}
+
+/**
+ * nand_default_block_markbad - [DEFAULT] mark a block bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * This is the default implementation, which can be overridden by
+ * a hardware specific driver.
+*/
+static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *this = mtd->priv;
+ u_char buf[2] = {0, 0};
+ size_t retlen;
+ int block;
+
+ /* Get block number */
+ block = ((int) ofs) >> this->bbt_erase_shift;
+ this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+ /* Do we have a flash based bad block table ? */
+ if (this->options & NAND_USE_FLASH_BBT)
+ return nand_update_bbt (mtd, ofs);
+
+ /* We write two bytes, so we dont have to mess with 16 bit access */
+ ofs += mtd->oobsize + (this->badblockpos & ~0x01);
+ return nand_write_oob (mtd, ofs , 2, &retlen, buf);
+}
+
+/**
+ * nand_check_wp - [GENERIC] check if the chip is write protected
+ * @mtd: MTD device structure
+ * Check, if the device is write protected
+ *
+ * The function expects, that the device is already selected
+ */
+static int nand_check_wp (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ /* Check the WP bit */
+ this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+ return (this->read_byte(mtd) & 0x80) ? 0 : 1;
+}
+
+/**
+ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @getchip: 0, if the chip is already selected
+ * @allowbbt: 1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
+{
+ struct nand_chip *this = mtd->priv;
+
+ if (!this->bbt)
+ return this->block_bad(mtd, ofs, getchip);
+
+ /* Return info from the table */
+ return nand_isbad_bbt (mtd, ofs, allowbbt);
+}
+
+/**
+ * nand_command - [DEFAULT] Send command to NAND device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This function is used for small page
+ * devices (256/512 Bytes per page)
+ */
+static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ register struct nand_chip *this = mtd->priv;
+
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->oobblock) {
+ /* OOB area */
+ column -= mtd->oobblock;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ this->write_byte(mtd, readcmd);
+ }
+ this->write_byte(mtd, command);
+
+ /* Set ALE and clear CLE to start address cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+ if (column != -1 || page_addr != -1) {
+ this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ this->write_byte(mtd, column);
+ }
+ if (page_addr != -1) {
+ this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+ /* One more address cycle for devices > 32MiB */
+ if (this->chipsize > (32 << 20))
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
+ }
+ /* Latch in address */
+ this->hwcontrol(mtd, NAND_CTL_CLRALE);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ udelay(this->chip_delay);
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_STATUS);
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_command_lp - [DEFAULT] Send command to NAND large page device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This is the version for the new large page devices
+ * We dont have the seperate regions as we have in the small page devices.
+ * We must emulate NAND_CMD_READOOB to keep the code compatible.
+ *
+ */
+static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ register struct nand_chip *this = mtd->priv;
+
+ /* Emulate NAND_CMD_READOOB */
+ if (command == NAND_CMD_READOOB) {
+ column += mtd->oobblock;
+ command = NAND_CMD_READ0;
+ }
+
+
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /* Write out the command to the device. */
+ this->write_byte(mtd, command);
+ /* End command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+ if (column != -1 || page_addr != -1) {
+ this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ this->write_byte(mtd, column & 0xff);
+ this->write_byte(mtd, column >> 8);
+ }
+ if (page_addr != -1) {
+ this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+ /* One more address cycle for devices > 128MiB */
+ if (this->chipsize > (128 << 20))
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
+ }
+ /* Latch in address */
+ this->hwcontrol(mtd, NAND_CTL_CLRALE);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_CACHEDPROG:
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ udelay(this->chip_delay);
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_STATUS);
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ case NAND_CMD_READ0:
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /* Write out the start read command */
+ this->write_byte(mtd, NAND_CMD_READSTART);
+ /* End command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ /* Fall through into ready check */
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_get_device - [GENERIC] Get chip for selected access
+ * @this: the nand chip descriptor
+ * @mtd: MTD device structure
+ * @new_state: the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+/* XXX U-BOOT XXX */
+#if 0
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
+{
+ struct nand_chip *active = this;
+
+ DECLARE_WAITQUEUE (wait, current);
+
+ /*
+ * Grab the lock and see if the device is available
+ */
+retry:
+ /* Hardware controller shared among independend devices */
+ if (this->controller) {
+ spin_lock (&this->controller->lock);
+ if (this->controller->active)
+ active = this->controller->active;
+ else
+ this->controller->active = this;
+ spin_unlock (&this->controller->lock);
+ }
+
+ if (active == this) {
+ spin_lock (&this->chip_lock);
+ if (this->state == FL_READY) {
+ this->state = new_state;
+ spin_unlock (&this->chip_lock);
+ return;
+ }
+ }
+ set_current_state (TASK_UNINTERRUPTIBLE);
+ add_wait_queue (&active->wq, &wait);
+ spin_unlock (&active->chip_lock);
+ schedule ();
+ remove_wait_queue (&active->wq, &wait);
+ goto retry;
+}
+#else
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) {}
+#endif
+
+/**
+ * nand_wait - [DEFAULT] wait until the command is done
+ * @mtd: MTD device structure
+ * @this: NAND chip structure
+ * @state: state to select the max. timeout value
+ *
+ * Wait for command done. This applies to erase and program only
+ * Erase can take up to 400ms and program up to 20ms according to
+ * general NAND and SmartMedia specs
+ *
+*/
+/* XXX U-BOOT XXX */
+#if 0
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+ unsigned long timeo = jiffies;
+ int status;
+
+ if (state == FL_ERASING)
+ timeo += (HZ * 400) / 1000;
+ else
+ timeo += (HZ * 20) / 1000;
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+
+ if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
+ this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
+ else
+ this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+
+ while (time_before(jiffies, timeo)) {
+ /* Check, if we were interrupted */
+ if (this->state != state)
+ return 0;
+
+ if (this->dev_ready) {
+ if (this->dev_ready(mtd))
+ break;
+ } else {
+ if (this->read_byte(mtd) & NAND_STATUS_READY)
+ break;
+ }
+ yield ();
+ }
+ status = (int) this->read_byte(mtd);
+ return status;
+
+ return 0;
+}
+#else
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+ /* TODO */
+ return 0;
+}
+#endif
+
+/**
+ * nand_write_page - [GENERIC] write one page
+ * @mtd: MTD device structure
+ * @this: NAND chip structure
+ * @page: startpage inside the chip, must be called with (page & this->pagemask)
+ * @oob_buf: out of band data buffer
+ * @oobsel: out of band selecttion structre
+ * @cached: 1 = enable cached programming if supported by chip
+ *
+ * Nand_page_program function is used for write and writev !
+ * This function will always program a full page of data
+ * If you call it with a non page aligned buffer, you're lost :)
+ *
+ * Cached programming is not supported yet.
+ */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
+ u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
+{
+ int i, status;
+ u_char ecc_code[32];
+ int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+ int *oob_config = oobsel->eccpos;
+ int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
+ int eccbytes = 0;
+
+ /* FIXME: Enable cached programming */
+ cached = 0;
+
+ /* Send command to begin auto page programming */
+ this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
+
+ /* Write out complete page of data, take care of eccmode */
+ switch (eccmode) {
+ /* No ecc, write all */
+ case NAND_ECC_NONE:
+ printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
+ this->write_buf(mtd, this->data_poi, mtd->oobblock);
+ break;
+
+ /* Software ecc 3/256, write all */
+ case NAND_ECC_SOFT:
+ for (; eccsteps; eccsteps--) {
+ this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+ for (i = 0; i < 3; i++, eccidx++)
+ oob_buf[oob_config[eccidx]] = ecc_code[i];
+ datidx += this->eccsize;
+ }
+ this->write_buf(mtd, this->data_poi, mtd->oobblock);
+ break;
+ default:
+ eccbytes = this->eccbytes;
+ for (; eccsteps; eccsteps--) {
+ /* enable hardware ecc logic for write */
+ this->enable_hwecc(mtd, NAND_ECC_WRITE);
+ this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
+ this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+ for (i = 0; i < eccbytes; i++, eccidx++)
+ oob_buf[oob_config[eccidx]] = ecc_code[i];
+ /* If the hardware ecc provides syndromes then
+ * the ecc code must be written immidiately after
+ * the data bytes (words) */
+ if (this->options & NAND_HWECC_SYNDROME)
+ this->write_buf(mtd, ecc_code, eccbytes);
+ datidx += this->eccsize;
+ }
+ break;
+ }
+
+ /* Write out OOB data */
+ if (this->options & NAND_HWECC_SYNDROME)
+ this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
+ else
+ this->write_buf(mtd, oob_buf, mtd->oobsize);
+
+ /* Send command to actually program the data */
+ this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
+
+ if (!cached) {
+ /* call wait ready function */
+ status = this->waitfunc (mtd, this, FL_WRITING);
+ /* See if device thinks it succeeded */
+ if (status & 0x01) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
+ return -EIO;
+ }
+ } else {
+ /* FIXME: Implement cached programming ! */
+ /* wait until cache is ready*/
+ // status = this->waitfunc (mtd, this, FL_CACHEDRPG);
+ }
+ return 0;
+}
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+/**
+ * nand_verify_pages - [GENERIC] verify the chip contents after a write
+ * @mtd: MTD device structure
+ * @this: NAND chip structure
+ * @page: startpage inside the chip, must be called with (page & this->pagemask)
+ * @numpages: number of pages to verify
+ * @oob_buf: out of band data buffer
+ * @oobsel: out of band selecttion structre
+ * @chipnr: number of the current chip
+ * @oobmode: 1 = full buffer verify, 0 = ecc only
+ *
+ * The NAND device assumes that it is always writing to a cleanly erased page.
+ * Hence, it performs its internal write verification only on bits that
+ * transitioned from 1 to 0. The device does NOT verify the whole page on a
+ * byte by byte basis. It is possible that the page was not completely erased
+ * or the page is becoming unusable due to wear. The read with ECC would catch
+ * the error later when the ECC page check fails, but we would rather catch
+ * it early in the page write stage. Better to write no data than invalid data.
+ */
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
+ u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
+{
+ int i, j, datidx = 0, oobofs = 0, res = -EIO;
+ int eccsteps = this->eccsteps;
+ int hweccbytes;
+ u_char oobdata[64];
+
+ hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
+
+ /* Send command to read back the first page */
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
+
+ for(;;) {
+ for (j = 0; j < eccsteps; j++) {
+ /* Loop through and verify the data */
+ if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+ goto out;
+ }
+ datidx += mtd->eccsize;
+ /* Have we a hw generator layout ? */
+ if (!hweccbytes)
+ continue;
+ if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+ goto out;
+ }
+ oobofs += hweccbytes;
+ }
+
+ /* check, if we must compare all data or if we just have to
+ * compare the ecc bytes
+ */
+ if (oobmode) {
+ if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+ goto out;
+ }
+ } else {
+ /* Read always, else autoincrement fails */
+ this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
+
+ if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
+ int ecccnt = oobsel->eccbytes;
+
+ for (i = 0; i < ecccnt; i++) {
+ int idx = oobsel->eccpos[i];
+ if (oobdata[idx] != oob_buf[oobofs + idx] ) {
+ DEBUG (MTD_DEBUG_LEVEL0,
+ "%s: Failed ECC write "
+ "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
+ goto out;
+ }
+ }
+ }
+ }
+ oobofs += mtd->oobsize - hweccbytes * eccsteps;
+ page++;
+ numpages--;
+
+ /* Apply delay or wait for ready/busy pin
+ * Do this before the AUTOINCR check, so no problems
+ * arise if a chip which does auto increment
+ * is marked as NOAUTOINCR by the board driver.
+ * Do this also before returning, so the chip is
+ * ready for the next command.
+ */
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ /* All done, return happy */
+ if (!numpages)
+ return 0;
+
+
+ /* Check, if the chip supports auto page increment */
+ if (!NAND_CANAUTOINCR(this))
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+ }
+ /*
+ * Terminate the read command. We come here in case of an error
+ * So we must issue a reset command.
+ */
+out:
+ this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
+ return res;
+}
+#endif
+
+/**
+ * nand_read - [MTD Interface] MTD compability function for nand_read_ecc
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ *
+ * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL
+*/
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+ return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
+}
+
+
+/**
+ * nand_read_ecc - [MTD Interface] Read data with ECC
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ * @oob_buf: filesystem supplied oob data buffer
+ * @oobsel: oob selection structure
+ *
+ * NAND read with ECC
+ */
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
+{
+ int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
+ int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
+ struct nand_chip *this = mtd->priv;
+ u_char *data_poi, *oob_data = oob_buf;
+ u_char ecc_calc[32];
+ u_char ecc_code[32];
+ int eccmode, eccsteps;
+ int *oob_config, datidx;
+ int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+ int eccbytes;
+ int compareecc = 1;
+ int oobreadlen;
+
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
+ *retlen = 0;
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd ,FL_READING);
+
+ /* use userspace supplied oobinfo, if zero */
+ if (oobsel == NULL)
+ oobsel = &mtd->oobinfo;
+
+ /* Autoplace of oob data ? Use the default placement scheme */
+ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
+ oobsel = this->autooob;
+
+ eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+ oob_config = oobsel->eccpos;
+
+ /* Select the NAND device */
+ chipnr = (int)(from >> this->chip_shift);
+ this->select_chip(mtd, chipnr);
+
+ /* First we calculate the starting page */
+ realpage = (int) (from >> this->page_shift);
+ page = realpage & this->pagemask;
+
+ /* Get raw starting column */
+ col = from & (mtd->oobblock - 1);
+
+ end = mtd->oobblock;
+ ecc = this->eccsize;
+ eccbytes = this->eccbytes;
+
+ if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
+ compareecc = 0;
+
+ oobreadlen = mtd->oobsize;
+ if (this->options & NAND_HWECC_SYNDROME)
+ oobreadlen -= oobsel->eccbytes;
+
+ /* Loop until all data read */
+ while (read < len) {
+
+ int aligned = (!col && (len - read) >= end);
+ /*
+ * If the read is not page aligned, we have to read into data buffer
+ * due to ecc, else we read into return buffer direct
+ */
+ if (aligned)
+ data_poi = &buf[read];
+ else
+ data_poi = this->data_buf;
+
+ /* Check, if we have this page in the buffer
+ *
+ * FIXME: Make it work when we must provide oob data too,
+ * check the usage of data_buf oob field
+ */
+ if (realpage == this->pagebuf && !oob_buf) {
+ /* aligned read ? */
+ if (aligned)
+ memcpy (data_poi, this->data_buf, end);
+ goto readdata;
+ }
+
+ /* Check, if we must send the read command */
+ if (sndcmd) {
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+ sndcmd = 0;
+ }
+
+ /* get oob area, if we have no oob buffer from fs-driver */
+ if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
+ oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
+ oob_data = &this->data_buf[end];
+
+ eccsteps = this->eccsteps;
+
+ switch (eccmode) {
+ case NAND_ECC_NONE: { /* No ECC, Read in a page */
+/* XXX U-BOOT XXX */
+#if 0
+ static unsigned long lastwhinge = 0;
+ if ((lastwhinge / HZ) != (jiffies / HZ)) {
+ printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
+ lastwhinge = jiffies;
+ }
+#else
+ puts("Reading data from NAND FLASH without ECC is not recommended\n");
+#endif
+ this->read_buf(mtd, data_poi, end);
+ break;
+ }
+
+ case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
+ this->read_buf(mtd, data_poi, end);
+ for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
+ this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+ break;
+
+ default:
+ for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
+ this->enable_hwecc(mtd, NAND_ECC_READ);
+ this->read_buf(mtd, &data_poi[datidx], ecc);
+
+ /* HW ecc with syndrome calculation must read the
+ * syndrome from flash immidiately after the data */
+ if (!compareecc) {
+ /* Some hw ecc generators need to know when the
+ * syndrome is read from flash */
+ this->enable_hwecc(mtd, NAND_ECC_READSYN);
+ this->read_buf(mtd, &oob_data[i], eccbytes);
+ /* We calc error correction directly, it checks the hw
+ * generator for an error, reads back the syndrome and
+ * does the error correction on the fly */
+ if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
+ "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
+ ecc_failed++;
+ }
+ } else {
+ this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+ }
+ }
+ break;
+ }
+
+ /* read oobdata */
+ this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
+
+ /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
+ if (!compareecc)
+ goto readoob;
+
+ /* Pick the ECC bytes out of the oob data */
+ for (j = 0; j < oobsel->eccbytes; j++)
+ ecc_code[j] = oob_data[oob_config[j]];
+
+ /* correct data, if neccecary */
+ for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
+ ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
+
+ /* Get next chunk of ecc bytes */
+ j += eccbytes;
+
+ /* Check, if we have a fs supplied oob-buffer,
+ * This is the legacy mode. Used by YAFFS1
+ * Should go away some day
+ */
+ if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
+ int *p = (int *)(&oob_data[mtd->oobsize]);
+ p[i] = ecc_status;
+ }
+
+ if (ecc_status == -1) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
+ ecc_failed++;
+ }
+ }
+
+ readoob:
+ /* check, if we have a fs supplied oob-buffer */
+ if (oob_buf) {
+ /* without autoplace. Legacy mode used by YAFFS1 */
+ switch(oobsel->useecc) {
+ case MTD_NANDECC_AUTOPLACE:
+ case MTD_NANDECC_AUTOPL_USR:
+ /* Walk through the autoplace chunks */
+ for (i = 0, j = 0; j < mtd->oobavail; i++) {
+ int from = oobsel->oobfree[i][0];
+ int num = oobsel->oobfree[i][1];
+ memcpy(&oob_buf[oob], &oob_data[from], num);
+ j+= num;
+ }
+ oob += mtd->oobavail;
+ break;
+ case MTD_NANDECC_PLACE:
+ /* YAFFS1 legacy mode */
+ oob_data += this->eccsteps * sizeof (int);
+ default:
+ oob_data += mtd->oobsize;
+ }
+ }
+ readdata:
+ /* Partial page read, transfer data into fs buffer */
+ if (!aligned) {
+ for (j = col; j < end && read < len; j++)
+ buf[read++] = data_poi[j];
+ this->pagebuf = realpage;
+ } else
+ read += mtd->oobblock;
+
+ /* Apply delay or wait for ready/busy pin
+ * Do this before the AUTOINCR check, so no problems
+ * arise if a chip which does auto increment
+ * is marked as NOAUTOINCR by the board driver.
+ */
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ if (read == len)
+ break;
+
+ /* For subsequent reads align to page boundary. */
+ col = 0;
+ /* Increment page address */
+ realpage++;
+
+ page = realpage & this->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ /* Check, if the chip supports auto page increment
+ * or if we have hit a block boundary.
+ */
+ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+ sndcmd = 1;
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /*
+ * Return success, if no ECC failures, else -EBADMSG
+ * fs driver will take care of that, because
+ * retlen == desired len and result == -EBADMSG
+ */
+ *retlen = read;
+ return ecc_failed ? -EBADMSG : 0;
+}
+
+/**
+ * nand_read_oob - [MTD Interface] NAND read out-of-band
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ *
+ * NAND read out-of-band data from the spare area
+ */
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+ int i, col, page, chipnr;
+ struct nand_chip *this = mtd->priv;
+ int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+ /* Shift to get page */
+ page = (int)(from >> this->page_shift);
+ chipnr = (int)(from >> this->chip_shift);
+
+ /* Mask to get column */
+ col = from & (mtd->oobsize - 1);
+
+ /* Initialize return length value */
+ *retlen = 0;
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
+ *retlen = 0;
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd , FL_READING);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Send the read command */
+ this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
+ /*
+ * Read the data, if we read more than one page
+ * oob data, let the device transfer the data !
+ */
+ i = 0;
+ while (i < len) {
+ int thislen = mtd->oobsize - col;
+ thislen = min_t(int, thislen, len);
+ this->read_buf(mtd, &buf[i], thislen);
+ i += thislen;
+
+ /* Apply delay or wait for ready/busy pin
+ * Do this before the AUTOINCR check, so no problems
+ * arise if a chip which does auto increment
+ * is marked as NOAUTOINCR by the board driver.
+ */
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ /* Read more ? */
+ if (i < len) {
+ page++;
+ col = 0;
+
+ /* Check, if we cross a chip boundary */
+ if (!(page & this->pagemask)) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+
+ /* Check, if the chip supports auto page increment
+ * or if we have hit a block boundary.
+ */
+ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
+ /* For subsequent page reads set offset to 0 */
+ this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
+ }
+ }
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /* Return happy */
+ *retlen = len;
+ return 0;
+}
+
+/**
+ * nand_read_raw - [GENERIC] Read raw data including oob into buffer
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @ooblen: number of oob data bytes to read
+ *
+ * Read raw data including oob into buffer
+ */
+int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
+{
+ struct nand_chip *this = mtd->priv;
+ int page = (int) (from >> this->page_shift);
+ int chip = (int) (from >> this->chip_shift);
+ int sndcmd = 1;
+ int cnt = 0;
+ int pagesize = mtd->oobblock + mtd->oobsize;
+ int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd , FL_READING);
+
+ this->select_chip (mtd, chip);
+
+ /* Add requested oob length */
+ len += ooblen;
+
+ while (len) {
+ if (sndcmd)
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
+ sndcmd = 0;
+
+ this->read_buf (mtd, &buf[cnt], pagesize);
+
+ len -= pagesize;
+ cnt += pagesize;
+ page++;
+
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ /* Check, if the chip supports auto page increment */
+ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+ sndcmd = 1;
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+ return 0;
+}
+
+
+/**
+ * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
+ * @mtd: MTD device structure
+ * @fsbuf: buffer given by fs driver
+ * @oobsel: out of band selection structre
+ * @autoplace: 1 = place given buffer into the oob bytes
+ * @numpages: number of pages to prepare
+ *
+ * Return:
+ * 1. Filesystem buffer available and autoplacement is off,
+ * return filesystem buffer
+ * 2. No filesystem buffer or autoplace is off, return internal
+ * buffer
+ * 3. Filesystem buffer is given and autoplace selected
+ * put data from fs buffer into internal buffer and
+ * retrun internal buffer
+ *
+ * Note: The internal buffer is filled with 0xff. This must
+ * be done only once, when no autoplacement happens
+ * Autoplacement sets the buffer dirty flag, which
+ * forces the 0xff fill before using the buffer again.
+ *
+*/
+static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
+ int autoplace, int numpages)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, len, ofs;
+
+ /* Zero copy fs supplied buffer */
+ if (fsbuf && !autoplace)
+ return fsbuf;
+
+ /* Check, if the buffer must be filled with ff again */
+ if (this->oobdirty) {
+ memset (this->oob_buf, 0xff,
+ mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+ this->oobdirty = 0;
+ }
+
+ /* If we have no autoplacement or no fs buffer use the internal one */
+ if (!autoplace || !fsbuf)
+ return this->oob_buf;
+
+ /* Walk through the pages and place the data */
+ this->oobdirty = 1;
+ ofs = 0;
+ while (numpages--) {
+ for (i = 0, len = 0; len < mtd->oobavail; i++) {
+ int to = ofs + oobsel->oobfree[i][0];
+ int num = oobsel->oobfree[i][1];
+ memcpy (&this->oob_buf[to], fsbuf, num);
+ len += num;
+ fsbuf += num;
+ }
+ ofs += mtd->oobavail;
+ }
+ return this->oob_buf;
+}
+
+#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
+
+/**
+ * nand_write - [MTD Interface] compability function for nand_write_ecc
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
+ *
+*/
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+ return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
+}
+
+/**
+ * nand_write_ecc - [MTD Interface] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ * @eccbuf: filesystem supplied oob data buffer
+ * @oobsel: oob selection structure
+ *
+ * NAND write with ECC
+ */
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
+{
+ int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
+ int autoplace = 0, numpages, totalpages;
+ struct nand_chip *this = mtd->priv;
+ u_char *oobbuf, *bufstart;
+ int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+ /* Initialize retlen, in case of early exit */
+ *retlen = 0;
+
+ /* Do not allow write past end of device */
+ if ((to + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
+ return -EINVAL;
+ }
+
+ /* reject writes, which are not page aligned */
+ if (NOTALIGNED (to) || NOTALIGNED(len)) {
+ printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_WRITING);
+
+ /* Calculate chipnr */
+ chipnr = (int)(to >> this->chip_shift);
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ goto out;
+
+ /* if oobsel is NULL, use chip defaults */
+ if (oobsel == NULL)
+ oobsel = &mtd->oobinfo;
+
+ /* Autoplace of oob data ? Use the default placement scheme */
+ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+ oobsel = this->autooob;
+ autoplace = 1;
+ }
+ if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
+ autoplace = 1;
+
+ /* Setup variables and oob buffer */
+ totalpages = len >> this->page_shift;
+ page = (int) (to >> this->page_shift);
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
+ this->pagebuf = -1;
+
+ /* Set it relative to chip */
+ page &= this->pagemask;
+ startpage = page;
+ /* Calc number of pages we can write in one go */
+ numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
+ oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
+ bufstart = (u_char *)buf;
+
+ /* Loop until all data is written */
+ while (written < len) {
+
+ this->data_poi = (u_char*) &buf[written];
+ /* Write one page. If this is the last page to write
+ * or the last page in this block, then use the
+ * real pageprogram command, else select cached programming
+ * if supported by the chip.
+ */
+ ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
+ if (ret) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
+ goto out;
+ }
+ /* Next oob page */
+ oob += mtd->oobsize;
+ /* Update written bytes count */
+ written += mtd->oobblock;
+ if (written == len)
+ goto cmp;
+
+ /* Increment page address */
+ page++;
+
+ /* Have we hit a block boundary ? Then we have to verify and
+ * if verify is ok, we have to setup the oob buffer for
+ * the next pages.
+ */
+ if (!(page & (ppblock - 1))){
+ int ofs;
+ this->data_poi = bufstart;
+ ret = nand_verify_pages (mtd, this, startpage,
+ page - startpage,
+ oobbuf, oobsel, chipnr, (eccbuf != NULL));
+ if (ret) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+ goto out;
+ }
+ *retlen = written;
+
+ ofs = autoplace ? mtd->oobavail : mtd->oobsize;
+ if (eccbuf)
+ eccbuf += (page - startpage) * ofs;
+ totalpages -= page - startpage;
+ numpages = min (totalpages, ppblock);
+ page &= this->pagemask;
+ startpage = page;
+ oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
+ autoplace, numpages);
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ }
+ }
+ /* Verify the remaining pages */
+cmp:
+ this->data_poi = bufstart;
+ ret = nand_verify_pages (mtd, this, startpage, totalpages,
+ oobbuf, oobsel, chipnr, (eccbuf != NULL));
+ if (!ret)
+ *retlen = written;
+ else
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+
+out:
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ return ret;
+}
+
+
+/**
+ * nand_write_oob - [MTD Interface] NAND write out-of-band
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * NAND write out-of-band
+ */
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+ int column, page, status, ret = -EIO, chipnr;
+ struct nand_chip *this = mtd->priv;
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+ /* Shift to get page */
+ page = (int) (to >> this->page_shift);
+ chipnr = (int) (to >> this->chip_shift);
+
+ /* Mask to get column */
+ column = to & (mtd->oobsize - 1);
+
+ /* Initialize return length value */
+ *retlen = 0;
+
+ /* Do not allow write past end of page */
+ if ((column + len) > mtd->oobsize) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_WRITING);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Reset the chip. Some chips (like the Toshiba TC5832DC found
+ in one of my DiskOnChip 2000 test units) will clear the whole
+ data page too if we don't do this. I have no clue why, but
+ I seem to have 'fixed' it in the doc2000 driver in
+ August 1999. dwmw2. */
+ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ goto out;
+
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page == this->pagebuf)
+ this->pagebuf = -1;
+
+ if (NAND_MUST_PAD(this)) {
+ /* Write out desired data */
+ this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
+ /* prepad 0xff for partial programming */
+ this->write_buf(mtd, ffchars, column);
+ /* write data */
+ this->write_buf(mtd, buf, len);
+ /* postpad 0xff for partial programming */
+ this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
+ } else {
+ /* Write out desired data */
+ this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
+ /* write data */
+ this->write_buf(mtd, buf, len);
+ }
+ /* Send command to program the OOB data */
+ this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = this->waitfunc (mtd, this, FL_WRITING);
+
+ /* See if device thinks it succeeded */
+ if (status & 0x01) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
+ ret = -EIO;
+ goto out;
+ }
+ /* Return happy */
+ *retlen = len;
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+ /* Send command to read back the data */
+ this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
+
+ if (this->verify_buf(mtd, buf, len)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
+ ret = -EIO;
+ goto out;
+ }
+#endif
+ ret = 0;
+out:
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ return ret;
+}
+
+/* XXX U-BOOT XXX */
+#if 0
+/**
+ * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
+ * @mtd: MTD device structure
+ * @vecs: the iovectors to write
+ * @count: number of vectors
+ * @to: offset to write to
+ * @retlen: pointer to variable to store the number of written bytes
+ *
+ * NAND write with kvec. This just calls the ecc function
+ */
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
+ loff_t to, size_t * retlen)
+{
+ return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
+}
+
+/**
+ * nand_writev_ecc - [MTD Interface] write with iovec with ecc
+ * @mtd: MTD device structure
+ * @vecs: the iovectors to write
+ * @count: number of vectors
+ * @to: offset to write to
+ * @retlen: pointer to variable to store the number of written bytes
+ * @eccbuf: filesystem supplied oob data buffer
+ * @oobsel: oob selection structure
+ *
+ * NAND write with iovec with ecc
+ */
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
+ loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
+{
+ int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
+ int oob, numpages, autoplace = 0, startpage;
+ struct nand_chip *this = mtd->priv;
+ int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+ u_char *oobbuf, *bufstart;
+
+ /* Preset written len for early exit */
+ *retlen = 0;
+
+ /* Calculate total length of data */
+ total_len = 0;
+ for (i = 0; i < count; i++)
+ total_len += (int) vecs[i].iov_len;
+
+ DEBUG (MTD_DEBUG_LEVEL3,
+ "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
+
+ /* Do not allow write past end of page */
+ if ((to + total_len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
+ return -EINVAL;
+ }
+
+ /* reject writes, which are not page aligned */
+ if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
+ printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_WRITING);
+
+ /* Get the current chip-nr */
+ chipnr = (int) (to >> this->chip_shift);
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ goto out;
+
+ /* if oobsel is NULL, use chip defaults */
+ if (oobsel == NULL)
+ oobsel = &mtd->oobinfo;
+
+ /* Autoplace of oob data ? Use the default placement scheme */
+ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+ oobsel = this->autooob;
+ autoplace = 1;
+ }
+ if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
+ autoplace = 1;
+
+ /* Setup start page */
+ page = (int) (to >> this->page_shift);
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
+ this->pagebuf = -1;
+
+ startpage = page & this->pagemask;
+
+ /* Loop until all kvec' data has been written */
+ len = 0;
+ while (count) {
+ /* If the given tuple is >= pagesize then
+ * write it out from the iov
+ */
+ if ((vecs->iov_len - len) >= mtd->oobblock) {
+ /* Calc number of pages we can write
+ * out of this iov in one go */
+ numpages = (vecs->iov_len - len) >> this->page_shift;
+ /* Do not cross block boundaries */
+ numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
+ oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+ bufstart = (u_char *)vecs->iov_base;
+ bufstart += len;
+ this->data_poi = bufstart;
+ oob = 0;
+ for (i = 1; i <= numpages; i++) {
+ /* Write one page. If this is the last page to write
+ * then use the real pageprogram command, else select
+ * cached programming if supported by the chip.
+ */
+ ret = nand_write_page (mtd, this, page & this->pagemask,
+ &oobbuf[oob], oobsel, i != numpages);
+ if (ret)
+ goto out;
+ this->data_poi += mtd->oobblock;
+ len += mtd->oobblock;
+ oob += mtd->oobsize;
+ page++;
+ }
+ /* Check, if we have to switch to the next tuple */
+ if (len >= (int) vecs->iov_len) {
+ vecs++;
+ len = 0;
+ count--;
+ }
+ } else {
+ /* We must use the internal buffer, read data out of each
+ * tuple until we have a full page to write
+ */
+ int cnt = 0;
+ while (cnt < mtd->oobblock) {
+ if (vecs->iov_base != NULL && vecs->iov_len)
+ this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
+ /* Check, if we have to switch to the next tuple */
+ if (len >= (int) vecs->iov_len) {
+ vecs++;
+ len = 0;
+ count--;
+ }
+ }
+ this->pagebuf = page;
+ this->data_poi = this->data_buf;
+ bufstart = this->data_poi;
+ numpages = 1;
+ oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+ ret = nand_write_page (mtd, this, page & this->pagemask,
+ oobbuf, oobsel, 0);
+ if (ret)
+ goto out;
+ page++;
+ }
+
+ this->data_poi = bufstart;
+ ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
+ if (ret)
+ goto out;
+
+ written += mtd->oobblock * numpages;
+ /* All done ? */
+ if (!count)
+ break;
+
+ startpage = page & this->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!startpage) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ }
+ ret = 0;
+out:
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ *retlen = written;
+ return ret;
+}
+#endif
+
+/**
+ * single_erease_cmd - [GENERIC] NAND standard block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * Standard erase command for NAND chips
+ */
+static void single_erase_cmd (struct mtd_info *mtd, int page)
+{
+ struct nand_chip *this = mtd->priv;
+ /* Send commands to erase a block */
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+ this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * multi_erease_cmd - [GENERIC] AND specific block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * AND multi block erase command function
+ * Erase 4 consecutive blocks
+ */
+static void multi_erase_cmd (struct mtd_info *mtd, int page)
+{
+ struct nand_chip *this = mtd->priv;
+ /* Send commands to erase a block */
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+ this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * nand_erase - [MTD Interface] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ *
+ * Erase one ore more blocks
+ */
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
+{
+ return nand_erase_nand (mtd, instr, 0);
+}
+
+/**
+ * nand_erase_intern - [NAND Interface] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ * @allowbbt: allow erasing the bbt area
+ *
+ * Erase one ore more blocks
+ */
+int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
+{
+ int page, len, status, pages_per_block, ret, chipnr;
+ struct nand_chip *this = mtd->priv;
+
+ DEBUG (MTD_DEBUG_LEVEL3,
+ "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
+
+ /* Start address must align on block boundary */
+ if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
+ return -EINVAL;
+ }
+
+ /* Length must align on block boundary */
+ if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
+ return -EINVAL;
+ }
+
+ /* Do not allow erase past end of device */
+ if ((instr->len + instr->addr) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
+ return -EINVAL;
+ }
+
+ instr->fail_addr = 0xffffffff;
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_ERASING);
+
+ /* Shift to get first page */
+ page = (int) (instr->addr >> this->page_shift);
+ chipnr = (int) (instr->addr >> this->chip_shift);
+
+ /* Calculate pages in each block */
+ pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Check the WP bit */
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /* Loop through the pages */
+ len = instr->len;
+
+ instr->state = MTD_ERASING;
+
+ while (len) {
+ /* Check if we have a bad block, we do not erase bad blocks ! */
+ if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
+ printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /* Invalidate the page cache, if we erase the block which contains
+ the current cached page */
+ if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
+ this->pagebuf = -1;
+
+ this->erase_cmd (mtd, page & this->pagemask);
+
+ status = this->waitfunc (mtd, this, FL_ERASING);
+
+ /* See if block erase succeeded */
+ if (status & 0x01) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
+ instr->state = MTD_ERASE_FAILED;
+ instr->fail_addr = (page << this->page_shift);
+ goto erase_exit;
+ }
+
+ /* Increment page address and decrement length */
+ len -= (1 << this->phys_erase_shift);
+ page += pages_per_block;
+
+ /* Check, if we cross a chip boundary */
+ if (len && !(page & this->pagemask)) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ }
+ instr->state = MTD_ERASE_DONE;
+
+erase_exit:
+
+ ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
+ /* Do call back function */
+ if (!ret)
+ mtd_erase_callback(instr);
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /* Return more or less happy */
+ return ret;
+}
+
+/**
+ * nand_sync - [MTD Interface] sync
+ * @mtd: MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+static void nand_sync (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_SYNCING);
+ /* Release it and go back */
+ nand_release_device (mtd);
+}
+
+
+/**
+ * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ */
+static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
+{
+ /* Check for invalid offset */
+ if (ofs > mtd->size)
+ return -EINVAL;
+
+ return nand_block_checkbad (mtd, ofs, 1, 0);
+}
+
+/**
+ * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ */
+static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *this = mtd->priv;
+ int ret;
+
+ if ((ret = nand_block_isbad(mtd, ofs))) {
+ /* If it was bad already, return success and do nothing. */
+ if (ret > 0)
+ return 0;
+ return ret;
+ }
+
+ return this->block_markbad(mtd, ofs);
+}
+
+/**
+ * nand_scan - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: Number of chips to scan for
+ *
+ * This fills out all the not initialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values. Buffers are allocated if
+ * they are not provided by the board driver
+ *
+ */
+int nand_scan (struct mtd_info *mtd, int maxchips)
+{
+ int i, j, nand_maf_id, nand_dev_id, busw;
+ struct nand_chip *this = mtd->priv;
+
+ /* Get buswidth to select the correct functions*/
+ busw = this->options & NAND_BUSWIDTH_16;
+
+ /* check for proper chip_delay setup, set 20us if not */
+ if (!this->chip_delay)
+ this->chip_delay = 20;
+
+ /* check, if a user supplied command function given */
+ if (this->cmdfunc == NULL)
+ this->cmdfunc = nand_command;
+
+ /* check, if a user supplied wait function given */
+ if (this->waitfunc == NULL)
+ this->waitfunc = nand_wait;
+
+ if (!this->select_chip)
+ this->select_chip = nand_select_chip;
+ if (!this->write_byte)
+ this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
+ if (!this->read_byte)
+ this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
+ if (!this->write_word)
+ this->write_word = nand_write_word;
+ if (!this->read_word)
+ this->read_word = nand_read_word;
+ if (!this->block_bad)
+ this->block_bad = nand_block_bad;
+ if (!this->block_markbad)
+ this->block_markbad = nand_default_block_markbad;
+ if (!this->write_buf)
+ this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
+ if (!this->read_buf)
+ this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
+ if (!this->verify_buf)
+ this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
+ if (!this->scan_bbt)
+ this->scan_bbt = nand_default_bbt;
+
+ /* Select the device */
+ this->select_chip(mtd, 0);
+
+ /* Send the command for reading device ID */
+ this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read manufacturer and device IDs */
+ nand_maf_id = this->read_byte(mtd);
+ nand_dev_id = this->read_byte(mtd);
+
+ /* Print and store flash device information */
+ for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+
+ if (nand_dev_id != nand_flash_ids[i].id)
+ continue;
+
+ if (!mtd->name) mtd->name = nand_flash_ids[i].name;
+ this->chipsize = nand_flash_ids[i].chipsize << 20;
+
+ /* New devices have all the information in additional id bytes */
+ if (!nand_flash_ids[i].pagesize) {
+ int extid;
+ /* The 3rd id byte contains non relevant data ATM */
+ extid = this->read_byte(mtd);
+ /* The 4th id byte is the important one */
+ extid = this->read_byte(mtd);
+ /* Calc pagesize */
+ mtd->oobblock = 1024 << (extid & 0x3);
+ extid >>= 2;
+ /* Calc oobsize */
+ mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
+ extid >>= 2;
+ /* Calc blocksize. Blocksize is multiples of 64KiB */
+ mtd->erasesize = (64 * 1024) << (extid & 0x03);
+ extid >>= 2;
+ /* Get buswidth information */
+ busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
+
+ } else {
+ /* Old devices have this data hardcoded in the
+ * device id table */
+ mtd->erasesize = nand_flash_ids[i].erasesize;
+ mtd->oobblock = nand_flash_ids[i].pagesize;
+ mtd->oobsize = mtd->oobblock / 32;
+ busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
+ }
+
+ /* Check, if buswidth is correct. Hardware drivers should set
+ * this correct ! */
+ if (busw != (this->options & NAND_BUSWIDTH_16)) {
+ printk (KERN_INFO "NAND device: Manufacturer ID:"
+ " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
+ nand_manuf_ids[i].name , mtd->name);
+ printk (KERN_WARNING
+ "NAND bus width %d instead %d bit\n",
+ (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
+ busw ? 16 : 8);
+ this->select_chip(mtd, -1);
+ return 1;
+ }
+
+ /* Calculate the address shift from the page size */
+ this->page_shift = ffs(mtd->oobblock) - 1;
+ this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
+ this->chip_shift = ffs(this->chipsize) - 1;
+
+ /* Set the bad block position */
+ this->badblockpos = mtd->oobblock > 512 ?
+ NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
+
+ /* Get chip options, preserve non chip based options */
+ this->options &= ~NAND_CHIPOPTIONS_MSK;
+ this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
+ /* Set this as a default. Board drivers can override it, if neccecary */
+ this->options |= NAND_NO_AUTOINCR;
+ /* Check if this is a not a samsung device. Do not clear the options
+ * for chips which are not having an extended id.
+ */
+ if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
+ this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
+
+ /* Check for AND chips with 4 page planes */
+ if (this->options & NAND_4PAGE_ARRAY)
+ this->erase_cmd = multi_erase_cmd;
+ else
+ this->erase_cmd = single_erase_cmd;
+
+ /* Do not replace user supplied command function ! */
+ if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
+ this->cmdfunc = nand_command_lp;
+
+ /* Try to identify manufacturer */
+ for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
+ if (nand_manuf_ids[j].id == nand_maf_id)
+ break;
+ }
+ printk (KERN_INFO "NAND device: Manufacturer ID:"
+ " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
+ nand_manuf_ids[j].name , nand_flash_ids[i].name);
+ break;
+ }
+
+ if (!nand_flash_ids[i].name) {
+ printk (KERN_WARNING "No NAND device found!!!\n");
+ this->select_chip(mtd, -1);
+ return 1;
+ }
+
+ for (i=1; i < maxchips; i++) {
+ this->select_chip(mtd, i);
+
+ /* Send the command for reading device ID */
+ this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read manufacturer and device IDs */
+ if (nand_maf_id != this->read_byte(mtd) ||
+ nand_dev_id != this->read_byte(mtd))
+ break;
+ }
+ if (i > 1)
+ printk(KERN_INFO "%d NAND chips detected\n", i);
+
+ /* Allocate buffers, if neccecary */
+ if (!this->oob_buf) {
+ size_t len;
+ len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
+ this->oob_buf = kmalloc (len, GFP_KERNEL);
+ if (!this->oob_buf) {
+ printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
+ return -ENOMEM;
+ }
+ this->options |= NAND_OOBBUF_ALLOC;
+ }
+
+ if (!this->data_buf) {
+ size_t len;
+ len = mtd->oobblock + mtd->oobsize;
+ this->data_buf = kmalloc (len, GFP_KERNEL);
+ if (!this->data_buf) {
+ if (this->options & NAND_OOBBUF_ALLOC)
+ kfree (this->oob_buf);
+ printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
+ return -ENOMEM;
+ }
+ this->options |= NAND_DATABUF_ALLOC;
+ }
+
+ /* Store the number of chips and calc total size for mtd */
+ this->numchips = i;
+ mtd->size = i * this->chipsize;
+ /* Convert chipsize to number of pages per chip -1. */
+ this->pagemask = (this->chipsize >> this->page_shift) - 1;
+ /* Preset the internal oob buffer */
+ memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+
+ /* If no default placement scheme is given, select an
+ * appropriate one */
+ if (!this->autooob) {
+ /* Select the appropriate default oob placement scheme for
+ * placement agnostic filesystems */
+ switch (mtd->oobsize) {
+ case 8:
+ this->autooob = &nand_oob_8;
+ break;
+ case 16:
+ this->autooob = &nand_oob_16;
+ break;
+ case 64:
+ this->autooob = &nand_oob_64;
+ break;
+ default:
+ printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
+ mtd->oobsize);
+/* BUG(); */
+ }
+ }
+
+ /* The number of bytes available for the filesystem to place fs dependend
+ * oob data */
+ if (this->options & NAND_BUSWIDTH_16) {
+ mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2);
+ if (this->autooob->eccbytes & 0x01)
+ mtd->oobavail--;
+ } else
+ mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1);
+
+ /*
+ * check ECC mode, default to software
+ * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
+ * fallback to software ECC
+ */
+ this->eccsize = 256; /* set default eccsize */
+ this->eccbytes = 3;
+
+ switch (this->eccmode) {
+ case NAND_ECC_HW12_2048:
+ if (mtd->oobblock < 2048) {
+ printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
+ mtd->oobblock);
+ this->eccmode = NAND_ECC_SOFT;
+ this->calculate_ecc = nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ } else
+ this->eccsize = 2048;
+ break;
+
+ case NAND_ECC_HW3_512:
+ case NAND_ECC_HW6_512:
+ case NAND_ECC_HW8_512:
+ if (mtd->oobblock == 256) {
+ printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
+ this->eccmode = NAND_ECC_SOFT;
+ this->calculate_ecc = nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ } else
+ this->eccsize = 512; /* set eccsize to 512 */
+ break;
+
+ case NAND_ECC_HW3_256:
+ break;
+
+ case NAND_ECC_NONE:
+ printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
+ this->eccmode = NAND_ECC_NONE;
+ break;
+
+ case NAND_ECC_SOFT:
+ this->calculate_ecc = nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ break;
+
+ default:
+ printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
+/* BUG(); */
+ }
+
+ /* Check hardware ecc function availability and adjust number of ecc bytes per
+ * calculation step
+ */
+ switch (this->eccmode) {
+ case NAND_ECC_HW12_2048:
+ this->eccbytes += 4;
+ case NAND_ECC_HW8_512:
+ this->eccbytes += 2;
+ case NAND_ECC_HW6_512:
+ this->eccbytes += 3;
+ case NAND_ECC_HW3_512:
+ case NAND_ECC_HW3_256:
+ if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
+ break;
+ printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
+/* BUG(); */
+ }
+
+ mtd->eccsize = this->eccsize;
+
+ /* Set the number of read / write steps for one page to ensure ECC generation */
+ switch (this->eccmode) {
+ case NAND_ECC_HW12_2048:
+ this->eccsteps = mtd->oobblock / 2048;
+ break;
+ case NAND_ECC_HW3_512:
+ case NAND_ECC_HW6_512:
+ case NAND_ECC_HW8_512:
+ this->eccsteps = mtd->oobblock / 512;
+ break;
+ case NAND_ECC_HW3_256:
+ case NAND_ECC_SOFT:
+ this->eccsteps = mtd->oobblock / 256;
+ break;
+
+ case NAND_ECC_NONE:
+ this->eccsteps = 1;
+ break;
+ }
+
+/* XXX U-BOOT XXX */
+#if 0
+ /* Initialize state, waitqueue and spinlock */
+ this->state = FL_READY;
+ init_waitqueue_head (&this->wq);
+ spin_lock_init (&this->chip_lock);
+#endif
+
+ /* De-select the device */
+ this->select_chip(mtd, -1);
+
+ /* Invalidate the pagebuffer reference */
+ this->pagebuf = -1;
+
+ /* Fill in remaining MTD driver data */
+ mtd->type = MTD_NANDFLASH;
+ mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
+ mtd->ecctype = MTD_ECC_SW;
+ mtd->erase = nand_erase;
+ mtd->point = NULL;
+ mtd->unpoint = NULL;
+ mtd->read = nand_read;
+ mtd->write = nand_write;
+ mtd->read_ecc = nand_read_ecc;
+ mtd->write_ecc = nand_write_ecc;
+ mtd->read_oob = nand_read_oob;
+ mtd->write_oob = nand_write_oob;
+/* XXX U-BOOT XXX */
+#if 0
+ mtd->readv = NULL;
+ mtd->writev = nand_writev;
+ mtd->writev_ecc = nand_writev_ecc;
+#endif
+ mtd->sync = nand_sync;
+/* XXX U-BOOT XXX */
+#if 0
+ mtd->lock = NULL;
+ mtd->unlock = NULL;
+ mtd->suspend = NULL;
+ mtd->resume = NULL;
+#endif
+ mtd->block_isbad = nand_block_isbad;
+ mtd->block_markbad = nand_block_markbad;
+
+ /* and make the autooob the default one */
+ memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
+/* XXX U-BOOT XXX */
+#if 0
+ mtd->owner = THIS_MODULE;
+#endif
+ /* Build bad block table */
+ return this->scan_bbt (mtd);
+}
+
+/**
+ * nand_release - [NAND Interface] Free resources held by the NAND device
+ * @mtd: MTD device structure
+*/
+void nand_release (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+#ifdef CONFIG_MTD_PARTITIONS
+ /* Deregister partitions */
+ del_mtd_partitions (mtd);
+#endif
+ /* Deregister the device */
+/* XXX U-BOOT XXX */
+#if 0
+ del_mtd_device (mtd);
+#endif
+ /* Free bad block table memory, if allocated */
+ if (this->bbt)
+ kfree (this->bbt);
+ /* Buffer allocated by nand_scan ? */
+ if (this->options & NAND_OOBBUF_ALLOC)
+ kfree (this->oob_buf);
+ /* Buffer allocated by nand_scan ? */
+ if (this->options & NAND_DATABUF_ALLOC)
+ kfree (this->data_buf);
+}
+
+#endif
diff --git a/drivers/nand/nand_bbt.c b/drivers/nand/nand_bbt.c
new file mode 100644
index 0000000000..6f7e05b7eb
--- /dev/null
+++ b/drivers/nand/nand_bbt.c
@@ -0,0 +1,1056 @@
+/*
+ * drivers/mtd/nand_bbt.c
+ *
+ * Overview:
+ * Bad block table support for the NAND driver
+ *
+ * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * $Id: nand_bbt.c,v 1.28 2004/11/13 10:19:09 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Description:
+ *
+ * When nand_scan_bbt is called, then it tries to find the bad block table
+ * depending on the options in the bbt descriptor(s). If a bbt is found
+ * then the contents are read and the memory based bbt is created. If a
+ * mirrored bbt is selected then the mirror is searched too and the
+ * versions are compared. If the mirror has a greater version number
+ * than the mirror bbt is used to build the memory based bbt.
+ * If the tables are not versioned, then we "or" the bad block information.
+ * If one of the bbt's is out of date or does not exist it is (re)created.
+ * If no bbt exists at all then the device is scanned for factory marked
+ * good / bad blocks and the bad block tables are created.
+ *
+ * For manufacturer created bbts like the one found on M-SYS DOC devices
+ * the bbt is searched and read but never created
+ *
+ * The autogenerated bad block table is located in the last good blocks
+ * of the device. The table is mirrored, so it can be updated eventually.
+ * The table is marked in the oob area with an ident pattern and a version
+ * number which indicates which of both tables is more up to date.
+ *
+ * The table uses 2 bits per block
+ * 11b: block is good
+ * 00b: block is factory marked bad
+ * 01b, 10b: block is marked bad due to wear
+ *
+ * The memory bad block table uses the following scheme:
+ * 00b: block is good
+ * 01b: block is marked bad due to wear
+ * 10b: block is reserved (to protect the bbt area)
+ * 11b: block is factory marked bad
+ *
+ * Multichip devices like DOC store the bad block info per floor.
+ *
+ * Following assumptions are made:
+ * - bbts start at a page boundary, if autolocated on a block boundary
+ * - the space neccecary for a bbt in FLASH does not exceed a block boundary
+ *
+ */
+
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <malloc.h>
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+
+#include <asm/errno.h>
+
+/**
+ * check_pattern - [GENERIC] check if a pattern is in the buffer
+ * @buf: the buffer to search
+ * @len: the length of buffer to search
+ * @paglen: the pagelength
+ * @td: search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers.
+ * If the SCAN_EMPTY option is set then check, if all bytes except the
+ * pattern area contain 0xff
+ *
+*/
+static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+ int i, end;
+ uint8_t *p = buf;
+
+ end = paglen + td->offs;
+ if (td->options & NAND_BBT_SCANEMPTY) {
+ for (i = 0; i < end; i++) {
+ if (p[i] != 0xff)
+ return -1;
+ }
+ }
+ p += end;
+
+ /* Compare the pattern */
+ for (i = 0; i < td->len; i++) {
+ if (p[i] != td->pattern[i])
+ return -1;
+ }
+
+ p += td->len;
+ end += td->len;
+ if (td->options & NAND_BBT_SCANEMPTY) {
+ for (i = end; i < len; i++) {
+ if (*p++ != 0xff)
+ return -1;
+ }
+ }
+ return 0;
+}
+
+/**
+ * read_bbt - [GENERIC] Read the bad block table starting from page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @page: the starting page
+ * @num: the number of bbt descriptors to read
+ * @bits: number of bits per block
+ * @offs: offset in the memory table
+ * @reserved_block_code: Pattern to identify reserved blocks
+ *
+ * Read the bad block table starting from page.
+ *
+ */
+static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num,
+ int bits, int offs, int reserved_block_code)
+{
+ int res, i, j, act = 0;
+ struct nand_chip *this = mtd->priv;
+ size_t retlen, len, totlen;
+ loff_t from;
+ uint8_t msk = (uint8_t) ((1 << bits) - 1);
+
+ totlen = (num * bits) >> 3;
+ from = ((loff_t)page) << this->page_shift;
+
+ while (totlen) {
+ len = min (totlen, (size_t) (1 << this->bbt_erase_shift));
+ res = mtd->read_ecc (mtd, from, len, &retlen, buf, NULL, this->autooob);
+ if (res < 0) {
+ if (retlen != len) {
+ printk (KERN_INFO "nand_bbt: Error reading bad block table\n");
+ return res;
+ }
+ printk (KERN_WARNING "nand_bbt: ECC error while reading bad block table\n");
+ }
+
+ /* Analyse data */
+ for (i = 0; i < len; i++) {
+ uint8_t dat = buf[i];
+ for (j = 0; j < 8; j += bits, act += 2) {
+ uint8_t tmp = (dat >> j) & msk;
+ if (tmp == msk)
+ continue;
+ if (reserved_block_code &&
+ (tmp == reserved_block_code)) {
+ printk (KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n",
+ ((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+ this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06);
+ continue;
+ }
+ /* Leave it for now, if its matured we can move this
+ * message to MTD_DEBUG_LEVEL0 */
+ printk (KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n",
+ ((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+ /* Factory marked bad or worn out ? */
+ if (tmp == 0)
+ this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06);
+ else
+ this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06);
+ }
+ }
+ totlen -= len;
+ from += len;
+ }
+ return 0;
+}
+
+/**
+ * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @chip: read the table for a specific chip, -1 read all chips.
+ * Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Read the bad block table for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+*/
+static int read_abs_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ int res = 0, i;
+ int bits;
+
+ bits = td->options & NAND_BBT_NRBITS_MSK;
+ if (td->options & NAND_BBT_PERCHIP) {
+ int offs = 0;
+ for (i = 0; i < this->numchips; i++) {
+ if (chip == -1 || chip == i)
+ res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code);
+ if (res)
+ return res;
+ offs += this->chipsize >> (this->bbt_erase_shift + 2);
+ }
+ } else {
+ res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code);
+ if (res)
+ return res;
+ }
+ return 0;
+}
+
+/**
+ * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ *
+ * Read the bad block table(s) for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+ *
+*/
+static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td,
+ struct nand_bbt_descr *md)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* Read the primary version, if available */
+ if (td->options & NAND_BBT_VERSION) {
+ nand_read_raw (mtd, buf, td->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize);
+ td->version[0] = buf[mtd->oobblock + td->veroffs];
+ printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]);
+ }
+
+ /* Read the mirror version, if available */
+ if (md && (md->options & NAND_BBT_VERSION)) {
+ nand_read_raw (mtd, buf, md->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize);
+ md->version[0] = buf[mtd->oobblock + md->veroffs];
+ printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]);
+ }
+
+ return 1;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @bd: descriptor for the good/bad block search pattern
+ * @chip: create the table for a specific chip, -1 read all chips.
+ * Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device
+ * for the given good/bad block identify pattern
+ */
+static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, j, numblocks, len, scanlen;
+ int startblock;
+ loff_t from;
+ size_t readlen, ooblen;
+
+ printk (KERN_INFO "Scanning device for bad blocks\n");
+
+ if (bd->options & NAND_BBT_SCANALLPAGES)
+ len = 1 << (this->bbt_erase_shift - this->page_shift);
+ else {
+ if (bd->options & NAND_BBT_SCAN2NDPAGE)
+ len = 2;
+ else
+ len = 1;
+ }
+ scanlen = mtd->oobblock + mtd->oobsize;
+ readlen = len * mtd->oobblock;
+ ooblen = len * mtd->oobsize;
+
+ if (chip == -1) {
+ /* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
+ * makes shifting and masking less painful */
+ numblocks = mtd->size >> (this->bbt_erase_shift - 1);
+ startblock = 0;
+ from = 0;
+ } else {
+ if (chip >= this->numchips) {
+ printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
+ chip + 1, this->numchips);
+ return;
+ }
+ numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
+ startblock = chip * numblocks;
+ numblocks += startblock;
+ from = startblock << (this->bbt_erase_shift - 1);
+ }
+
+ for (i = startblock; i < numblocks;) {
+ nand_read_raw (mtd, buf, from, readlen, ooblen);
+ for (j = 0; j < len; j++) {
+ if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
+ this->bbt[i >> 3] |= 0x03 << (i & 0x6);
+ printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
+ i >> 1, (unsigned int) from);
+ break;
+ }
+ }
+ i += 2;
+ from += (1 << this->bbt_erase_shift);
+ }
+}
+
+/**
+ * search_bbt - [GENERIC] scan the device for a specific bad block table
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ *
+ * Read the bad block table by searching for a given ident pattern.
+ * Search is preformed either from the beginning up or from the end of
+ * the device downwards. The search starts always at the start of a
+ * block.
+ * If the option NAND_BBT_PERCHIP is given, each chip is searched
+ * for a bbt, which contains the bad block information of this chip.
+ * This is neccecary to provide support for certain DOC devices.
+ *
+ * The bbt ident pattern resides in the oob area of the first page
+ * in a block.
+ */
+static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, chips;
+ int bits, startblock, block, dir;
+ int scanlen = mtd->oobblock + mtd->oobsize;
+ int bbtblocks;
+
+ /* Search direction top -> down ? */
+ if (td->options & NAND_BBT_LASTBLOCK) {
+ startblock = (mtd->size >> this->bbt_erase_shift) -1;
+ dir = -1;
+ } else {
+ startblock = 0;
+ dir = 1;
+ }
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ chips = this->numchips;
+ bbtblocks = this->chipsize >> this->bbt_erase_shift;
+ startblock &= bbtblocks - 1;
+ } else {
+ chips = 1;
+ bbtblocks = mtd->size >> this->bbt_erase_shift;
+ }
+
+ /* Number of bits for each erase block in the bbt */
+ bits = td->options & NAND_BBT_NRBITS_MSK;
+
+ for (i = 0; i < chips; i++) {
+ /* Reset version information */
+ td->version[i] = 0;
+ td->pages[i] = -1;
+ /* Scan the maximum number of blocks */
+ for (block = 0; block < td->maxblocks; block++) {
+ int actblock = startblock + dir * block;
+ /* Read first page */
+ nand_read_raw (mtd, buf, actblock << this->bbt_erase_shift, mtd->oobblock, mtd->oobsize);
+ if (!check_pattern(buf, scanlen, mtd->oobblock, td)) {
+ td->pages[i] = actblock << (this->bbt_erase_shift - this->page_shift);
+ if (td->options & NAND_BBT_VERSION) {
+ td->version[i] = buf[mtd->oobblock + td->veroffs];
+ }
+ break;
+ }
+ }
+ startblock += this->chipsize >> this->bbt_erase_shift;
+ }
+ /* Check, if we found a bbt for each requested chip */
+ for (i = 0; i < chips; i++) {
+ if (td->pages[i] == -1)
+ printk (KERN_WARNING "Bad block table not found for chip %d\n", i);
+ else
+ printk (KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], td->version[i]);
+ }
+ return 0;
+}
+
+/**
+ * search_read_bbts - [GENERIC] scan the device for bad block table(s)
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ *
+ * Search and read the bad block table(s)
+*/
+static int search_read_bbts (struct mtd_info *mtd, uint8_t *buf,
+ struct nand_bbt_descr *td, struct nand_bbt_descr *md)
+{
+ /* Search the primary table */
+ search_bbt (mtd, buf, td);
+
+ /* Search the mirror table */
+ if (md)
+ search_bbt (mtd, buf, md);
+
+ /* Force result check */
+ return 1;
+}
+
+
+/**
+ * write_bbt - [GENERIC] (Re)write the bad block table
+ *
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ * @chipsel: selector for a specific chip, -1 for all
+ *
+ * (Re)write the bad block table
+ *
+*/
+static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
+ struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel)
+{
+ struct nand_chip *this = mtd->priv;
+ struct nand_oobinfo oobinfo;
+ struct erase_info einfo;
+ int i, j, res, chip = 0;
+ int bits, startblock, dir, page, offs, numblocks, sft, sftmsk;
+ int nrchips, bbtoffs, pageoffs;
+ uint8_t msk[4];
+ uint8_t rcode = td->reserved_block_code;
+ size_t retlen, len = 0;
+ loff_t to;
+
+ if (!rcode)
+ rcode = 0xff;
+ /* Write bad block table per chip rather than per device ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ numblocks = (int) (this->chipsize >> this->bbt_erase_shift);
+ /* Full device write or specific chip ? */
+ if (chipsel == -1) {
+ nrchips = this->numchips;
+ } else {
+ nrchips = chipsel + 1;
+ chip = chipsel;
+ }
+ } else {
+ numblocks = (int) (mtd->size >> this->bbt_erase_shift);
+ nrchips = 1;
+ }
+
+ /* Loop through the chips */
+ for (; chip < nrchips; chip++) {
+
+ /* There was already a version of the table, reuse the page
+ * This applies for absolute placement too, as we have the
+ * page nr. in td->pages.
+ */
+ if (td->pages[chip] != -1) {
+ page = td->pages[chip];
+ goto write;
+ }
+
+ /* Automatic placement of the bad block table */
+ /* Search direction top -> down ? */
+ if (td->options & NAND_BBT_LASTBLOCK) {
+ startblock = numblocks * (chip + 1) - 1;
+ dir = -1;
+ } else {
+ startblock = chip * numblocks;
+ dir = 1;
+ }
+
+ for (i = 0; i < td->maxblocks; i++) {
+ int block = startblock + dir * i;
+ /* Check, if the block is bad */
+ switch ((this->bbt[block >> 2] >> (2 * (block & 0x03))) & 0x03) {
+ case 0x01:
+ case 0x03:
+ continue;
+ }
+ page = block << (this->bbt_erase_shift - this->page_shift);
+ /* Check, if the block is used by the mirror table */
+ if (!md || md->pages[chip] != page)
+ goto write;
+ }
+ printk (KERN_ERR "No space left to write bad block table\n");
+ return -ENOSPC;
+write:
+
+ /* Set up shift count and masks for the flash table */
+ bits = td->options & NAND_BBT_NRBITS_MSK;
+ switch (bits) {
+ case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x01; break;
+ case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x03; break;
+ case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; msk[2] = ~rcode; msk[3] = 0x0f; break;
+ case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[2] = ~rcode; msk[3] = 0xff; break;
+ default: return -EINVAL;
+ }
+
+ bbtoffs = chip * (numblocks >> 2);
+
+ to = ((loff_t) page) << this->page_shift;
+
+ memcpy (&oobinfo, this->autooob, sizeof(oobinfo));
+ oobinfo.useecc = MTD_NANDECC_PLACEONLY;
+
+ /* Must we save the block contents ? */
+ if (td->options & NAND_BBT_SAVECONTENT) {
+ /* Make it block aligned */
+ to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1));
+ len = 1 << this->bbt_erase_shift;
+ res = mtd->read_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
+ if (res < 0) {
+ if (retlen != len) {
+ printk (KERN_INFO "nand_bbt: Error reading block for writing the bad block table\n");
+ return res;
+ }
+ printk (KERN_WARNING "nand_bbt: ECC error while reading block for writing bad block table\n");
+ }
+ /* Calc the byte offset in the buffer */
+ pageoffs = page - (int)(to >> this->page_shift);
+ offs = pageoffs << this->page_shift;
+ /* Preset the bbt area with 0xff */
+ memset (&buf[offs], 0xff, (size_t)(numblocks >> sft));
+ /* Preset the bbt's oob area with 0xff */
+ memset (&buf[len + pageoffs * mtd->oobsize], 0xff,
+ ((len >> this->page_shift) - pageoffs) * mtd->oobsize);
+ if (td->options & NAND_BBT_VERSION) {
+ buf[len + (pageoffs * mtd->oobsize) + td->veroffs] = td->version[chip];
+ }
+ } else {
+ /* Calc length */
+ len = (size_t) (numblocks >> sft);
+ /* Make it page aligned ! */
+ len = (len + (mtd->oobblock-1)) & ~(mtd->oobblock-1);
+ /* Preset the buffer with 0xff */
+ memset (buf, 0xff, len + (len >> this->page_shift) * mtd->oobsize);
+ offs = 0;
+ /* Pattern is located in oob area of first page */
+ memcpy (&buf[len + td->offs], td->pattern, td->len);
+ if (td->options & NAND_BBT_VERSION) {
+ buf[len + td->veroffs] = td->version[chip];
+ }
+ }
+
+ /* walk through the memory table */
+ for (i = 0; i < numblocks; ) {
+ uint8_t dat;
+ dat = this->bbt[bbtoffs + (i >> 2)];
+ for (j = 0; j < 4; j++ , i++) {
+ int sftcnt = (i << (3 - sft)) & sftmsk;
+ /* Do not store the reserved bbt blocks ! */
+ buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt);
+ dat >>= 2;
+ }
+ }
+
+ memset (&einfo, 0, sizeof (einfo));
+ einfo.mtd = mtd;
+ einfo.addr = (unsigned long) to;
+ einfo.len = 1 << this->bbt_erase_shift;
+ res = nand_erase_nand (mtd, &einfo, 1);
+ if (res < 0) {
+ printk (KERN_WARNING "nand_bbt: Error during block erase: %d\n", res);
+ return res;
+ }
+
+ res = mtd->write_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
+ if (res < 0) {
+ printk (KERN_WARNING "nand_bbt: Error while writing bad block table %d\n", res);
+ return res;
+ }
+ printk (KERN_DEBUG "Bad block table written to 0x%08x, version 0x%02X\n",
+ (unsigned int) to, td->version[chip]);
+
+ /* Mark it as used */
+ td->pages[chip] = page;
+ }
+ return 0;
+}
+
+/**
+ * nand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @mtd: MTD device structure
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device
+ * for manufacturer / software marked good / bad blocks
+*/
+static int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* Ensure that we only scan for the pattern and nothing else */
+ bd->options = 0;
+ create_bbt (mtd, this->data_buf, bd, -1);
+ return 0;
+}
+
+/**
+ * check_create - [GENERIC] create and write bbt(s) if neccecary
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks the results of the previous call to read_bbt
+ * and creates / updates the bbt(s) if neccecary
+ * Creation is neccecary if no bbt was found for the chip/device
+ * Update is neccecary if one of the tables is missing or the
+ * version nr. of one table is less than the other
+*/
+static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
+{
+ int i, chips, writeops, chipsel, res;
+ struct nand_chip *this = mtd->priv;
+ struct nand_bbt_descr *td = this->bbt_td;
+ struct nand_bbt_descr *md = this->bbt_md;
+ struct nand_bbt_descr *rd, *rd2;
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP)
+ chips = this->numchips;
+ else
+ chips = 1;
+
+ for (i = 0; i < chips; i++) {
+ writeops = 0;
+ rd = NULL;
+ rd2 = NULL;
+ /* Per chip or per device ? */
+ chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1;
+ /* Mirrored table avilable ? */
+ if (md) {
+ if (td->pages[i] == -1 && md->pages[i] == -1) {
+ writeops = 0x03;
+ goto create;
+ }
+
+ if (td->pages[i] == -1) {
+ rd = md;
+ td->version[i] = md->version[i];
+ writeops = 1;
+ goto writecheck;
+ }
+
+ if (md->pages[i] == -1) {
+ rd = td;
+ md->version[i] = td->version[i];
+ writeops = 2;
+ goto writecheck;
+ }
+
+ if (td->version[i] == md->version[i]) {
+ rd = td;
+ if (!(td->options & NAND_BBT_VERSION))
+ rd2 = md;
+ goto writecheck;
+ }
+
+ if (((int8_t) (td->version[i] - md->version[i])) > 0) {
+ rd = td;
+ md->version[i] = td->version[i];
+ writeops = 2;
+ } else {
+ rd = md;
+ td->version[i] = md->version[i];
+ writeops = 1;
+ }
+
+ goto writecheck;
+
+ } else {
+ if (td->pages[i] == -1) {
+ writeops = 0x01;
+ goto create;
+ }
+ rd = td;
+ goto writecheck;
+ }
+create:
+ /* Create the bad block table by scanning the device ? */
+ if (!(td->options & NAND_BBT_CREATE))
+ continue;
+
+ /* Create the table in memory by scanning the chip(s) */
+ create_bbt (mtd, buf, bd, chipsel);
+
+ td->version[i] = 1;
+ if (md)
+ md->version[i] = 1;
+writecheck:
+ /* read back first ? */
+ if (rd)
+ read_abs_bbt (mtd, buf, rd, chipsel);
+ /* If they weren't versioned, read both. */
+ if (rd2)
+ read_abs_bbt (mtd, buf, rd2, chipsel);
+
+ /* Write the bad block table to the device ? */
+ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+ res = write_bbt (mtd, buf, td, md, chipsel);
+ if (res < 0)
+ return res;
+ }
+
+ /* Write the mirror bad block table to the device ? */
+ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+ res = write_bbt (mtd, buf, md, td, chipsel);
+ if (res < 0)
+ return res;
+ }
+ }
+ return 0;
+}
+
+/**
+ * mark_bbt_regions - [GENERIC] mark the bad block table regions
+ * @mtd: MTD device structure
+ * @td: bad block table descriptor
+ *
+ * The bad block table regions are marked as "bad" to prevent
+ * accidental erasures / writes. The regions are identified by
+ * the mark 0x02.
+*/
+static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, j, chips, block, nrblocks, update;
+ uint8_t oldval, newval;
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ chips = this->numchips;
+ nrblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+ } else {
+ chips = 1;
+ nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
+ }
+
+ for (i = 0; i < chips; i++) {
+ if ((td->options & NAND_BBT_ABSPAGE) ||
+ !(td->options & NAND_BBT_WRITE)) {
+ if (td->pages[i] == -1) continue;
+ block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
+ block <<= 1;
+ oldval = this->bbt[(block >> 3)];
+ newval = oldval | (0x2 << (block & 0x06));
+ this->bbt[(block >> 3)] = newval;
+ if ((oldval != newval) && td->reserved_block_code)
+ nand_update_bbt(mtd, block << (this->bbt_erase_shift - 1));
+ continue;
+ }
+ update = 0;
+ if (td->options & NAND_BBT_LASTBLOCK)
+ block = ((i + 1) * nrblocks) - td->maxblocks;
+ else
+ block = i * nrblocks;
+ block <<= 1;
+ for (j = 0; j < td->maxblocks; j++) {
+ oldval = this->bbt[(block >> 3)];
+ newval = oldval | (0x2 << (block & 0x06));
+ this->bbt[(block >> 3)] = newval;
+ if (oldval != newval) update = 1;
+ block += 2;
+ }
+ /* If we want reserved blocks to be recorded to flash, and some
+ new ones have been marked, then we need to update the stored
+ bbts. This should only happen once. */
+ if (update && td->reserved_block_code)
+ nand_update_bbt(mtd, (block - 2) << (this->bbt_erase_shift - 1));
+ }
+}
+
+/**
+ * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
+ * @mtd: MTD device structure
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already
+ * available. If not it scans the device for manufacturer
+ * marked good / bad blocks and writes the bad block table(s) to
+ * the selected place.
+ *
+ * The bad block table memory is allocated here. It must be freed
+ * by calling the nand_free_bbt function.
+ *
+*/
+int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct nand_chip *this = mtd->priv;
+ int len, res = 0;
+ uint8_t *buf;
+ struct nand_bbt_descr *td = this->bbt_td;
+ struct nand_bbt_descr *md = this->bbt_md;
+
+ len = mtd->size >> (this->bbt_erase_shift + 2);
+ /* Allocate memory (2bit per block) */
+ this->bbt = kmalloc (len, GFP_KERNEL);
+ if (!this->bbt) {
+ printk (KERN_ERR "nand_scan_bbt: Out of memory\n");
+ return -ENOMEM;
+ }
+ /* Clear the memory bad block table */
+ memset (this->bbt, 0x00, len);
+
+ /* If no primary table decriptor is given, scan the device
+ * to build a memory based bad block table
+ */
+ if (!td)
+ return nand_memory_bbt(mtd, bd);
+
+ /* Allocate a temporary buffer for one eraseblock incl. oob */
+ len = (1 << this->bbt_erase_shift);
+ len += (len >> this->page_shift) * mtd->oobsize;
+ buf = kmalloc (len, GFP_KERNEL);
+ if (!buf) {
+ printk (KERN_ERR "nand_bbt: Out of memory\n");
+ kfree (this->bbt);
+ this->bbt = NULL;
+ return -ENOMEM;
+ }
+
+ /* Is the bbt at a given page ? */
+ if (td->options & NAND_BBT_ABSPAGE) {
+ res = read_abs_bbts (mtd, buf, td, md);
+ } else {
+ /* Search the bad block table using a pattern in oob */
+ res = search_read_bbts (mtd, buf, td, md);
+ }
+
+ if (res)
+ res = check_create (mtd, buf, bd);
+
+ /* Prevent the bbt regions from erasing / writing */
+ mark_bbt_region (mtd, td);
+ if (md)
+ mark_bbt_region (mtd, md);
+
+ kfree (buf);
+ return res;
+}
+
+
+/**
+ * nand_update_bbt - [NAND Interface] update bad block table(s)
+ * @mtd: MTD device structure
+ * @offs: the offset of the newly marked block
+ *
+ * The function updates the bad block table(s)
+*/
+int nand_update_bbt (struct mtd_info *mtd, loff_t offs)
+{
+ struct nand_chip *this = mtd->priv;
+ int len, res = 0, writeops = 0;
+ int chip, chipsel;
+ uint8_t *buf;
+ struct nand_bbt_descr *td = this->bbt_td;
+ struct nand_bbt_descr *md = this->bbt_md;
+
+ if (!this->bbt || !td)
+ return -EINVAL;
+
+ len = mtd->size >> (this->bbt_erase_shift + 2);
+ /* Allocate a temporary buffer for one eraseblock incl. oob */
+ len = (1 << this->bbt_erase_shift);
+ len += (len >> this->page_shift) * mtd->oobsize;
+ buf = kmalloc (len, GFP_KERNEL);
+ if (!buf) {
+ printk (KERN_ERR "nand_update_bbt: Out of memory\n");
+ return -ENOMEM;
+ }
+
+ writeops = md != NULL ? 0x03 : 0x01;
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ chip = (int) (offs >> this->chip_shift);
+ chipsel = chip;
+ } else {
+ chip = 0;
+ chipsel = -1;
+ }
+
+ td->version[chip]++;
+ if (md)
+ md->version[chip]++;
+
+ /* Write the bad block table to the device ? */
+ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+ res = write_bbt (mtd, buf, td, md, chipsel);
+ if (res < 0)
+ goto out;
+ }
+ /* Write the mirror bad block table to the device ? */
+ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+ res = write_bbt (mtd, buf, md, td, chipsel);
+ }
+
+out:
+ kfree (buf);
+ return res;
+}
+
+/* Define some generic bad / good block scan pattern which are used
+ * while scanning a device for factory marked good / bad blocks
+ *
+ * The memory based patterns just
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr smallpage_memorybased = {
+ .options = 0,
+ .offs = 5,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_memorybased = {
+ .options = 0,
+ .offs = 0,
+ .len = 2,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr smallpage_flashbased = {
+ .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+ .offs = 5,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_flashbased = {
+ .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+ .offs = 0,
+ .len = 2,
+ .pattern = scan_ff_pattern
+};
+
+static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 };
+
+static struct nand_bbt_descr agand_flashbased = {
+ .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+ .offs = 0x20,
+ .len = 6,
+ .pattern = scan_agand_pattern
+};
+
+/* Generic flash bbt decriptors
+*/
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 8,
+ .len = 4,
+ .veroffs = 12,
+ .maxblocks = 4,
+ .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 8,
+ .len = 4,
+ .veroffs = 12,
+ .maxblocks = 4,
+ .pattern = mirror_pattern
+};
+
+/**
+ * nand_default_bbt - [NAND Interface] Select a default bad block table for the device
+ * @mtd: MTD device structure
+ *
+ * This function selects the default bad block table
+ * support for the device and calls the nand_scan_bbt function
+ *
+*/
+int nand_default_bbt (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* Default for AG-AND. We must use a flash based
+ * bad block table as the devices have factory marked
+ * _good_ blocks. Erasing those blocks leads to loss
+ * of the good / bad information, so we _must_ store
+ * this information in a good / bad table during
+ * startup
+ */
+ if (this->options & NAND_IS_AND) {
+ /* Use the default pattern descriptors */
+ if (!this->bbt_td) {
+ this->bbt_td = &bbt_main_descr;
+ this->bbt_md = &bbt_mirror_descr;
+ }
+ this->options |= NAND_USE_FLASH_BBT;
+ return nand_scan_bbt (mtd, &agand_flashbased);
+ }
+
+
+ /* Is a flash based bad block table requested ? */
+ if (this->options & NAND_USE_FLASH_BBT) {
+ /* Use the default pattern descriptors */
+ if (!this->bbt_td) {
+ this->bbt_td = &bbt_main_descr;
+ this->bbt_md = &bbt_mirror_descr;
+ }
+ if (!this->badblock_pattern) {
+ this->badblock_pattern = (mtd->oobblock > 512) ?
+ &largepage_flashbased : &smallpage_flashbased;
+ }
+ } else {
+ this->bbt_td = NULL;
+ this->bbt_md = NULL;
+ if (!this->badblock_pattern) {
+ this->badblock_pattern = (mtd->oobblock > 512) ?
+ &largepage_memorybased : &smallpage_memorybased;
+ }
+ }
+ return nand_scan_bbt (mtd, this->badblock_pattern);
+}
+
+/**
+ * nand_isbad_bbt - [NAND Interface] Check if a block is bad
+ * @mtd: MTD device structure
+ * @offs: offset in the device
+ * @allowbbt: allow access to bad block table region
+ *
+*/
+int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+ struct nand_chip *this = mtd->priv;
+ int block;
+ uint8_t res;
+
+ /* Get block number * 2 */
+ block = (int) (offs >> (this->bbt_erase_shift - 1));
+ res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03;
+
+ DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
+ (unsigned int)offs, res, block >> 1);
+
+ switch ((int)res) {
+ case 0x00: return 0;
+ case 0x01: return 1;
+ case 0x02: return allowbbt ? 0 : 1;
+ }
+ return 1;
+}
+
+#endif
diff --git a/drivers/nand/nand_ecc.c b/drivers/nand/nand_ecc.c
new file mode 100644
index 0000000000..dc9db4b480
--- /dev/null
+++ b/drivers/nand/nand_ecc.c
@@ -0,0 +1,244 @@
+/*
+ * This file contains an ECC algorithm from Toshiba that detects and
+ * corrects 1 bit errors in a 256 byte block of data.
+ *
+ * drivers/mtd/nand/nand_ecc.c
+ *
+ * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
+ * Toshiba America Electronics Components, Inc.
+ *
+ * $Id: nand_ecc.c,v 1.14 2004/06/16 15:34:37 gleixner Exp $
+ *
+ * This file is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 or (at your option) any
+ * later version.
+ *
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this file; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+ *
+ * As a special exception, if other files instantiate templates or use
+ * macros or inline functions from these files, or you compile these
+ * files and link them with other works to produce a work based on these
+ * files, these files do not by themselves cause the resulting work to be
+ * covered by the GNU General Public License. However the source code for
+ * these files must still be made available in accordance with section (3)
+ * of the GNU General Public License.
+ *
+ * This exception does not invalidate any other reasons why a work based on
+ * this file might be covered by the GNU General Public License.
+ */
+
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const u_char nand_ecc_precalc_table[] = {
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+
+/**
+ * nand_trans_result - [GENERIC] create non-inverted ECC
+ * @reg2: line parity reg 2
+ * @reg3: line parity reg 3
+ * @ecc_code: ecc
+ *
+ * Creates non-inverted ECC code from line parity
+ */
+static void nand_trans_result(u_char reg2, u_char reg3,
+ u_char *ecc_code)
+{
+ u_char a, b, i, tmp1, tmp2;
+
+ /* Initialize variables */
+ a = b = 0x80;
+ tmp1 = tmp2 = 0;
+
+ /* Calculate first ECC byte */
+ for (i = 0; i < 4; i++) {
+ if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */
+ tmp1 |= b;
+ b >>= 1;
+ if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */
+ tmp1 |= b;
+ b >>= 1;
+ a >>= 1;
+ }
+
+ /* Calculate second ECC byte */
+ b = 0x80;
+ for (i = 0; i < 4; i++) {
+ if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */
+ tmp2 |= b;
+ b >>= 1;
+ if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */
+ tmp2 |= b;
+ b >>= 1;
+ a >>= 1;
+ }
+
+ /* Store two of the ECC bytes */
+ ecc_code[0] = tmp1;
+ ecc_code[1] = tmp2;
+}
+
+/**
+ * nand_calculate_ecc - [NAND Interface] Calculate 3 byte ECC code for 256 byte block
+ * @mtd: MTD block structure
+ * @dat: raw data
+ * @ecc_code: buffer for ECC
+ */
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+ u_char idx, reg1, reg2, reg3;
+ int j;
+
+ /* Initialize variables */
+ reg1 = reg2 = reg3 = 0;
+ ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
+
+ /* Build up column parity */
+ for(j = 0; j < 256; j++) {
+
+ /* Get CP0 - CP5 from table */
+ idx = nand_ecc_precalc_table[dat[j]];
+ reg1 ^= (idx & 0x3f);
+
+ /* All bit XOR = 1 ? */
+ if (idx & 0x40) {
+ reg3 ^= (u_char) j;
+ reg2 ^= ~((u_char) j);
+ }
+ }
+
+ /* Create non-inverted ECC code from line parity */
+ nand_trans_result(reg2, reg3, ecc_code);
+
+ /* Calculate final ECC code */
+ ecc_code[0] = ~ecc_code[0];
+ ecc_code[1] = ~ecc_code[1];
+ ecc_code[2] = ((~reg1) << 2) | 0x03;
+ return 0;
+}
+
+/**
+ * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * @mtd: MTD block structure
+ * @dat: raw data read from the chip
+ * @read_ecc: ECC from the chip
+ * @calc_ecc: the ECC calculated from raw data
+ *
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+ u_char a, b, c, d1, d2, d3, add, bit, i;
+
+ /* Do error detection */
+ d1 = calc_ecc[0] ^ read_ecc[0];
+ d2 = calc_ecc[1] ^ read_ecc[1];
+ d3 = calc_ecc[2] ^ read_ecc[2];
+
+ if ((d1 | d2 | d3) == 0) {
+ /* No errors */
+ return 0;
+ }
+ else {
+ a = (d1 ^ (d1 >> 1)) & 0x55;
+ b = (d2 ^ (d2 >> 1)) & 0x55;
+ c = (d3 ^ (d3 >> 1)) & 0x54;
+
+ /* Found and will correct single bit error in the data */
+ if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
+ c = 0x80;
+ add = 0;
+ a = 0x80;
+ for (i=0; i<4; i++) {
+ if (d1 & c)
+ add |= a;
+ c >>= 2;
+ a >>= 1;
+ }
+ c = 0x80;
+ for (i=0; i<4; i++) {
+ if (d2 & c)
+ add |= a;
+ c >>= 2;
+ a >>= 1;
+ }
+ bit = 0;
+ b = 0x04;
+ c = 0x80;
+ for (i=0; i<3; i++) {
+ if (d3 & c)
+ bit |= b;
+ c >>= 2;
+ b >>= 1;
+ }
+ b = 0x01;
+ a = dat[add];
+ a ^= (b << bit);
+ dat[add] = a;
+ return 1;
+ }
+ else {
+ i = 0;
+ while (d1) {
+ if (d1 & 0x01)
+ ++i;
+ d1 >>= 1;
+ }
+ while (d2) {
+ if (d2 & 0x01)
+ ++i;
+ d2 >>= 1;
+ }
+ while (d3) {
+ if (d3 & 0x01)
+ ++i;
+ d3 >>= 1;
+ }
+ if (i == 1) {
+ /* ECC Code Error Correction */
+ read_ecc[0] = calc_ecc[0];
+ read_ecc[1] = calc_ecc[1];
+ read_ecc[2] = calc_ecc[2];
+ return 2;
+ }
+ else {
+ /* Uncorrectable Error */
+ return -1;
+ }
+ }
+ }
+
+ /* Should never happen */
+ return -1;
+}
+
+#endif /* CONFIG_COMMANDS & CFG_CMD_NAND */
diff --git a/drivers/nand/nand_ids.c b/drivers/nand/nand_ids.c
new file mode 100644
index 0000000000..5df1e8971d
--- /dev/null
+++ b/drivers/nand/nand_ids.c
@@ -0,0 +1,127 @@
+/*
+ * drivers/mtd/nandids.c
+ *
+ * Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * $Id: nand_ids.c,v 1.10 2004/05/26 13:40:12 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <linux/mtd/nand.h>
+
+/*
+* Chip ID list
+*
+* Name. ID code, pagesize, chipsize in MegaByte, eraseblock size,
+* options
+*
+* Pagesize; 0, 256, 512
+* 0 get this information from the extended chip ID
++ 256 256 Byte page size
+* 512 512 Byte page size
+*/
+struct nand_flash_dev nand_flash_ids[] = {
+ {"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0},
+ {"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0},
+ {"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0},
+ {"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0},
+ {"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0},
+ {"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0},
+ {"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0},
+ {"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0},
+ {"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0},
+ {"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0},
+
+ {"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0},
+ {"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0},
+ {"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+ {"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+
+ {"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0},
+ {"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0},
+ {"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0},
+ {"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0},
+ {"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0},
+ {"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0},
+ {"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0},
+ {"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0},
+ {"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0},
+
+ {"NAND 512MiB 3,3V 8-bit", 0xDC, 512, 512, 0x4000, 0},
+
+ /* These are the new chips with large page size. The pagesize
+ * and the erasesize is determined from the extended id bytes
+ */
+ /* 1 Gigabit */
+ {"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* 2 Gigabit */
+ {"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* 4 Gigabit */
+ {"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* 8 Gigabit */
+ {"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* 16 Gigabit */
+ {"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* Renesas AND 1 Gigabit. Those chips do not support extended id and have a strange page/block layout !
+ * The chosen minimum erasesize is 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page planes
+ * 1 block = 2 pages, but due to plane arrangement the blocks 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7
+ * Anyway JFFS2 would increase the eraseblock size so we chose a combined one which can be erased in one go
+ * There are more speed improvements for reads and writes possible, but not implemented now
+ */
+ {"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000, NAND_IS_AND | NAND_NO_AUTOINCR | NAND_4PAGE_ARRAY},
+
+ {NULL,}
+};
+
+/*
+* Manufacturer ID list
+*/
+struct nand_manufacturers nand_manuf_ids[] = {
+ {NAND_MFR_TOSHIBA, "Toshiba"},
+ {NAND_MFR_SAMSUNG, "Samsung"},
+ {NAND_MFR_FUJITSU, "Fujitsu"},
+ {NAND_MFR_NATIONAL, "National"},
+ {NAND_MFR_RENESAS, "Renesas"},
+ {NAND_MFR_STMICRO, "ST Micro"},
+ {0x0, "Unknown"}
+};
+#endif
diff --git a/fs/jffs2/jffs2_nand_1pass.c b/fs/jffs2/jffs2_nand_1pass.c
new file mode 100644
index 0000000000..ce80a43fa1
--- /dev/null
+++ b/fs/jffs2/jffs2_nand_1pass.c
@@ -0,0 +1,1045 @@
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_JFFS2)
+
+#include <malloc.h>
+#include <linux/stat.h>
+#include <linux/time.h>
+
+#include <jffs2/jffs2.h>
+#include <jffs2/jffs2_1pass.h>
+#include <nand.h>
+
+#include "jffs2_nand_private.h"
+
+#define NODE_CHUNK 1024 /* size of memory allocation chunk in b_nodes */
+
+/* Debugging switches */
+#undef DEBUG_DIRENTS /* print directory entry list after scan */
+#undef DEBUG_FRAGMENTS /* print fragment list after scan */
+#undef DEBUG /* enable debugging messages */
+
+#ifdef DEBUG
+# define DEBUGF(fmt,args...) printf(fmt ,##args)
+#else
+# define DEBUGF(fmt,args...)
+#endif
+
+static int nanddev = -1; /* nand device of current partition */
+static nand_info_t *nand;
+
+/* Compression names */
+static char *compr_names[] = {
+ "NONE",
+ "ZERO",
+ "RTIME",
+ "RUBINMIPS",
+ "COPY",
+ "DYNRUBIN",
+ "ZLIB",
+#if defined(CONFIG_JFFS2_LZO_LZARI)
+ "LZO",
+ "LZARI",
+#endif
+};
+
+/* Spinning wheel */
+static char spinner[] = { '|', '/', '-', '\\' };
+
+/* Memory management */
+struct mem_block {
+ unsigned index;
+ struct mem_block *next;
+ char nodes[0];
+};
+
+static void
+free_nodes(struct b_list *list)
+{
+ while (list->listMemBase != NULL) {
+ struct mem_block *next = list->listMemBase->next;
+ free(list->listMemBase);
+ list->listMemBase = next;
+ }
+}
+
+static struct b_node *
+add_node(struct b_list *list, int size)
+{
+ u32 index = 0;
+ struct mem_block *memBase;
+ struct b_node *b;
+
+ memBase = list->listMemBase;
+ if (memBase != NULL)
+ index = memBase->index;
+
+ if (memBase == NULL || index >= NODE_CHUNK) {
+ /* we need more space before we continue */
+ memBase = mmalloc(sizeof(struct mem_block) + NODE_CHUNK * size);
+ if (memBase == NULL) {
+ putstr("add_node: malloc failed\n");
+ return NULL;
+ }
+ memBase->next = list->listMemBase;
+ index = 0;
+ }
+ /* now we have room to add it. */
+ b = (struct b_node *)&memBase->nodes[size * index];
+ index ++;
+
+ memBase->index = index;
+ list->listMemBase = memBase;
+ list->listCount++;
+ return b;
+}
+
+static struct b_node *
+insert_node(struct b_list *list, struct b_node *new)
+{
+#ifdef CFG_JFFS2_SORT_FRAGMENTS
+ struct b_node *b, *prev;
+
+ if (list->listTail != NULL && list->listCompare(new, list->listTail))
+ prev = list->listTail;
+ else if (list->listLast != NULL && list->listCompare(new, list->listLast))
+ prev = list->listLast;
+ else
+ prev = NULL;
+
+ for (b = (prev ? prev->next : list->listHead);
+ b != NULL && list->listCompare(new, b);
+ prev = b, b = b->next) {
+ list->listLoops++;
+ }
+ if (b != NULL)
+ list->listLast = prev;
+
+ if (b != NULL) {
+ new->next = b;
+ if (prev != NULL)
+ prev->next = new;
+ else
+ list->listHead = new;
+ } else
+#endif
+ {
+ new->next = (struct b_node *) NULL;
+ if (list->listTail != NULL) {
+ list->listTail->next = new;
+ list->listTail = new;
+ } else {
+ list->listTail = list->listHead = new;
+ }
+ }
+
+ return new;
+}
+
+static struct b_node *
+insert_inode(struct b_list *list, struct jffs2_raw_inode *node, u32 offset)
+{
+ struct b_inode *new;
+
+ if (!(new = (struct b_inode *)add_node(list, sizeof(struct b_inode)))) {
+ putstr("add_node failed!\r\n");
+ return NULL;
+ }
+ new->offset = offset;
+ new->version = node->version;
+ new->ino = node->ino;
+ new->isize = node->isize;
+ new->csize = node->csize;
+
+ return insert_node(list, (struct b_node *)new);
+}
+
+static struct b_node *
+insert_dirent(struct b_list *list, struct jffs2_raw_dirent *node, u32 offset)
+{
+ struct b_dirent *new;
+
+ if (!(new = (struct b_dirent *)add_node(list, sizeof(struct b_dirent)))) {
+ putstr("add_node failed!\r\n");
+ return NULL;
+ }
+ new->offset = offset;
+ new->version = node->version;
+ new->pino = node->pino;
+ new->ino = node->ino;
+ new->nhash = full_name_hash(node->name, node->nsize);
+ new->nsize = node->nsize;
+ new->type = node->type;
+
+ return insert_node(list, (struct b_node *)new);
+}
+
+#ifdef CFG_JFFS2_SORT_FRAGMENTS
+/* Sort data entries with the latest version last, so that if there
+ * is overlapping data the latest version will be used.
+ */
+static int compare_inodes(struct b_node *new, struct b_node *old)
+{
+ struct jffs2_raw_inode ojNew;
+ struct jffs2_raw_inode ojOld;
+ struct jffs2_raw_inode *jNew =
+ (struct jffs2_raw_inode *)get_fl_mem(new->offset, sizeof(ojNew), &ojNew);
+ struct jffs2_raw_inode *jOld =
+ (struct jffs2_raw_inode *)get_fl_mem(old->offset, sizeof(ojOld), &ojOld);
+
+ return jNew->version > jOld->version;
+}
+
+/* Sort directory entries so all entries in the same directory
+ * with the same name are grouped together, with the latest version
+ * last. This makes it easy to eliminate all but the latest version
+ * by marking the previous version dead by setting the inode to 0.
+ */
+static int compare_dirents(struct b_node *new, struct b_node *old)
+{
+ struct jffs2_raw_dirent ojNew;
+ struct jffs2_raw_dirent ojOld;
+ struct jffs2_raw_dirent *jNew =
+ (struct jffs2_raw_dirent *)get_fl_mem(new->offset, sizeof(ojNew), &ojNew);
+ struct jffs2_raw_dirent *jOld =
+ (struct jffs2_raw_dirent *)get_fl_mem(old->offset, sizeof(ojOld), &ojOld);
+ int cmp;
+
+ /* ascending sort by pino */
+ if (jNew->pino != jOld->pino)
+ return jNew->pino > jOld->pino;
+
+ /* pino is the same, so use ascending sort by nsize, so
+ * we don't do strncmp unless we really must.
+ */
+ if (jNew->nsize != jOld->nsize)
+ return jNew->nsize > jOld->nsize;
+
+ /* length is also the same, so use ascending sort by name
+ */
+ cmp = strncmp(jNew->name, jOld->name, jNew->nsize);
+ if (cmp != 0)
+ return cmp > 0;
+
+ /* we have duplicate names in this directory, so use ascending
+ * sort by version
+ */
+ if (jNew->version > jOld->version) {
+ /* since jNew is newer, we know jOld is not valid, so
+ * mark it with inode 0 and it will not be used
+ */
+ jOld->ino = 0;
+ return 1;
+ }
+
+ return 0;
+}
+#endif
+
+static u32
+jffs_init_1pass_list(struct part_info *part)
+{
+ struct b_lists *pL;
+
+ if (part->jffs2_priv != NULL) {
+ pL = (struct b_lists *)part->jffs2_priv;
+ free_nodes(&pL->frag);
+ free_nodes(&pL->dir);
+ free(pL);
+ }
+ if (NULL != (part->jffs2_priv = malloc(sizeof(struct b_lists)))) {
+ pL = (struct b_lists *)part->jffs2_priv;
+
+ memset(pL, 0, sizeof(*pL));
+#ifdef CFG_JFFS2_SORT_FRAGMENTS
+ pL->dir.listCompare = compare_dirents;
+ pL->frag.listCompare = compare_inodes;
+#endif
+ }
+ return 0;
+}
+
+/* find the inode from the slashless name given a parent */
+static long
+jffs2_1pass_read_inode(struct b_lists *pL, u32 ino, char *dest,
+ struct stat *stat)
+{
+ struct b_inode *jNode;
+ u32 totalSize = 0;
+ u32 latestVersion = 0;
+ long ret;
+
+#ifdef CFG_JFFS2_SORT_FRAGMENTS
+ /* Find file size before loading any data, so fragments that
+ * start past the end of file can be ignored. A fragment
+ * that is partially in the file is loaded, so extra data may
+ * be loaded up to the next 4K boundary above the file size.
+ * This shouldn't cause trouble when loading kernel images, so
+ * we will live with it.
+ */
+ for (jNode = (struct b_inode *)pL->frag.listHead; jNode; jNode = jNode->next) {
+ if ((ino == jNode->ino)) {
+ /* get actual file length from the newest node */
+ if (jNode->version >= latestVersion) {
+ totalSize = jNode->isize;
+ latestVersion = jNode->version;
+ }
+ }
+ }
+#endif
+
+ for (jNode = (struct b_inode *)pL->frag.listHead; jNode; jNode = jNode->next) {
+ if ((ino != jNode->ino))
+ continue;
+#ifndef CFG_JFFS2_SORT_FRAGMENTS
+ /* get actual file length from the newest node */
+ if (jNode->version >= latestVersion) {
+ totalSize = jNode->isize;
+ latestVersion = jNode->version;
+ }
+#endif
+ if (dest || stat) {
+ char *src, *dst;
+ char data[4096 + sizeof(struct jffs2_raw_inode)];
+ struct jffs2_raw_inode *inode;
+ size_t len;
+
+ inode = (struct jffs2_raw_inode *)&data;
+ len = sizeof(struct jffs2_raw_inode);
+ if (dest)
+ len += jNode->csize;
+ nand_read(nand, jNode->offset, &len, inode);
+ /* ignore data behind latest known EOF */
+ if (inode->offset > totalSize)
+ continue;
+
+ if (stat) {
+ stat->st_mtime = inode->mtime;
+ stat->st_mode = inode->mode;
+ stat->st_ino = inode->ino;
+ stat->st_size = totalSize;
+ }
+
+ if (!dest)
+ continue;
+
+ src = ((char *) inode) + sizeof(struct jffs2_raw_inode);
+ dst = (char *) (dest + inode->offset);
+
+ switch (inode->compr) {
+ case JFFS2_COMPR_NONE:
+ ret = 0;
+ memcpy(dst, src, inode->dsize);
+ break;
+ case JFFS2_COMPR_ZERO:
+ ret = 0;
+ memset(dst, 0, inode->dsize);
+ break;
+ case JFFS2_COMPR_RTIME:
+ ret = 0;
+ rtime_decompress(src, dst, inode->csize, inode->dsize);
+ break;
+ case JFFS2_COMPR_DYNRUBIN:
+ /* this is slow but it works */
+ ret = 0;
+ dynrubin_decompress(src, dst, inode->csize, inode->dsize);
+ break;
+ case JFFS2_COMPR_ZLIB:
+ ret = zlib_decompress(src, dst, inode->csize, inode->dsize);
+ break;
+#if defined(CONFIG_JFFS2_LZO_LZARI)
+ case JFFS2_COMPR_LZO:
+ ret = lzo_decompress(src, dst, inode->csize, inode->dsize);
+ break;
+ case JFFS2_COMPR_LZARI:
+ ret = lzari_decompress(src, dst, inode->csize, inode->dsize);
+ break;
+#endif
+ default:
+ /* unknown */
+ putLabeledWord("UNKOWN COMPRESSION METHOD = ", inode->compr);
+ return -1;
+ }
+ }
+ }
+
+ return totalSize;
+}
+
+/* find the inode from the slashless name given a parent */
+static u32
+jffs2_1pass_find_inode(struct b_lists * pL, const char *name, u32 pino)
+{
+ struct b_dirent *jDir;
+ int len = strlen(name); /* name is assumed slash free */
+ unsigned int nhash = full_name_hash(name, len);
+ u32 version = 0;
+ u32 inode = 0;
+
+ /* we need to search all and return the inode with the highest version */
+ for (jDir = (struct b_dirent *)pL->dir.listHead; jDir; jDir = jDir->next) {
+ if ((pino == jDir->pino) && (jDir->ino) && /* 0 for unlink */
+ (len == jDir->nsize) && (nhash == jDir->nhash)) {
+ /* TODO: compare name */
+ if (jDir->version < version)
+ continue;
+
+ if (jDir->version == version && inode != 0) {
+ /* I'm pretty sure this isn't legal */
+ putstr(" ** ERROR ** ");
+// putnstr(jDir->name, jDir->nsize);
+// putLabeledWord(" has dup version =", version);
+ }
+ inode = jDir->ino;
+ version = jDir->version;
+ }
+ }
+ return inode;
+}
+
+char *mkmodestr(unsigned long mode, char *str)
+{
+ static const char *l = "xwr";
+ int mask = 1, i;
+ char c;
+
+ switch (mode & S_IFMT) {
+ case S_IFDIR: str[0] = 'd'; break;
+ case S_IFBLK: str[0] = 'b'; break;
+ case S_IFCHR: str[0] = 'c'; break;
+ case S_IFIFO: str[0] = 'f'; break;
+ case S_IFLNK: str[0] = 'l'; break;
+ case S_IFSOCK: str[0] = 's'; break;
+ case S_IFREG: str[0] = '-'; break;
+ default: str[0] = '?';
+ }
+
+ for(i = 0; i < 9; i++) {
+ c = l[i%3];
+ str[9-i] = (mode & mask)?c:'-';
+ mask = mask<<1;
+ }
+
+ if(mode & S_ISUID) str[3] = (mode & S_IXUSR)?'s':'S';
+ if(mode & S_ISGID) str[6] = (mode & S_IXGRP)?'s':'S';
+ if(mode & S_ISVTX) str[9] = (mode & S_IXOTH)?'t':'T';
+ str[10] = '\0';
+ return str;
+}
+
+static inline void dump_stat(struct stat *st, const char *name)
+{
+ char str[20];
+ char s[64], *p;
+
+ if (st->st_mtime == (time_t)(-1)) /* some ctimes really hate -1 */
+ st->st_mtime = 1;
+
+ ctime_r(&st->st_mtime, s/*,64*/); /* newlib ctime doesn't have buflen */
+
+ if ((p = strchr(s,'\n')) != NULL) *p = '\0';
+ if ((p = strchr(s,'\r')) != NULL) *p = '\0';
+
+/*
+ printf("%6lo %s %8ld %s %s\n", st->st_mode, mkmodestr(st->st_mode, str),
+ st->st_size, s, name);
+*/
+
+ printf(" %s %8ld %s %s", mkmodestr(st->st_mode,str), st->st_size, s, name);
+}
+
+static inline int
+dump_inode(struct b_lists *pL, struct b_dirent *d, struct b_inode *i)
+{
+ char fname[JFFS2_MAX_NAME_LEN + 1];
+ struct stat st;
+ size_t len;
+
+ if(!d || !i) return -1;
+ len = d->nsize;
+ nand_read(nand, d->offset + sizeof(struct jffs2_raw_dirent),
+ &len, &fname);
+ fname[d->nsize] = '\0';
+
+ memset(&st, 0, sizeof(st));
+
+ jffs2_1pass_read_inode(pL, i->ino, NULL, &st);
+
+ dump_stat(&st, fname);
+/* FIXME
+ if (d->type == DT_LNK) {
+ unsigned char *src = (unsigned char *) (&i[1]);
+ putstr(" -> ");
+ putnstr(src, (int)i->dsize);
+ }
+*/
+ putstr("\r\n");
+
+ return 0;
+}
+
+/* list inodes with the given pino */
+static u32
+jffs2_1pass_list_inodes(struct b_lists * pL, u32 pino)
+{
+ struct b_dirent *jDir;
+ u32 i_version = 0;
+
+ for (jDir = (struct b_dirent *)pL->dir.listHead; jDir; jDir = jDir->next) {
+ if ((pino == jDir->pino) && (jDir->ino)) { /* ino=0 -> unlink */
+ struct b_inode *jNode = (struct b_inode *)pL->frag.listHead;
+ struct b_inode *i = NULL;
+
+ while (jNode) {
+ if (jNode->ino == jDir->ino && jNode->version >= i_version) {
+ i_version = jNode->version;
+ i = jNode;
+ }
+ jNode = jNode->next;
+ }
+ dump_inode(pL, jDir, i);
+ }
+ }
+ return pino;
+}
+
+static u32
+jffs2_1pass_search_inode(struct b_lists * pL, const char *fname, u32 pino)
+{
+ int i;
+ char tmp[256];
+ char working_tmp[256];
+ char *c;
+
+ /* discard any leading slash */
+ i = 0;
+ while (fname[i] == '/')
+ i++;
+ strcpy(tmp, &fname[i]);
+
+ while ((c = (char *) strchr(tmp, '/'))) /* we are still dired searching */
+ {
+ strncpy(working_tmp, tmp, c - tmp);
+ working_tmp[c - tmp] = '\0';
+#if 0
+ putstr("search_inode: tmp = ");
+ putstr(tmp);
+ putstr("\r\n");
+ putstr("search_inode: wtmp = ");
+ putstr(working_tmp);
+ putstr("\r\n");
+ putstr("search_inode: c = ");
+ putstr(c);
+ putstr("\r\n");
+#endif
+ for (i = 0; i < strlen(c) - 1; i++)
+ tmp[i] = c[i + 1];
+ tmp[i] = '\0';
+#if 0
+ putstr("search_inode: post tmp = ");
+ putstr(tmp);
+ putstr("\r\n");
+#endif
+
+ if (!(pino = jffs2_1pass_find_inode(pL, working_tmp, pino))) {
+ putstr("find_inode failed for name=");
+ putstr(working_tmp);
+ putstr("\r\n");
+ return 0;
+ }
+ }
+ /* this is for the bare filename, directories have already been mapped */
+ if (!(pino = jffs2_1pass_find_inode(pL, tmp, pino))) {
+ putstr("find_inode failed for name=");
+ putstr(tmp);
+ putstr("\r\n");
+ return 0;
+ }
+ return pino;
+
+}
+
+static u32
+jffs2_1pass_resolve_inode(struct b_lists * pL, u32 ino)
+{
+ struct b_dirent *jDir;
+ struct b_inode *jNode;
+ u8 jDirFoundType = 0;
+ u32 jDirFoundIno = 0;
+ u32 jDirFoundPino = 0;
+ char tmp[JFFS2_MAX_NAME_LEN + 1];
+ u32 version = 0;
+ u32 pino;
+
+ /* we need to search all and return the inode with the highest version */
+ for (jDir = (struct b_dirent *)pL->dir.listHead; jDir; jDir = jDir->next) {
+ if (ino == jDir->ino) {
+ if (jDir->version < version)
+ continue;
+
+ if (jDir->version == version && jDirFoundType) {
+ /* I'm pretty sure this isn't legal */
+ putstr(" ** ERROR ** ");
+// putnstr(jDir->name, jDir->nsize);
+// putLabeledWord(" has dup version (resolve) = ",
+// version);
+ }
+
+ jDirFoundType = jDir->type;
+ jDirFoundIno = jDir->ino;
+ jDirFoundPino = jDir->pino;
+ version = jDir->version;
+ }
+ }
+ /* now we found the right entry again. (shoulda returned inode*) */
+ if (jDirFoundType != DT_LNK)
+ return jDirFoundIno;
+
+ /* it's a soft link so we follow it again. */
+ for (jNode = (struct b_inode *)pL->frag.listHead; jNode; jNode = jNode->next) {
+ if (jNode->ino == jDirFoundIno) {
+ size_t len = jNode->csize;
+ nand_read(nand, jNode->offset + sizeof(struct jffs2_raw_inode), &len, &tmp);
+ tmp[jNode->csize] = '\0';
+ break;
+ }
+ }
+ /* ok so the name of the new file to find is in tmp */
+ /* if it starts with a slash it is root based else shared dirs */
+ if (tmp[0] == '/')
+ pino = 1;
+ else
+ pino = jDirFoundPino;
+
+ return jffs2_1pass_search_inode(pL, tmp, pino);
+}
+
+static u32
+jffs2_1pass_search_list_inodes(struct b_lists * pL, const char *fname, u32 pino)
+{
+ int i;
+ char tmp[256];
+ char working_tmp[256];
+ char *c;
+
+ /* discard any leading slash */
+ i = 0;
+ while (fname[i] == '/')
+ i++;
+ strcpy(tmp, &fname[i]);
+ working_tmp[0] = '\0';
+ while ((c = (char *) strchr(tmp, '/'))) /* we are still dired searching */
+ {
+ strncpy(working_tmp, tmp, c - tmp);
+ working_tmp[c - tmp] = '\0';
+ for (i = 0; i < strlen(c) - 1; i++)
+ tmp[i] = c[i + 1];
+ tmp[i] = '\0';
+ /* only a failure if we arent looking at top level */
+ if (!(pino = jffs2_1pass_find_inode(pL, working_tmp, pino)) &&
+ (working_tmp[0])) {
+ putstr("find_inode failed for name=");
+ putstr(working_tmp);
+ putstr("\r\n");
+ return 0;
+ }
+ }
+
+ if (tmp[0] && !(pino = jffs2_1pass_find_inode(pL, tmp, pino))) {
+ putstr("find_inode failed for name=");
+ putstr(tmp);
+ putstr("\r\n");
+ return 0;
+ }
+ /* this is for the bare filename, directories have already been mapped */
+ if (!(pino = jffs2_1pass_list_inodes(pL, pino))) {
+ putstr("find_inode failed for name=");
+ putstr(tmp);
+ putstr("\r\n");
+ return 0;
+ }
+ return pino;
+
+}
+
+unsigned char
+jffs2_1pass_rescan_needed(struct part_info *part)
+{
+ struct b_node *b;
+ struct jffs2_unknown_node onode;
+ struct jffs2_unknown_node *node;
+ struct b_lists *pL = (struct b_lists *)part->jffs2_priv;
+
+ if (part->jffs2_priv == 0){
+ DEBUGF ("rescan: First time in use\n");
+ return 1;
+ }
+ /* if we have no list, we need to rescan */
+ if (pL->frag.listCount == 0) {
+ DEBUGF ("rescan: fraglist zero\n");
+ return 1;
+ }
+
+ /* or if we are scanning a new partition */
+ if (pL->partOffset != part->offset) {
+ DEBUGF ("rescan: different partition\n");
+ return 1;
+ }
+
+#if defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND)
+ if (nanddev != (int)part->usr_priv - 1) {
+ DEBUGF ("rescan: nand device changed\n");
+ return -1;
+ }
+#endif /* defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND) */
+ /* FIXME */
+#if 0
+ /* but suppose someone reflashed a partition at the same offset... */
+ b = pL->dir.listHead;
+ while (b) {
+ node = (struct jffs2_unknown_node *) get_fl_mem(b->offset,
+ sizeof(onode), &onode);
+ if (node->nodetype != JFFS2_NODETYPE_DIRENT) {
+ DEBUGF ("rescan: fs changed beneath me? (%lx)\n",
+ (unsigned long) b->offset);
+ return 1;
+ }
+ b = b->next;
+ }
+#endif
+ return 0;
+}
+
+#ifdef DEBUG_FRAGMENTS
+static void
+dump_fragments(struct b_lists *pL)
+{
+ struct b_node *b;
+ struct jffs2_raw_inode ojNode;
+ struct jffs2_raw_inode *jNode;
+
+ putstr("\r\n\r\n******The fragment Entries******\r\n");
+ b = pL->frag.listHead;
+ while (b) {
+ jNode = (struct jffs2_raw_inode *) get_fl_mem(b->offset,
+ sizeof(ojNode), &ojNode);
+ putLabeledWord("\r\n\tbuild_list: FLASH_OFFSET = ", b->offset);
+ putLabeledWord("\tbuild_list: totlen = ", jNode->totlen);
+ putLabeledWord("\tbuild_list: inode = ", jNode->ino);
+ putLabeledWord("\tbuild_list: version = ", jNode->version);
+ putLabeledWord("\tbuild_list: isize = ", jNode->isize);
+ putLabeledWord("\tbuild_list: atime = ", jNode->atime);
+ putLabeledWord("\tbuild_list: offset = ", jNode->offset);
+ putLabeledWord("\tbuild_list: csize = ", jNode->csize);
+ putLabeledWord("\tbuild_list: dsize = ", jNode->dsize);
+ putLabeledWord("\tbuild_list: compr = ", jNode->compr);
+ putLabeledWord("\tbuild_list: usercompr = ", jNode->usercompr);
+ putLabeledWord("\tbuild_list: flags = ", jNode->flags);
+ putLabeledWord("\tbuild_list: offset = ", b->offset); /* FIXME: ? [RS] */
+ b = b->next;
+ }
+}
+#endif
+
+#ifdef DEBUG_DIRENTS
+static void
+dump_dirents(struct b_lists *pL)
+{
+ struct b_node *b;
+ struct jffs2_raw_dirent *jDir;
+
+ putstr("\r\n\r\n******The directory Entries******\r\n");
+ b = pL->dir.listHead;
+ while (b) {
+ jDir = (struct jffs2_raw_dirent *) get_node_mem(b->offset);
+ putstr("\r\n");
+ putnstr(jDir->name, jDir->nsize);
+ putLabeledWord("\r\n\tbuild_list: magic = ", jDir->magic);
+ putLabeledWord("\tbuild_list: nodetype = ", jDir->nodetype);
+ putLabeledWord("\tbuild_list: hdr_crc = ", jDir->hdr_crc);
+ putLabeledWord("\tbuild_list: pino = ", jDir->pino);
+ putLabeledWord("\tbuild_list: version = ", jDir->version);
+ putLabeledWord("\tbuild_list: ino = ", jDir->ino);
+ putLabeledWord("\tbuild_list: mctime = ", jDir->mctime);
+ putLabeledWord("\tbuild_list: nsize = ", jDir->nsize);
+ putLabeledWord("\tbuild_list: type = ", jDir->type);
+ putLabeledWord("\tbuild_list: node_crc = ", jDir->node_crc);
+ putLabeledWord("\tbuild_list: name_crc = ", jDir->name_crc);
+ putLabeledWord("\tbuild_list: offset = ", b->offset); /* FIXME: ? [RS] */
+ b = b->next;
+ put_fl_mem(jDir);
+ }
+}
+#endif
+
+static int
+jffs2_fill_scan_buf(nand_info_t *nand, unsigned char *buf,
+ unsigned ofs, unsigned len)
+{
+ int ret;
+ unsigned olen;
+
+ olen = len;
+ ret = nand_read(nand, ofs, &olen, buf);
+ if (ret) {
+ printf("nand_read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret);
+ return ret;
+ }
+ if (olen < len) {
+ printf("Read at 0x%x gave only 0x%x bytes\n", ofs, olen);
+ return -1;
+ }
+ return 0;
+}
+
+#define EMPTY_SCAN_SIZE 1024
+static u32
+jffs2_1pass_build_lists(struct part_info * part)
+{
+ struct b_lists *pL;
+ struct jffs2_unknown_node *node;
+ unsigned nr_blocks, sectorsize, ofs, offset;
+ char *buf;
+ int i;
+ u32 counter = 0;
+ u32 counter4 = 0;
+ u32 counterF = 0;
+ u32 counterN = 0;
+
+#if defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND)
+ nanddev = (int)part->usr_priv - 1;
+ nand = &nand_info[nanddev];
+#endif /* defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND) */
+
+ /* if we are building a list we need to refresh the cache. */
+ jffs_init_1pass_list(part);
+ pL = (struct b_lists *)part->jffs2_priv;
+ pL->partOffset = part->offset;
+ puts ("Scanning JFFS2 FS: ");
+
+ sectorsize = nand->erasesize;
+ nr_blocks = part->size / sectorsize;
+ buf = malloc(sectorsize);
+ if (!buf)
+ return 0;
+
+ for (i = 0; i < nr_blocks; i++) {
+ printf("\b\b%c ", spinner[counter++ % sizeof(spinner)]);
+
+ offset = part->offset + i * sectorsize;
+
+ if (nand_block_isbad(nand, offset))
+ continue;
+
+ if (jffs2_fill_scan_buf(nand, buf, offset, EMPTY_SCAN_SIZE))
+ return 0;
+
+ ofs = 0;
+ /* Scan only 4KiB of 0xFF before declaring it's empty */
+ while (ofs < EMPTY_SCAN_SIZE && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
+ ofs += 4;
+ if (ofs == EMPTY_SCAN_SIZE)
+ continue;
+
+ if (jffs2_fill_scan_buf(nand, buf + EMPTY_SCAN_SIZE, offset + EMPTY_SCAN_SIZE, sectorsize - EMPTY_SCAN_SIZE))
+ return 0;
+ offset += ofs;
+
+ while (ofs < sectorsize - sizeof(struct jffs2_unknown_node)) {
+ node = (struct jffs2_unknown_node *)&buf[ofs];
+ if (node->magic != JFFS2_MAGIC_BITMASK || !hdr_crc(node)) {
+ offset += 4;
+ ofs += 4;
+ counter4++;
+ continue;
+ }
+ /* if its a fragment add it */
+ if (node->nodetype == JFFS2_NODETYPE_INODE &&
+ inode_crc((struct jffs2_raw_inode *) node)) {
+ if (insert_inode(&pL->frag, (struct jffs2_raw_inode *) node,
+ offset) == NULL) {
+ return 0;
+ }
+ } else if (node->nodetype == JFFS2_NODETYPE_DIRENT &&
+ dirent_crc((struct jffs2_raw_dirent *) node) &&
+ dirent_name_crc((struct jffs2_raw_dirent *) node)) {
+ if (! (counterN%100))
+ puts ("\b\b. ");
+ if (insert_dirent(&pL->dir, (struct jffs2_raw_dirent *) node,
+ offset) == NULL) {
+ return 0;
+ }
+ counterN++;
+ } else if (node->nodetype == JFFS2_NODETYPE_CLEANMARKER) {
+ if (node->totlen != sizeof(struct jffs2_unknown_node))
+ printf("OOPS Cleanmarker has bad size "
+ "%d != %d\n", node->totlen,
+ sizeof(struct jffs2_unknown_node));
+ } else if (node->nodetype == JFFS2_NODETYPE_PADDING) {
+ if (node->totlen < sizeof(struct jffs2_unknown_node))
+ printf("OOPS Padding has bad size "
+ "%d < %d\n", node->totlen,
+ sizeof(struct jffs2_unknown_node));
+ } else {
+ printf("Unknown node type: %x len %d "
+ "offset 0x%x\n", node->nodetype,
+ node->totlen, offset);
+ }
+ offset += ((node->totlen + 3) & ~3);
+ ofs += ((node->totlen + 3) & ~3);
+ counterF++;
+ }
+ }
+
+ putstr("\b\b done.\r\n"); /* close off the dots */
+
+#if 0
+ putLabeledWord("dir entries = ", pL->dir.listCount);
+ putLabeledWord("frag entries = ", pL->frag.listCount);
+ putLabeledWord("+4 increments = ", counter4);
+ putLabeledWord("+file_offset increments = ", counterF);
+#endif
+
+#ifdef DEBUG_DIRENTS
+ dump_dirents(pL);
+#endif
+
+#ifdef DEBUG_FRAGMENTS
+ dump_fragments(pL);
+#endif
+
+ /* give visual feedback that we are done scanning the flash */
+ led_blink(0x0, 0x0, 0x1, 0x1); /* off, forever, on 100ms, off 100ms */
+ free(buf);
+
+ return 1;
+}
+
+
+static u32
+jffs2_1pass_fill_info(struct b_lists * pL, struct b_jffs2_info * piL)
+{
+ struct b_node *b;
+ struct jffs2_raw_inode ojNode;
+ struct jffs2_raw_inode *jNode;
+ int i;
+
+ for (i = 0; i < JFFS2_NUM_COMPR; i++) {
+ piL->compr_info[i].num_frags = 0;
+ piL->compr_info[i].compr_sum = 0;
+ piL->compr_info[i].decompr_sum = 0;
+ }
+/* FIXME
+ b = pL->frag.listHead;
+ while (b) {
+ jNode = (struct jffs2_raw_inode *) get_fl_mem(b->offset,
+ sizeof(ojNode), &ojNode);
+ if (jNode->compr < JFFS2_NUM_COMPR) {
+ piL->compr_info[jNode->compr].num_frags++;
+ piL->compr_info[jNode->compr].compr_sum += jNode->csize;
+ piL->compr_info[jNode->compr].decompr_sum += jNode->dsize;
+ }
+ b = b->next;
+ }
+*/
+ return 0;
+}
+
+
+static struct b_lists *
+jffs2_get_list(struct part_info * part, const char *who)
+{
+ if (jffs2_1pass_rescan_needed(part)) {
+ if (!jffs2_1pass_build_lists(part)) {
+ printf("%s: Failed to scan JFFSv2 file structure\n", who);
+ return NULL;
+ }
+ }
+ return (struct b_lists *)part->jffs2_priv;
+}
+
+
+/* Print directory / file contents */
+u32
+jffs2_1pass_ls(struct part_info * part, const char *fname)
+{
+ struct b_lists *pl;
+ long ret = 0;
+ u32 inode;
+
+ if (! (pl = jffs2_get_list(part, "ls")))
+ return 0;
+
+ if (! (inode = jffs2_1pass_search_list_inodes(pl, fname, 1))) {
+ putstr("ls: Failed to scan jffs2 file structure\r\n");
+ return 0;
+ }
+
+#if 0
+ putLabeledWord("found file at inode = ", inode);
+ putLabeledWord("read_inode returns = ", ret);
+#endif
+
+ return ret;
+}
+
+
+/* Load a file from flash into memory. fname can be a full path */
+u32
+jffs2_1pass_load(char *dest, struct part_info * part, const char *fname)
+{
+
+ struct b_lists *pl;
+ long ret = 0;
+ u32 inode;
+
+ if (! (pl = jffs2_get_list(part, "load")))
+ return 0;
+
+ if (! (inode = jffs2_1pass_search_inode(pl, fname, 1))) {
+ putstr("load: Failed to find inode\r\n");
+ return 0;
+ }
+
+ /* Resolve symlinks */
+ if (! (inode = jffs2_1pass_resolve_inode(pl, inode))) {
+ putstr("load: Failed to resolve inode structure\r\n");
+ return 0;
+ }
+
+ if ((ret = jffs2_1pass_read_inode(pl, inode, dest, NULL)) < 0) {
+ putstr("load: Failed to read inode\r\n");
+ return 0;
+ }
+
+ DEBUGF ("load: loaded '%s' to 0x%lx (%ld bytes)\n", fname,
+ (unsigned long) dest, ret);
+ return ret;
+}
+
+/* Return information about the fs on this partition */
+u32
+jffs2_1pass_info(struct part_info * part)
+{
+ struct b_jffs2_info info;
+ struct b_lists *pl;
+ int i;
+
+ if (! (pl = jffs2_get_list(part, "info")))
+ return 0;
+
+ jffs2_1pass_fill_info(pl, &info);
+ for (i = 0; i < JFFS2_NUM_COMPR; i++) {
+ printf ("Compression: %s\n"
+ "\tfrag count: %d\n"
+ "\tcompressed sum: %d\n"
+ "\tuncompressed sum: %d\n",
+ compr_names[i],
+ info.compr_info[i].num_frags,
+ info.compr_info[i].compr_sum,
+ info.compr_info[i].decompr_sum);
+ }
+ return 1;
+}
+
+#endif /* CFG_CMD_JFFS2 */
diff --git a/fs/jffs2/jffs2_nand_private.h b/fs/jffs2/jffs2_nand_private.h
new file mode 100644
index 0000000000..18cca8d076
--- /dev/null
+++ b/fs/jffs2/jffs2_nand_private.h
@@ -0,0 +1,133 @@
+#ifndef jffs2_private_h
+#define jffs2_private_h
+
+#include <jffs2/jffs2.h>
+
+struct b_node {
+ struct b_node *next;
+};
+
+struct b_inode {
+ struct b_inode *next;
+ u32 offset; /* physical offset to beginning of real inode */
+ u32 version;
+ u32 ino;
+ u32 isize;
+ u32 csize;
+};
+
+struct b_dirent {
+ struct b_dirent *next;
+ u32 offset; /* physical offset to beginning of real dirent */
+ u32 version;
+ u32 pino;
+ u32 ino;
+ unsigned int nhash;
+ unsigned char nsize;
+ unsigned char type;
+};
+
+struct b_list {
+ struct b_node *listTail;
+ struct b_node *listHead;
+ unsigned int listCount;
+ struct mem_block *listMemBase;
+};
+
+struct b_lists {
+ char *partOffset;
+ struct b_list dir;
+ struct b_list frag;
+};
+
+struct b_compr_info {
+ u32 num_frags;
+ u32 compr_sum;
+ u32 decompr_sum;
+};
+
+struct b_jffs2_info {
+ struct b_compr_info compr_info[JFFS2_NUM_COMPR];
+};
+
+static inline int
+hdr_crc(struct jffs2_unknown_node *node)
+{
+#if 1
+ u32 crc = crc32_no_comp(0, (unsigned char *)node, sizeof(struct jffs2_unknown_node) - 4);
+#else
+ /* what's the semantics of this? why is this here? */
+ u32 crc = crc32_no_comp(~0, (unsigned char *)node, sizeof(struct jffs2_unknown_node) - 4);
+
+ crc ^= ~0;
+#endif
+ if (node->hdr_crc != crc) {
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+static inline int
+dirent_crc(struct jffs2_raw_dirent *node)
+{
+ if (node->node_crc != crc32_no_comp(0, (unsigned char *)node, sizeof(struct jffs2_raw_dirent) - 8)) {
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+static inline int
+dirent_name_crc(struct jffs2_raw_dirent *node)
+{
+ if (node->name_crc != crc32_no_comp(0, (unsigned char *)&(node->name), node->nsize)) {
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+static inline int
+inode_crc(struct jffs2_raw_inode *node)
+{
+ if (node->node_crc != crc32_no_comp(0, (unsigned char *)node, sizeof(struct jffs2_raw_inode) - 8)) {
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+/* Borrowed from include/linux/dcache.h */
+
+/* Name hashing routines. Initial hash value */
+/* Hash courtesy of the R5 hash in reiserfs modulo sign bits */
+#define init_name_hash() 0
+
+/* partial hash update function. Assume roughly 4 bits per character */
+static inline unsigned long
+partial_name_hash(unsigned long c, unsigned long prevhash)
+{
+ return (prevhash + (c << 4) + (c >> 4)) * 11;
+}
+
+/*
+ * Finally: cut down the number of bits to a int value (and try to avoid
+ * losing bits)
+ */
+static inline unsigned long end_name_hash(unsigned long hash)
+{
+ return (unsigned int) hash;
+}
+
+/* Compute the hash for a name string. */
+static inline unsigned int
+full_name_hash(const unsigned char *name, unsigned int len)
+{
+ unsigned long hash = init_name_hash();
+ while (len--)
+ hash = partial_name_hash(*name++, hash);
+ return end_name_hash(hash);
+}
+
+#endif /* jffs2_private.h */
diff --git a/include/linux/mtd/compat.h b/include/linux/mtd/compat.h
new file mode 100644
index 0000000000..460cd45c80
--- /dev/null
+++ b/include/linux/mtd/compat.h
@@ -0,0 +1,44 @@
+#ifndef _LINUX_COMPAT_H_
+#define _LINUX_COMPAT_H_
+
+#define __user
+#define __iomem
+
+#define ndelay(x) udelay(1)
+
+#define printk printf
+
+#define KERN_EMERG
+#define KERN_ALERT
+#define KERN_CRIT
+#define KERN_ERR
+#define KERN_WARNING
+#define KERN_NOTICE
+#define KERN_INFO
+#define KERN_DEBUG
+
+#define kmalloc(size, flags) malloc(size)
+#define kfree(ptr) free(ptr)
+
+/*
+ * ..and if you can't take the strict
+ * types, you can specify one yourself.
+ *
+ * Or not use min/max at all, of course.
+ */
+#define min_t(type,x,y) \
+ ({ type __x = (x); type __y = (y); __x < __y ? __x: __y; })
+#define max_t(type,x,y) \
+ ({ type __x = (x); type __y = (y); __x > __y ? __x: __y; })
+
+#define BUG() do { \
+ printf("U-Boot BUG at %s:%d!\n", __FILE__, __LINE__); \
+} while (0)
+
+#define BUG_ON(condition) do { if (condition) BUG(); } while(0)
+
+#define likely(x) __builtin_expect(!!(x), 1)
+#define unlikely(x) __builtin_expect(!!(x), 0)
+
+#define PAGE_SIZE 4096
+#endif
diff --git a/include/linux/mtd/mtd-abi.h b/include/linux/mtd/mtd-abi.h
new file mode 100644
index 0000000000..afe96b59cb
--- /dev/null
+++ b/include/linux/mtd/mtd-abi.h
@@ -0,0 +1,99 @@
+/*
+ * $Id: mtd-abi.h,v 1.7 2004/11/23 15:37:32 gleixner Exp $
+ *
+ * Portions of MTD ABI definition which are shared by kernel and user space
+ */
+
+#ifndef __MTD_ABI_H__
+#define __MTD_ABI_H__
+
+struct erase_info_user {
+ uint32_t start;
+ uint32_t length;
+};
+
+struct mtd_oob_buf {
+ uint32_t start;
+ uint32_t length;
+ unsigned char *ptr;
+};
+
+#define MTD_ABSENT 0
+#define MTD_RAM 1
+#define MTD_ROM 2
+#define MTD_NORFLASH 3
+#define MTD_NANDFLASH 4
+#define MTD_PEROM 5
+#define MTD_OTHER 14
+#define MTD_UNKNOWN 15
+
+#define MTD_CLEAR_BITS 1 // Bits can be cleared (flash)
+#define MTD_SET_BITS 2 // Bits can be set
+#define MTD_ERASEABLE 4 // Has an erase function
+#define MTD_WRITEB_WRITEABLE 8 // Direct IO is possible
+#define MTD_VOLATILE 16 // Set for RAMs
+#define MTD_XIP 32 // eXecute-In-Place possible
+#define MTD_OOB 64 // Out-of-band data (NAND flash)
+#define MTD_ECC 128 // Device capable of automatic ECC
+#define MTD_NO_VIRTBLOCKS 256 // Virtual blocks not allowed
+
+// Some common devices / combinations of capabilities
+#define MTD_CAP_ROM 0
+#define MTD_CAP_RAM (MTD_CLEAR_BITS|MTD_SET_BITS|MTD_WRITEB_WRITEABLE)
+#define MTD_CAP_NORFLASH (MTD_CLEAR_BITS|MTD_ERASEABLE)
+#define MTD_CAP_NANDFLASH (MTD_CLEAR_BITS|MTD_ERASEABLE|MTD_OOB)
+#define MTD_WRITEABLE (MTD_CLEAR_BITS|MTD_SET_BITS)
+
+
+// Types of automatic ECC/Checksum available
+#define MTD_ECC_NONE 0 // No automatic ECC available
+#define MTD_ECC_RS_DiskOnChip 1 // Automatic ECC on DiskOnChip
+#define MTD_ECC_SW 2 // SW ECC for Toshiba & Samsung devices
+
+/* ECC byte placement */
+#define MTD_NANDECC_OFF 0 // Switch off ECC (Not recommended)
+#define MTD_NANDECC_PLACE 1 // Use the given placement in the structure (YAFFS1 legacy mode)
+#define MTD_NANDECC_AUTOPLACE 2 // Use the default placement scheme
+#define MTD_NANDECC_PLACEONLY 3 // Use the given placement in the structure (Do not store ecc result on read)
+#define MTD_NANDECC_AUTOPL_USR 4 // Use the given autoplacement scheme rather than using the default
+
+struct mtd_info_user {
+ uint8_t type;
+ uint32_t flags;
+ uint32_t size; // Total size of the MTD
+ uint32_t erasesize;
+ uint32_t oobblock; // Size of OOB blocks (e.g. 512)
+ uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
+ uint32_t ecctype;
+ uint32_t eccsize;
+};
+
+struct region_info_user {
+ uint32_t offset; /* At which this region starts,
+ * from the beginning of the MTD */
+ uint32_t erasesize; /* For this region */
+ uint32_t numblocks; /* Number of blocks in this region */
+ uint32_t regionindex;
+};
+
+#define MEMGETINFO _IOR('M', 1, struct mtd_info_user)
+#define MEMERASE _IOW('M', 2, struct erase_info_user)
+#define MEMWRITEOOB _IOWR('M', 3, struct mtd_oob_buf)
+#define MEMREADOOB _IOWR('M', 4, struct mtd_oob_buf)
+#define MEMLOCK _IOW('M', 5, struct erase_info_user)
+#define MEMUNLOCK _IOW('M', 6, struct erase_info_user)
+#define MEMGETREGIONCOUNT _IOR('M', 7, int)
+#define MEMGETREGIONINFO _IOWR('M', 8, struct region_info_user)
+#define MEMSETOOBSEL _IOW('M', 9, struct nand_oobinfo)
+#define MEMGETOOBSEL _IOR('M', 10, struct nand_oobinfo)
+#define MEMGETBADBLOCK _IOW('M', 11, loff_t)
+#define MEMSETBADBLOCK _IOW('M', 12, loff_t)
+
+struct nand_oobinfo {
+ uint32_t useecc;
+ uint32_t eccbytes;
+ uint32_t oobfree[8][2];
+ uint32_t eccpos[32];
+};
+
+#endif /* __MTD_ABI_H__ */
diff --git a/include/linux/mtd/mtd.h b/include/linux/mtd/mtd.h
new file mode 100644
index 0000000000..9ef4cced5e
--- /dev/null
+++ b/include/linux/mtd/mtd.h
@@ -0,0 +1,214 @@
+/*
+ * $Id: mtd.h,v 1.56 2004/08/09 18:46:04 dmarlin Exp $
+ *
+ * Copyright (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> et al.
+ *
+ * Released under GPL
+ */
+
+#ifndef __MTD_MTD_H__
+#define __MTD_MTD_H__
+#include <linux/types.h>
+#include <linux/mtd/mtd-abi.h>
+
+#define MAX_MTD_DEVICES 16
+
+#define MTD_ERASE_PENDING 0x01
+#define MTD_ERASING 0x02
+#define MTD_ERASE_SUSPEND 0x04
+#define MTD_ERASE_DONE 0x08
+#define MTD_ERASE_FAILED 0x10
+
+/* If the erase fails, fail_addr might indicate exactly which block failed. If
+ fail_addr = 0xffffffff, the failure was not at the device level or was not
+ specific to any particular block. */
+struct erase_info {
+ struct mtd_info *mtd;
+ u_int32_t addr;
+ u_int32_t len;
+ u_int32_t fail_addr;
+ u_long time;
+ u_long retries;
+ u_int dev;
+ u_int cell;
+ void (*callback) (struct erase_info *self);
+ u_long priv;
+ u_char state;
+ struct erase_info *next;
+};
+
+struct mtd_erase_region_info {
+ u_int32_t offset; /* At which this region starts, from the beginning of the MTD */
+ u_int32_t erasesize; /* For this region */
+ u_int32_t numblocks; /* Number of blocks of erasesize in this region */
+};
+
+struct mtd_info {
+ u_char type;
+ u_int32_t flags;
+ u_int32_t size; // Total size of the MTD
+
+ /* "Major" erase size for the device. Naïve users may take this
+ * to be the only erase size available, or may use the more detailed
+ * information below if they desire
+ */
+ u_int32_t erasesize;
+
+ u_int32_t oobblock; // Size of OOB blocks (e.g. 512)
+ u_int32_t oobsize; // Amount of OOB data per block (e.g. 16)
+ u_int32_t oobavail; // Number of bytes in OOB area available for fs
+ u_int32_t ecctype;
+ u_int32_t eccsize;
+
+
+ // Kernel-only stuff starts here.
+ char *name;
+ int index;
+
+ // oobinfo is a nand_oobinfo structure, which can be set by iotcl (MEMSETOOBINFO)
+ struct nand_oobinfo oobinfo;
+
+ /* Data for variable erase regions. If numeraseregions is zero,
+ * it means that the whole device has erasesize as given above.
+ */
+ int numeraseregions;
+ struct mtd_erase_region_info *eraseregions;
+
+ /* This really shouldn't be here. It can go away in 2.5 */
+ u_int32_t bank_size;
+
+ int (*erase) (struct mtd_info *mtd, struct erase_info *instr);
+
+ /* This stuff for eXecute-In-Place */
+ int (*point) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf);
+
+ /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
+ void (*unpoint) (struct mtd_info *mtd, u_char * addr, loff_t from, size_t len);
+
+
+ int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+ int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
+
+ int (*read_ecc) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
+ int (*write_ecc) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
+
+ int (*read_oob) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+ int (*write_oob) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
+
+ /*
+ * Methods to access the protection register area, present in some
+ * flash devices. The user data is one time programmable but the
+ * factory data is read only.
+ */
+ int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+
+ int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+
+ /* This function is not yet implemented */
+ int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+#if 0
+ /* kvec-based read/write methods. We need these especially for NAND flash,
+ with its limited number of write cycles per erase.
+ NB: The 'count' parameter is the number of _vectors_, each of
+ which contains an (ofs, len) tuple.
+ */
+ int (*readv) (struct mtd_info *mtd, struct kvec *vecs, unsigned long count, loff_t from, size_t *retlen);
+ int (*readv_ecc) (struct mtd_info *mtd, struct kvec *vecs, unsigned long count, loff_t from,
+ size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+ int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen);
+ int (*writev_ecc) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to,
+ size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+#endif
+ /* Sync */
+ void (*sync) (struct mtd_info *mtd);
+#if 0
+ /* Chip-supported device locking */
+ int (*lock) (struct mtd_info *mtd, loff_t ofs, size_t len);
+ int (*unlock) (struct mtd_info *mtd, loff_t ofs, size_t len);
+
+ /* Power Management functions */
+ int (*suspend) (struct mtd_info *mtd);
+ void (*resume) (struct mtd_info *mtd);
+#endif
+ /* Bad block management functions */
+ int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);
+ int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);
+
+ void *priv;
+
+ struct module *owner;
+ int usecount;
+};
+
+
+ /* Kernel-side ioctl definitions */
+
+extern int add_mtd_device(struct mtd_info *mtd);
+extern int del_mtd_device (struct mtd_info *mtd);
+
+extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
+
+extern void put_mtd_device(struct mtd_info *mtd);
+
+#if 0
+struct mtd_notifier {
+ void (*add)(struct mtd_info *mtd);
+ void (*remove)(struct mtd_info *mtd);
+ struct list_head list;
+};
+
+
+extern void register_mtd_user (struct mtd_notifier *new);
+extern int unregister_mtd_user (struct mtd_notifier *old);
+
+int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t *retlen);
+
+int default_mtd_readv(struct mtd_info *mtd, struct kvec *vecs,
+ unsigned long count, loff_t from, size_t *retlen);
+#endif
+
+#define MTD_ERASE(mtd, args...) (*(mtd->erase))(mtd, args)
+#define MTD_POINT(mtd, a,b,c,d) (*(mtd->point))(mtd, a,b,c, (u_char **)(d))
+#define MTD_UNPOINT(mtd, arg) (*(mtd->unpoint))(mtd, (u_char *)arg)
+#define MTD_READ(mtd, args...) (*(mtd->read))(mtd, args)
+#define MTD_WRITE(mtd, args...) (*(mtd->write))(mtd, args)
+#define MTD_READV(mtd, args...) (*(mtd->readv))(mtd, args)
+#define MTD_WRITEV(mtd, args...) (*(mtd->writev))(mtd, args)
+#define MTD_READECC(mtd, args...) (*(mtd->read_ecc))(mtd, args)
+#define MTD_WRITEECC(mtd, args...) (*(mtd->write_ecc))(mtd, args)
+#define MTD_READOOB(mtd, args...) (*(mtd->read_oob))(mtd, args)
+#define MTD_WRITEOOB(mtd, args...) (*(mtd->write_oob))(mtd, args)
+#define MTD_SYNC(mtd) do { if (mtd->sync) (*(mtd->sync))(mtd); } while (0)
+
+
+#ifdef CONFIG_MTD_PARTITIONS
+void mtd_erase_callback(struct erase_info *instr);
+#else
+static inline void mtd_erase_callback(struct erase_info *instr)
+{
+ if (instr->callback)
+ instr->callback(instr);
+}
+#endif
+
+/*
+ * Debugging macro and defines
+ */
+#define MTD_DEBUG_LEVEL0 (0) /* Quiet */
+#define MTD_DEBUG_LEVEL1 (1) /* Audible */
+#define MTD_DEBUG_LEVEL2 (2) /* Loud */
+#define MTD_DEBUG_LEVEL3 (3) /* Noisy */
+
+#ifdef CONFIG_MTD_DEBUG
+#define DEBUG(n, args...) \
+ do { \
+ if (n <= CONFIG_MTD_DEBUG_VERBOSE) \
+ printk(KERN_INFO args); \
+ } while(0)
+#else /* CONFIG_MTD_DEBUG */
+#define DEBUG(n, args...) do { } while(0)
+
+#endif /* CONFIG_MTD_DEBUG */
+
+#endif /* __MTD_MTD_H__ */
diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h
index 5236904959..9a0108f78c 100644
--- a/include/linux/mtd/nand.h
+++ b/include/linux/mtd/nand.h
@@ -2,10 +2,10 @@
* linux/include/linux/mtd/nand.h
*
* Copyright (c) 2000 David Woodhouse <dwmw2@mvhi.com>
- * Steven J. Hill <sjhill@cotw.com>
- * Thomas Gleixner <gleixner@autronix.de>
+ * Steven J. Hill <sjhill@realitydiluted.com>
+ * Thomas Gleixner <tglx@linutronix.de>
*
- * $Id: nand.h,v 1.7 2003/07/24 23:30:46 a0384864 Exp $
+ * $Id: nand.h,v 1.68 2004/11/12 10:40:37 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@@ -24,7 +24,7 @@
* bat later if I did something naughty.
* 10-11-2000 SJH Added private NAND flash structure for driver
* 10-24-2000 SJH Added prototype for 'nand_scan' function
- * 10-29-2001 TG changed nand_chip structure to support
+ * 10-29-2001 TG changed nand_chip structure to support
* hardwarespecific function for accessing control lines
* 02-21-2002 TG added support for different read/write adress and
* ready/busy line access function
@@ -32,10 +32,68 @@
* command delay times for different chips
* 04-28-2002 TG OOB config defines moved from nand.c to avoid duplicate
* defines in jffs2/wbuf.c
+ * 08-07-2002 TG forced bad block location to byte 5 of OOB, even if
+ * CONFIG_MTD_NAND_ECC_JFFS2 is not set
+ * 08-10-2002 TG extensions to nand_chip structure to support HW-ECC
+ *
+ * 08-29-2002 tglx nand_chip structure: data_poi for selecting
+ * internal / fs-driver buffer
+ * support for 6byte/512byte hardware ECC
+ * read_ecc, write_ecc extended for different oob-layout
+ * oob layout selections: NAND_NONE_OOB, NAND_JFFS2_OOB,
+ * NAND_YAFFS_OOB
+ * 11-25-2002 tglx Added Manufacturer code FUJITSU, NATIONAL
+ * Split manufacturer and device ID structures
+ *
+ * 02-08-2004 tglx added option field to nand structure for chip anomalities
+ * 05-25-2004 tglx added bad block table support, ST-MICRO manufacturer id
+ * update of nand_chip structure description
*/
#ifndef __LINUX_MTD_NAND_H
#define __LINUX_MTD_NAND_H
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+
+struct mtd_info;
+/* Scan and identify a NAND device */
+extern int nand_scan (struct mtd_info *mtd, int max_chips);
+/* Free resources held by the NAND device */
+extern void nand_release (struct mtd_info *mtd);
+
+/* Read raw data from the device without ECC */
+extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen);
+
+
+/* The maximum number of NAND chips in an array */
+#define NAND_MAX_CHIPS 8
+
+/* This constant declares the max. oobsize / page, which
+ * is supported now. If you add a chip with bigger oobsize/page
+ * adjust this accordingly.
+ */
+#define NAND_MAX_OOBSIZE 64
+
+/*
+ * Constants for hardware specific CLE/ALE/NCE function
+*/
+/* Select the chip by setting nCE to low */
+#define NAND_CTL_SETNCE 1
+/* Deselect the chip by setting nCE to high */
+#define NAND_CTL_CLRNCE 2
+/* Select the command latch by setting CLE to high */
+#define NAND_CTL_SETCLE 3
+/* Deselect the command latch by setting CLE to low */
+#define NAND_CTL_CLRCLE 4
+/* Select the address latch by setting ALE to high */
+#define NAND_CTL_SETALE 5
+/* Deselect the address latch by setting ALE to low */
+#define NAND_CTL_CLRALE 6
+/* Set write protection by setting WP to high. Not used! */
+#define NAND_CTL_SETWP 7
+/* Clear write protection by setting WP to low. Not used! */
+#define NAND_CTL_CLRWP 8
+
/*
* Standard NAND flash commands
*/
@@ -45,12 +103,104 @@
#define NAND_CMD_READOOB 0x50
#define NAND_CMD_ERASE1 0x60
#define NAND_CMD_STATUS 0x70
+#define NAND_CMD_STATUS_MULTI 0x71
#define NAND_CMD_SEQIN 0x80
#define NAND_CMD_READID 0x90
#define NAND_CMD_ERASE2 0xd0
#define NAND_CMD_RESET 0xff
+/* Extended commands for large page devices */
+#define NAND_CMD_READSTART 0x30
+#define NAND_CMD_CACHEDPROG 0x15
+
+/* Status bits */
+#define NAND_STATUS_FAIL 0x01
+#define NAND_STATUS_FAIL_N1 0x02
+#define NAND_STATUS_TRUE_READY 0x20
+#define NAND_STATUS_READY 0x40
+#define NAND_STATUS_WP 0x80
+
+/*
+ * Constants for ECC_MODES
+ */
+
+/* No ECC. Usage is not recommended ! */
+#define NAND_ECC_NONE 0
+/* Software ECC 3 byte ECC per 256 Byte data */
+#define NAND_ECC_SOFT 1
+/* Hardware ECC 3 byte ECC per 256 Byte data */
+#define NAND_ECC_HW3_256 2
+/* Hardware ECC 3 byte ECC per 512 Byte data */
+#define NAND_ECC_HW3_512 3
+/* Hardware ECC 3 byte ECC per 512 Byte data */
+#define NAND_ECC_HW6_512 4
+/* Hardware ECC 8 byte ECC per 512 Byte data */
+#define NAND_ECC_HW8_512 6
+/* Hardware ECC 12 byte ECC per 2048 Byte data */
+#define NAND_ECC_HW12_2048 7
+
/*
+ * Constants for Hardware ECC
+*/
+/* Reset Hardware ECC for read */
+#define NAND_ECC_READ 0
+/* Reset Hardware ECC for write */
+#define NAND_ECC_WRITE 1
+/* Enable Hardware ECC before syndrom is read back from flash */
+#define NAND_ECC_READSYN 2
+
+/* Option constants for bizarre disfunctionality and real
+* features
+*/
+/* Chip can not auto increment pages */
+#define NAND_NO_AUTOINCR 0x00000001
+/* Buswitdh is 16 bit */
+#define NAND_BUSWIDTH_16 0x00000002
+/* Device supports partial programming without padding */
+#define NAND_NO_PADDING 0x00000004
+/* Chip has cache program function */
+#define NAND_CACHEPRG 0x00000008
+/* Chip has copy back function */
+#define NAND_COPYBACK 0x00000010
+/* AND Chip which has 4 banks and a confusing page / block
+ * assignment. See Renesas datasheet for further information */
+#define NAND_IS_AND 0x00000020
+/* Chip has a array of 4 pages which can be read without
+ * additional ready /busy waits */
+#define NAND_4PAGE_ARRAY 0x00000040
+
+/* Options valid for Samsung large page devices */
+#define NAND_SAMSUNG_LP_OPTIONS \
+ (NAND_NO_PADDING | NAND_CACHEPRG | NAND_COPYBACK)
+
+/* Macros to identify the above */
+#define NAND_CANAUTOINCR(chip) (!(chip->options & NAND_NO_AUTOINCR))
+#define NAND_MUST_PAD(chip) (!(chip->options & NAND_NO_PADDING))
+#define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG))
+#define NAND_HAS_COPYBACK(chip) ((chip->options & NAND_COPYBACK))
+
+/* Mask to zero out the chip options, which come from the id table */
+#define NAND_CHIPOPTIONS_MSK (0x0000ffff & ~NAND_NO_AUTOINCR)
+
+/* Non chip related options */
+/* Use a flash based bad block table. This option is passed to the
+ * default bad block table function. */
+#define NAND_USE_FLASH_BBT 0x00010000
+/* The hw ecc generator provides a syndrome instead a ecc value on read
+ * This can only work if we have the ecc bytes directly behind the
+ * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
+#define NAND_HWECC_SYNDROME 0x00020000
+
+
+/* Options set by nand scan */
+/* Nand scan has allocated oob_buf */
+#define NAND_OOBBUF_ALLOC 0x40000000
+/* Nand scan has allocated data_buf */
+#define NAND_DATABUF_ALLOC 0x80000000
+
+
+/*
+ * nand_state_t - chip states
* Enumeration for NAND flash chip state
*/
typedef enum {
@@ -58,71 +208,138 @@ typedef enum {
FL_READING,
FL_WRITING,
FL_ERASING,
- FL_SYNCING
+ FL_SYNCING,
+ FL_CACHEDPRG,
} nand_state_t;
+/* Keep gcc happy */
+struct nand_chip;
-/*
- * NAND Private Flash Chip Data
- *
- * Structure overview:
- *
- * IO_ADDR - address to access the 8 I/O lines of the flash device
- *
- * hwcontrol - hardwarespecific function for accesing control-lines
- *
- * dev_ready - hardwarespecific function for accesing device ready/busy line
- *
- * chip_lock - spinlock used to protect access to this structure
- *
- * wq - wait queue to sleep on if a NAND operation is in progress
- *
- * state - give the current state of the NAND device
- *
- * page_shift - number of address bits in a page (column address bits)
- *
- * data_buf - data buffer passed to/from MTD user modules
- *
- * data_cache - data cache for redundant page access and shadow for
- * ECC failure
- *
- * ecc_code_buf - used only for holding calculated or read ECCs for
- * a page read or written when ECC is in use
- *
- * reserved - padding to make structure fall on word boundary if
- * when ECC is in use
+#if 0
+/**
+ * struct nand_hw_control - Control structure for hardware controller (e.g ECC generator) shared among independend devices
+ * @lock: protection lock
+ * @active: the mtd device which holds the controller currently
*/
-struct Nand {
- char floor, chip;
- unsigned long curadr;
- unsigned char curmode;
- /* Also some erase/write/pipeline info when we get that far */
+struct nand_hw_control {
+ spinlock_t lock;
+ struct nand_chip *active;
};
+#endif
+/**
+ * struct nand_chip - NAND Private Flash Chip Data
+ * @IO_ADDR_R: [BOARDSPECIFIC] address to read the 8 I/O lines of the flash device
+ * @IO_ADDR_W: [BOARDSPECIFIC] address to write the 8 I/O lines of the flash device
+ * @read_byte: [REPLACEABLE] read one byte from the chip
+ * @write_byte: [REPLACEABLE] write one byte to the chip
+ * @read_word: [REPLACEABLE] read one word from the chip
+ * @write_word: [REPLACEABLE] write one word to the chip
+ * @write_buf: [REPLACEABLE] write data from the buffer to the chip
+ * @read_buf: [REPLACEABLE] read data from the chip into the buffer
+ * @verify_buf: [REPLACEABLE] verify buffer contents against the chip data
+ * @select_chip: [REPLACEABLE] select chip nr
+ * @block_bad: [REPLACEABLE] check, if the block is bad
+ * @block_markbad: [REPLACEABLE] mark the block bad
+ * @hwcontrol: [BOARDSPECIFIC] hardwarespecific function for accesing control-lines
+ * @dev_ready: [BOARDSPECIFIC] hardwarespecific function for accesing device ready/busy line
+ * If set to NULL no access to ready/busy is available and the ready/busy information
+ * is read from the chip status register
+ * @cmdfunc: [REPLACEABLE] hardwarespecific function for writing commands to the chip
+ * @waitfunc: [REPLACEABLE] hardwarespecific function for wait on ready
+ * @calculate_ecc: [REPLACEABLE] function for ecc calculation or readback from ecc hardware
+ * @correct_data: [REPLACEABLE] function for ecc correction, matching to ecc generator (sw/hw)
+ * @enable_hwecc: [BOARDSPECIFIC] function to enable (reset) hardware ecc generator. Must only
+ * be provided if a hardware ECC is available
+ * @erase_cmd: [INTERN] erase command write function, selectable due to AND support
+ * @scan_bbt: [REPLACEABLE] function to scan bad block table
+ * @eccmode: [BOARDSPECIFIC] mode of ecc, see defines
+ * @eccsize: [INTERN] databytes used per ecc-calculation
+ * @eccbytes: [INTERN] number of ecc bytes per ecc-calculation step
+ * @eccsteps: [INTERN] number of ecc calculation steps per page
+ * @chip_delay: [BOARDSPECIFIC] chip dependent delay for transfering data from array to read regs (tR)
+ * @chip_lock: [INTERN] spinlock used to protect access to this structure and the chip
+ * @wq: [INTERN] wait queue to sleep on if a NAND operation is in progress
+ * @state: [INTERN] the current state of the NAND device
+ * @page_shift: [INTERN] number of address bits in a page (column address bits)
+ * @phys_erase_shift: [INTERN] number of address bits in a physical eraseblock
+ * @bbt_erase_shift: [INTERN] number of address bits in a bbt entry
+ * @chip_shift: [INTERN] number of address bits in one chip
+ * @data_buf: [INTERN] internal buffer for one page + oob
+ * @oob_buf: [INTERN] oob buffer for one eraseblock
+ * @oobdirty: [INTERN] indicates that oob_buf must be reinitialized
+ * @data_poi: [INTERN] pointer to a data buffer
+ * @options: [BOARDSPECIFIC] various chip options. They can partly be set to inform nand_scan about
+ * special functionality. See the defines for further explanation
+ * @badblockpos: [INTERN] position of the bad block marker in the oob area
+ * @numchips: [INTERN] number of physical chips
+ * @chipsize: [INTERN] the size of one chip for multichip arrays
+ * @pagemask: [INTERN] page number mask = number of (pages / chip) - 1
+ * @pagebuf: [INTERN] holds the pagenumber which is currently in data_buf
+ * @autooob: [REPLACEABLE] the default (auto)placement scheme
+ * @bbt: [INTERN] bad block table pointer
+ * @bbt_td: [REPLACEABLE] bad block table descriptor for flash lookup
+ * @bbt_md: [REPLACEABLE] bad block table mirror descriptor
+ * @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial bad block scan
+ * @controller: [OPTIONAL] a pointer to a hardware controller structure which is shared among multiple independend devices
+ * @priv: [OPTIONAL] pointer to private chip date
+ */
+
struct nand_chip {
+ void __iomem *IO_ADDR_R;
+ void __iomem *IO_ADDR_W;
+
+ u_char (*read_byte)(struct mtd_info *mtd);
+ void (*write_byte)(struct mtd_info *mtd, u_char byte);
+ u16 (*read_word)(struct mtd_info *mtd);
+ void (*write_word)(struct mtd_info *mtd, u16 word);
+
+ void (*write_buf)(struct mtd_info *mtd, const u_char *buf, int len);
+ void (*read_buf)(struct mtd_info *mtd, u_char *buf, int len);
+ int (*verify_buf)(struct mtd_info *mtd, const u_char *buf, int len);
+ void (*select_chip)(struct mtd_info *mtd, int chip);
+ int (*block_bad)(struct mtd_info *mtd, loff_t ofs, int getchip);
+ int (*block_markbad)(struct mtd_info *mtd, loff_t ofs);
+ void (*hwcontrol)(struct mtd_info *mtd, int cmd);
+ int (*dev_ready)(struct mtd_info *mtd);
+ void (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column, int page_addr);
+ int (*waitfunc)(struct mtd_info *mtd, struct nand_chip *this, int state);
+ int (*calculate_ecc)(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code);
+ int (*correct_data)(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+ void (*enable_hwecc)(struct mtd_info *mtd, int mode);
+ void (*erase_cmd)(struct mtd_info *mtd, int page);
+ int (*scan_bbt)(struct mtd_info *mtd);
+ int eccmode;
+ int eccsize;
+ int eccbytes;
+ int eccsteps;
+ int chip_delay;
+#if 0
+ spinlock_t chip_lock;
+ wait_queue_head_t wq;
+ nand_state_t state;
+#endif
int page_shift;
+ int phys_erase_shift;
+ int bbt_erase_shift;
+ int chip_shift;
u_char *data_buf;
- u_char *data_cache;
- int cache_page;
- u_char ecc_code_buf[6];
- u_char reserved[2];
- char ChipID; /* Type of DiskOnChip */
- struct Nand *chips;
- int chipshift;
- char* chips_name;
- unsigned long erasesize;
- unsigned long mfr; /* Flash IDs - only one type of flash per device */
- unsigned long id;
- char* name;
- int numchips;
- char page256;
- char pageadrlen;
- unsigned long IO_ADDR; /* address to access the 8 I/O lines to the flash device */
- unsigned long totlen;
- uint oobblock; /* Size of OOB blocks (e.g. 512) */
- uint oobsize; /* Amount of OOB data per block (e.g. 16) */
- uint eccsize;
- int bus16;
+ u_char *oob_buf;
+ int oobdirty;
+ u_char *data_poi;
+ unsigned int options;
+ int badblockpos;
+ int numchips;
+ unsigned long chipsize;
+ int pagemask;
+ int pagebuf;
+ struct nand_oobinfo *autooob;
+ uint8_t *bbt;
+ struct nand_bbt_descr *bbt_td;
+ struct nand_bbt_descr *bbt_md;
+ struct nand_bbt_descr *badblock_pattern;
+ struct nand_hw_control *controller;
+ void *priv;
};
/*
@@ -130,71 +347,125 @@ struct nand_chip {
*/
#define NAND_MFR_TOSHIBA 0x98
#define NAND_MFR_SAMSUNG 0xec
+#define NAND_MFR_FUJITSU 0x04
+#define NAND_MFR_NATIONAL 0x8f
+#define NAND_MFR_RENESAS 0x07
+#define NAND_MFR_STMICRO 0x20
-/*
- * NAND Flash Device ID Structure
- *
- * Structure overview:
- *
- * name - Complete name of device
- *
- * manufacture_id - manufacturer ID code of device.
- *
- * model_id - model ID code of device.
- *
- * chipshift - total number of address bits for the device which
- * is used to calculate address offsets and the total
- * number of bytes the device is capable of.
+/**
+ * struct nand_flash_dev - NAND Flash Device ID Structure
*
- * page256 - denotes if flash device has 256 byte pages or not.
- *
- * pageadrlen - number of bytes minus one needed to hold the
- * complete address into the flash array. Keep in
- * mind that when a read or write is done to a
- * specific address, the address is input serially
- * 8 bits at a time. This structure member is used
- * by the read/write routines as a loop index for
- * shifting the address out 8 bits at a time.
- *
- * erasesize - size of an erase block in the flash device.
+ * @name: Identify the device type
+ * @id: device ID code
+ * @pagesize: Pagesize in bytes. Either 256 or 512 or 0
+ * If the pagesize is 0, then the real pagesize
+ * and the eraseize are determined from the
+ * extended id bytes in the chip
+ * @erasesize: Size of an erase block in the flash device.
+ * @chipsize: Total chipsize in Mega Bytes
+ * @options: Bitfield to store chip relevant options
*/
struct nand_flash_dev {
- char * name;
- int manufacture_id;
- int model_id;
- int chipshift;
- char page256;
- char pageadrlen;
+ char *name;
+ int id;
+ unsigned long pagesize;
+ unsigned long chipsize;
unsigned long erasesize;
- int bus16;
+ unsigned long options;
+};
+
+/**
+ * struct nand_manufacturers - NAND Flash Manufacturer ID Structure
+ * @name: Manufacturer name
+ * @id: manufacturer ID code of device.
+*/
+struct nand_manufacturers {
+ int id;
+ char * name;
+};
+
+extern struct nand_flash_dev nand_flash_ids[];
+extern struct nand_manufacturers nand_manuf_ids[];
+
+/**
+ * struct nand_bbt_descr - bad block table descriptor
+ * @options: options for this descriptor
+ * @pages: the page(s) where we find the bbt, used with option BBT_ABSPAGE
+ * when bbt is searched, then we store the found bbts pages here.
+ * Its an array and supports up to 8 chips now
+ * @offs: offset of the pattern in the oob area of the page
+ * @veroffs: offset of the bbt version counter in the oob are of the page
+ * @version: version read from the bbt page during scan
+ * @len: length of the pattern, if 0 no pattern check is performed
+ * @maxblocks: maximum number of blocks to search for a bbt. This number of
+ * blocks is reserved at the end of the device where the tables are
+ * written.
+ * @reserved_block_code: if non-0, this pattern denotes a reserved (rather than
+ * bad) block in the stored bbt
+ * @pattern: pattern to identify bad block table or factory marked good /
+ * bad blocks, can be NULL, if len = 0
+ *
+ * Descriptor for the bad block table marker and the descriptor for the
+ * pattern which identifies good and bad blocks. The assumption is made
+ * that the pattern and the version count are always located in the oob area
+ * of the first block.
+ */
+struct nand_bbt_descr {
+ int options;
+ int pages[NAND_MAX_CHIPS];
+ int offs;
+ int veroffs;
+ uint8_t version[NAND_MAX_CHIPS];
+ int len;
+ int maxblocks;
+ int reserved_block_code;
+ uint8_t *pattern;
};
+/* Options for the bad block table descriptors */
+
+/* The number of bits used per block in the bbt on the device */
+#define NAND_BBT_NRBITS_MSK 0x0000000F
+#define NAND_BBT_1BIT 0x00000001
+#define NAND_BBT_2BIT 0x00000002
+#define NAND_BBT_4BIT 0x00000004
+#define NAND_BBT_8BIT 0x00000008
+/* The bad block table is in the last good block of the device */
+#define NAND_BBT_LASTBLOCK 0x00000010
+/* The bbt is at the given page, else we must scan for the bbt */
+#define NAND_BBT_ABSPAGE 0x00000020
+/* The bbt is at the given page, else we must scan for the bbt */
+#define NAND_BBT_SEARCH 0x00000040
+/* bbt is stored per chip on multichip devices */
+#define NAND_BBT_PERCHIP 0x00000080
+/* bbt has a version counter at offset veroffs */
+#define NAND_BBT_VERSION 0x00000100
+/* Create a bbt if none axists */
+#define NAND_BBT_CREATE 0x00000200
+/* Search good / bad pattern through all pages of a block */
+#define NAND_BBT_SCANALLPAGES 0x00000400
+/* Scan block empty during good / bad block scan */
+#define NAND_BBT_SCANEMPTY 0x00000800
+/* Write bbt if neccecary */
+#define NAND_BBT_WRITE 0x00001000
+/* Read and write back block contents when writing bbt */
+#define NAND_BBT_SAVECONTENT 0x00002000
+/* Search good / bad pattern on the first and the second page */
+#define NAND_BBT_SCAN2NDPAGE 0x00004000
+
+/* The maximum number of blocks to scan for a bbt */
+#define NAND_BBT_SCAN_MAXBLOCKS 4
+
+extern int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd);
+extern int nand_update_bbt (struct mtd_info *mtd, loff_t offs);
+extern int nand_default_bbt (struct mtd_info *mtd);
+extern int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt);
+extern int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt);
+
/*
* Constants for oob configuration
*/
-#define NAND_NOOB_ECCPOS0 0
-#define NAND_NOOB_ECCPOS1 1
-#define NAND_NOOB_ECCPOS2 2
-#define NAND_NOOB_ECCPOS3 3
-#define NAND_NOOB_ECCPOS4 6
-#define NAND_NOOB_ECCPOS5 7
-#define NAND_NOOB_BADBPOS -1
-#define NAND_NOOB_ECCVPOS -1
-
-#define NAND_JFFS2_OOB_ECCPOS0 0
-#define NAND_JFFS2_OOB_ECCPOS1 1
-#define NAND_JFFS2_OOB_ECCPOS2 2
-#define NAND_JFFS2_OOB_ECCPOS3 3
-#define NAND_JFFS2_OOB_ECCPOS4 6
-#define NAND_JFFS2_OOB_ECCPOS5 7
-#define NAND_JFFS2_OOB_BADBPOS 5
-#define NAND_JFFS2_OOB_ECCVPOS 4
-
-#define NAND_JFFS2_OOB8_FSDAPOS 6
-#define NAND_JFFS2_OOB16_FSDAPOS 8
-#define NAND_JFFS2_OOB8_FSDALEN 2
-#define NAND_JFFS2_OOB16_FSDALEN 8
-
-unsigned long nand_probe(unsigned long physadr);
+#define NAND_SMALL_BADBLOCK_POS 5
+#define NAND_LARGE_BADBLOCK_POS 0
#endif /* __LINUX_MTD_NAND_H */
diff --git a/include/linux/mtd/nand_ecc.h b/include/linux/mtd/nand_ecc.h
new file mode 100644
index 0000000000..12c5bc342e
--- /dev/null
+++ b/include/linux/mtd/nand_ecc.h
@@ -0,0 +1,30 @@
+/*
+ * drivers/mtd/nand_ecc.h
+ *
+ * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *
+ * $Id: nand_ecc.h,v 1.4 2004/06/17 02:35:02 dbrown Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This file is the header for the ECC algorithm.
+ */
+
+#ifndef __MTD_NAND_ECC_H__
+#define __MTD_NAND_ECC_H__
+
+struct mtd_info;
+
+/*
+ * Calculate 3 byte ECC code for 256 byte block
+ */
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code);
+
+/*
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+
+#endif /* __MTD_NAND_ECC_H__ */
diff --git a/include/linux/mtd/nand_ids.h b/include/linux/mtd/nand_ids.h
index a3d0363a2a..75c305b569 100644
--- a/include/linux/mtd/nand_ids.h
+++ b/include/linux/mtd/nand_ids.h
@@ -49,6 +49,7 @@ static struct nand_flash_dev nand_flash_ids[] = {
{"Samsung KM29W16000", NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0},
{"Samsung K9F5616Q0C", NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1},
{"Samsung K9K1216Q0C", NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1},
+ {"Samsung K9F1G08U0M", NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0},
{NULL,}
};
diff --git a/include/nand.h b/include/nand.h
new file mode 100644
index 0000000000..29580da4fe
--- /dev/null
+++ b/include/nand.h
@@ -0,0 +1,56 @@
+/*
+ * (C) Copyright 2005
+ * 2N Telekomunikace, a.s. <www.2n.cz>
+ * Ladislav Michl <michl@2n.cz>
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#ifndef _NAND_H_
+#define _NAND_H_
+
+#include <linux_compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+
+typedef struct mtd_info nand_info_t;
+
+extern int nand_curr_device;
+extern nand_info_t nand_info[];
+
+static inline int nand_read(nand_info_t *info, ulong ofs, ulong *len, u_char *buf)
+{
+ return info->read(info, ofs, *len, len, buf);
+}
+
+static inline int nand_write(nand_info_t *info, ulong ofs, ulong *len, u_char *buf)
+{
+ return info->write(info, ofs, *len, len, buf);
+}
+
+static inline int nand_block_isbad(nand_info_t *info, ulong ofs)
+{
+ return info->block_isbad(info, ofs);
+}
+
+static inline int nand_erase(nand_info_t *info, ulong off, ulong size)
+{
+ return 0; /* FIXME */
+}
+
+#endif