diff options
author | Peter Tyser <ptyser@xes-inc.com> | 2010-04-12 22:28:09 -0500 |
---|---|---|
committer | Wolfgang Denk <wd@denx.de> | 2010-04-13 09:13:16 +0200 |
commit | 8d1f268204b07e172f3cb5cee0a3974d605b0b98 (patch) | |
tree | c3359e920cc886e7060fb099bf933496aca37153 /arch/ppc/cpu/ppc4xx/44x_spd_ddr2.c | |
parent | 819833af39a91fa1c1e8252862bbda6f5a602f7b (diff) |
ppc: Move cpu/$CPU to arch/ppc/cpu/$CPU
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
Diffstat (limited to 'arch/ppc/cpu/ppc4xx/44x_spd_ddr2.c')
-rw-r--r-- | arch/ppc/cpu/ppc4xx/44x_spd_ddr2.c | 3174 |
1 files changed, 3174 insertions, 0 deletions
diff --git a/arch/ppc/cpu/ppc4xx/44x_spd_ddr2.c b/arch/ppc/cpu/ppc4xx/44x_spd_ddr2.c new file mode 100644 index 0000000000..ea6c2ac770 --- /dev/null +++ b/arch/ppc/cpu/ppc4xx/44x_spd_ddr2.c @@ -0,0 +1,3174 @@ +/* + * arch/ppc/cpu/ppc4xx/44x_spd_ddr2.c + * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a + * DDR2 controller (non Denali Core). Those currently are: + * + * 405: 405EX(r) + * 440/460: 440SP/440SPe/460EX/460GT + * + * Copyright (c) 2008 Nuovation System Designs, LLC + * Grant Erickson <gerickson@nuovations.com> + + * (C) Copyright 2007-2009 + * Stefan Roese, DENX Software Engineering, sr@denx.de. + * + * COPYRIGHT AMCC CORPORATION 2004 + * + * See file CREDITS for list of people who contributed to this + * project. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of + * the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + * + */ + +/* define DEBUG for debugging output (obviously ;-)) */ +#if 0 +#define DEBUG +#endif + +#include <common.h> +#include <command.h> +#include <ppc4xx.h> +#include <i2c.h> +#include <asm/io.h> +#include <asm/processor.h> +#include <asm/mmu.h> +#include <asm/cache.h> + +#include "ecc.h" + +#if defined(CONFIG_SDRAM_PPC4xx_IBM_DDR2) + +#define PPC4xx_IBM_DDR2_DUMP_REGISTER(mnemonic) \ + do { \ + u32 data; \ + mfsdram(SDRAM_##mnemonic, data); \ + printf("%20s[%02x] = 0x%08X\n", \ + "SDRAM_" #mnemonic, SDRAM_##mnemonic, data); \ + } while (0) + +#define PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(mnemonic) \ + do { \ + u32 data; \ + data = mfdcr(SDRAM_##mnemonic); \ + printf("%20s[%02x] = 0x%08X\n", \ + "SDRAM_" #mnemonic, SDRAM_##mnemonic, data); \ + } while (0) + +#if defined(CONFIG_440) +/* + * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 + * memory region. Right now the cache should still be disabled in U-Boot + * because of the EMAC driver, that need its buffer descriptor to be located + * in non cached memory. + * + * If at some time this restriction doesn't apply anymore, just define + * CONFIG_4xx_DCACHE in the board config file and this code should setup + * everything correctly. + */ +#ifdef CONFIG_4xx_DCACHE +/* enable caching on SDRAM */ +#define MY_TLB_WORD2_I_ENABLE 0 +#else +/* disable caching on SDRAM */ +#define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE +#endif /* CONFIG_4xx_DCACHE */ + +void dcbz_area(u32 start_address, u32 num_bytes); +#endif /* CONFIG_440 */ + +#define MAXRANKS 4 +#define MAXBXCF 4 + +#define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d)) + +#if !defined(CONFIG_NAND_SPL) +/*-----------------------------------------------------------------------------+ + * sdram_memsize + *-----------------------------------------------------------------------------*/ +phys_size_t sdram_memsize(void) +{ + phys_size_t mem_size; + unsigned long mcopt2; + unsigned long mcstat; + unsigned long mb0cf; + unsigned long sdsz; + unsigned long i; + + mem_size = 0; + + mfsdram(SDRAM_MCOPT2, mcopt2); + mfsdram(SDRAM_MCSTAT, mcstat); + + /* DDR controller must be enabled and not in self-refresh. */ + /* Otherwise memsize is zero. */ + if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE) + && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT) + && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK)) + == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) { + for (i = 0; i < MAXBXCF; i++) { + mfsdram(SDRAM_MB0CF + (i << 2), mb0cf); + /* Banks enabled */ + if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) { +#if defined(CONFIG_440) + sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK; +#else + sdsz = mb0cf & SDRAM_RXBAS_SDSZ_MASK; +#endif + switch(sdsz) { + case SDRAM_RXBAS_SDSZ_8: + mem_size+=8; + break; + case SDRAM_RXBAS_SDSZ_16: + mem_size+=16; + break; + case SDRAM_RXBAS_SDSZ_32: + mem_size+=32; + break; + case SDRAM_RXBAS_SDSZ_64: + mem_size+=64; + break; + case SDRAM_RXBAS_SDSZ_128: + mem_size+=128; + break; + case SDRAM_RXBAS_SDSZ_256: + mem_size+=256; + break; + case SDRAM_RXBAS_SDSZ_512: + mem_size+=512; + break; + case SDRAM_RXBAS_SDSZ_1024: + mem_size+=1024; + break; + case SDRAM_RXBAS_SDSZ_2048: + mem_size+=2048; + break; + case SDRAM_RXBAS_SDSZ_4096: + mem_size+=4096; + break; + default: + printf("WARNING: Unsupported bank size (SDSZ=0x%lx)!\n" + , sdsz); + mem_size=0; + break; + } + } + } + } + + return mem_size << 20; +} + +/*-----------------------------------------------------------------------------+ + * is_ecc_enabled + *-----------------------------------------------------------------------------*/ +static unsigned long is_ecc_enabled(void) +{ + unsigned long val; + + mfsdram(SDRAM_MCOPT1, val); + + return SDRAM_MCOPT1_MCHK_CHK_DECODE(val); +} + +/*-----------------------------------------------------------------------------+ + * board_add_ram_info + *-----------------------------------------------------------------------------*/ +void board_add_ram_info(int use_default) +{ + PPC4xx_SYS_INFO board_cfg; + u32 val; + + if (is_ecc_enabled()) + puts(" (ECC"); + else + puts(" (ECC not"); + + get_sys_info(&board_cfg); + +#if defined(CONFIG_405EX) + val = board_cfg.freqPLB; +#else + mfsdr(SDR0_DDR0, val); + val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1); +#endif + printf(" enabled, %d MHz", (val * 2) / 1000000); + + mfsdram(SDRAM_MMODE, val); + val = (val & SDRAM_MMODE_DCL_MASK) >> 4; + printf(", CL%d)", val); +} +#endif /* !CONFIG_NAND_SPL */ + +#if defined(CONFIG_SPD_EEPROM) + +/*-----------------------------------------------------------------------------+ + * Defines + *-----------------------------------------------------------------------------*/ +#ifndef TRUE +#define TRUE 1 +#endif +#ifndef FALSE +#define FALSE 0 +#endif + +#define SDRAM_DDR1 1 +#define SDRAM_DDR2 2 +#define SDRAM_NONE 0 + +#define MAXDIMMS 2 +#define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */ + +#define ONE_BILLION 1000000000 + +#define CMD_NOP (7 << 19) +#define CMD_PRECHARGE (2 << 19) +#define CMD_REFRESH (1 << 19) +#define CMD_EMR (0 << 19) +#define CMD_READ (5 << 19) +#define CMD_WRITE (4 << 19) + +#define SELECT_MR (0 << 16) +#define SELECT_EMR (1 << 16) +#define SELECT_EMR2 (2 << 16) +#define SELECT_EMR3 (3 << 16) + +/* MR */ +#define DLL_RESET 0x00000100 + +#define WRITE_RECOV_2 (1 << 9) +#define WRITE_RECOV_3 (2 << 9) +#define WRITE_RECOV_4 (3 << 9) +#define WRITE_RECOV_5 (4 << 9) +#define WRITE_RECOV_6 (5 << 9) + +#define BURST_LEN_4 0x00000002 + +/* EMR */ +#define ODT_0_OHM 0x00000000 +#define ODT_50_OHM 0x00000044 +#define ODT_75_OHM 0x00000004 +#define ODT_150_OHM 0x00000040 + +#define ODS_FULL 0x00000000 +#define ODS_REDUCED 0x00000002 +#define OCD_CALIB_DEF 0x00000380 + +/* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */ +#define ODT_EB0R (0x80000000 >> 8) +#define ODT_EB0W (0x80000000 >> 7) +#define CALC_ODT_R(n) (ODT_EB0R << (n << 1)) +#define CALC_ODT_W(n) (ODT_EB0W << (n << 1)) +#define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n)) + +/* Defines for the Read Cycle Delay test */ +#define NUMMEMTESTS 8 +#define NUMMEMWORDS 8 +#define NUMLOOPS 64 /* memory test loops */ + +/* + * Newer PPC's like 440SPe, 460EX/GT can be equipped with more than 2GB of SDRAM. + * To support such configurations, we "only" map the first 2GB via the TLB's. We + * need some free virtual address space for the remaining peripherals like, SoC + * devices, FLASH etc. + * + * Note that ECC is currently not supported on configurations with more than 2GB + * SDRAM. This is because we only map the first 2GB on such systems, and therefore + * the ECC parity byte of the remaining area can't be written. + */ + +/* + * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed + */ +void __spd_ddr_init_hang (void) +{ + hang (); +} +void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang"))); + +/* + * To provide an interface for board specific config values in this common + * DDR setup code, we implement he "weak" default functions here. They return + * the default value back to the caller. + * + * Please see include/configs/yucca.h for an example fora board specific + * implementation. + */ +u32 __ddr_wrdtr(u32 default_val) +{ + return default_val; +} +u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr"))); + +u32 __ddr_clktr(u32 default_val) +{ + return default_val; +} +u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr"))); + + +/* Private Structure Definitions */ + +/* enum only to ease code for cas latency setting */ +typedef enum ddr_cas_id { + DDR_CAS_2 = 20, + DDR_CAS_2_5 = 25, + DDR_CAS_3 = 30, + DDR_CAS_4 = 40, + DDR_CAS_5 = 50 +} ddr_cas_id_t; + +/*-----------------------------------------------------------------------------+ + * Prototypes + *-----------------------------------------------------------------------------*/ +static void get_spd_info(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks); +static void check_mem_type(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks); +static void check_frequency(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks); +static void check_rank_number(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks); +static void check_voltage_type(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks); +static void program_memory_queue(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks); +static void program_codt(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks); +static void program_mode(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks, + ddr_cas_id_t *selected_cas, + int *write_recovery); +static void program_tr(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks); +static void program_rtr(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks); +static void program_bxcf(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks); +static void program_copt1(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks); +static void program_initplr(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks, + ddr_cas_id_t selected_cas, + int write_recovery); +#ifdef CONFIG_DDR_ECC +static void program_ecc(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks, + unsigned long tlb_word2_i_value); +#endif +#if !defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION) +static void program_DQS_calibration(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks); +#ifdef HARD_CODED_DQS /* calibration test with hardvalues */ +static void test(void); +#else +static void DQS_calibration_process(void); +#endif +#endif +int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); + +static unsigned char spd_read(uchar chip, uint addr) +{ + unsigned char data[2]; + + if (i2c_probe(chip) == 0) + if (i2c_read(chip, addr, 1, data, 1) == 0) + return data[0]; + + return 0; +} + +/*-----------------------------------------------------------------------------+ + * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller. + * Note: This routine runs from flash with a stack set up in the chip's + * sram space. It is important that the routine does not require .sbss, .bss or + * .data sections. It also cannot call routines that require these sections. + *-----------------------------------------------------------------------------*/ +/*----------------------------------------------------------------------------- + * Function: initdram + * Description: Configures SDRAM memory banks for DDR operation. + * Auto Memory Configuration option reads the DDR SDRAM EEPROMs + * via the IIC bus and then configures the DDR SDRAM memory + * banks appropriately. If Auto Memory Configuration is + * not used, it is assumed that no DIMM is plugged + *-----------------------------------------------------------------------------*/ +phys_size_t initdram(int board_type) +{ + unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; + unsigned char spd0[MAX_SPD_BYTES]; + unsigned char spd1[MAX_SPD_BYTES]; + unsigned char *dimm_spd[MAXDIMMS]; + unsigned long dimm_populated[MAXDIMMS] = {SDRAM_NONE, SDRAM_NONE}; + unsigned long num_dimm_banks; /* on board dimm banks */ + unsigned long val; + ddr_cas_id_t selected_cas = DDR_CAS_5; /* preset to silence compiler */ + int write_recovery; + phys_size_t dram_size = 0; + + num_dimm_banks = sizeof(iic0_dimm_addr); + + /*------------------------------------------------------------------ + * Set up an array of SPD matrixes. + *-----------------------------------------------------------------*/ + dimm_spd[0] = spd0; + dimm_spd[1] = spd1; + + /*------------------------------------------------------------------ + * Reset the DDR-SDRAM controller. + *-----------------------------------------------------------------*/ + mtsdr(SDR0_SRST, (0x80000000 >> 10)); + mtsdr(SDR0_SRST, 0x00000000); + + /* + * Make sure I2C controller is initialized + * before continuing. + */ + + /* switch to correct I2C bus */ + I2C_SET_BUS(CONFIG_SYS_SPD_BUS_NUM); + i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); + + /*------------------------------------------------------------------ + * Clear out the serial presence detect buffers. + * Perform IIC reads from the dimm. Fill in the spds. + * Check to see if the dimm slots are populated + *-----------------------------------------------------------------*/ + get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Check the memory type for the dimms plugged. + *-----------------------------------------------------------------*/ + check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Check the frequency supported for the dimms plugged. + *-----------------------------------------------------------------*/ + check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Check the total rank number. + *-----------------------------------------------------------------*/ + check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Check the voltage type for the dimms plugged. + *-----------------------------------------------------------------*/ + check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Program SDRAM controller options 2 register + * Except Enabling of the memory controller. + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_MCOPT2, val); + mtsdram(SDRAM_MCOPT2, + (val & + ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK | + SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK | + SDRAM_MCOPT2_ISIE_MASK)) + | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE | + SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW | + SDRAM_MCOPT2_ISIE_ENABLE)); + + /*------------------------------------------------------------------ + * Program SDRAM controller options 1 register + * Note: Does not enable the memory controller. + *-----------------------------------------------------------------*/ + program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Set the SDRAM Controller On Die Termination Register + *-----------------------------------------------------------------*/ + program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Program SDRAM refresh register. + *-----------------------------------------------------------------*/ + program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Program SDRAM mode register. + *-----------------------------------------------------------------*/ + program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks, + &selected_cas, &write_recovery); + + /*------------------------------------------------------------------ + * Set the SDRAM Write Data/DM/DQS Clock Timing Reg + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_WRDTR, val); + mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) | + ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV)); + + /*------------------------------------------------------------------ + * Set the SDRAM Clock Timing Register + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_CLKTR, val); + mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | + ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG)); + + /*------------------------------------------------------------------ + * Program the BxCF registers. + *-----------------------------------------------------------------*/ + program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Program SDRAM timing registers. + *-----------------------------------------------------------------*/ + program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Set the Extended Mode register + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_MEMODE, val); + mtsdram(SDRAM_MEMODE, + (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK | + SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) | + (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE + | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE)); + + /*------------------------------------------------------------------ + * Program Initialization preload registers. + *-----------------------------------------------------------------*/ + program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks, + selected_cas, write_recovery); + + /*------------------------------------------------------------------ + * Delay to ensure 200usec have elapsed since reset. + *-----------------------------------------------------------------*/ + udelay(400); + + /*------------------------------------------------------------------ + * Set the memory queue core base addr. + *-----------------------------------------------------------------*/ + program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Program SDRAM controller options 2 register + * Enable the memory controller. + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_MCOPT2, val); + mtsdram(SDRAM_MCOPT2, + (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK | + SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) | + SDRAM_MCOPT2_IPTR_EXECUTE); + + /*------------------------------------------------------------------ + * Wait for IPTR_EXECUTE init sequence to complete. + *-----------------------------------------------------------------*/ + do { + mfsdram(SDRAM_MCSTAT, val); + } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP); + + /* enable the controller only after init sequence completes */ + mfsdram(SDRAM_MCOPT2, val); + mtsdram(SDRAM_MCOPT2, (val | SDRAM_MCOPT2_DCEN_ENABLE)); + + /* Make sure delay-line calibration is done before proceeding */ + do { + mfsdram(SDRAM_DLCR, val); + } while (!(val & SDRAM_DLCR_DLCS_COMPLETE)); + + /* get installed memory size */ + dram_size = sdram_memsize(); + + /* + * Limit size to 2GB + */ + if (dram_size > CONFIG_MAX_MEM_MAPPED) + dram_size = CONFIG_MAX_MEM_MAPPED; + + /* and program tlb entries for this size (dynamic) */ + + /* + * Program TLB entries with caches enabled, for best performace + * while auto-calibrating and ECC generation + */ + program_tlb(0, 0, dram_size, 0); + + /*------------------------------------------------------------------ + * DQS calibration. + *-----------------------------------------------------------------*/ +#if defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION) + DQS_autocalibration(); +#else + program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks); +#endif + +#ifdef CONFIG_DDR_ECC + /*------------------------------------------------------------------ + * If ecc is enabled, initialize the parity bits. + *-----------------------------------------------------------------*/ + program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0); +#endif + + /* + * Now after initialization (auto-calibration and ECC generation) + * remove the TLB entries with caches enabled and program again with + * desired cache functionality + */ + remove_tlb(0, dram_size); + program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE); + + ppc4xx_ibm_ddr2_register_dump(); + + /* + * Clear potential errors resulting from auto-calibration. + * If not done, then we could get an interrupt later on when + * exceptions are enabled. + */ + set_mcsr(get_mcsr()); + + return sdram_memsize(); +} + +static void get_spd_info(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks) +{ + unsigned long dimm_num; + unsigned long dimm_found; + unsigned char num_of_bytes; + unsigned char total_size; + + dimm_found = FALSE; + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + num_of_bytes = 0; + total_size = 0; + + num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); + debug("\nspd_read(0x%x) returned %d\n", + iic0_dimm_addr[dimm_num], num_of_bytes); + total_size = spd_read(iic0_dimm_addr[dimm_num], 1); + debug("spd_read(0x%x) returned %d\n", + iic0_dimm_addr[dimm_num], total_size); + + if ((num_of_bytes != 0) && (total_size != 0)) { + dimm_populated[dimm_num] = TRUE; + dimm_found = TRUE; + debug("DIMM slot %lu: populated\n", dimm_num); + } else { + dimm_populated[dimm_num] = FALSE; + debug("DIMM slot %lu: Not populated\n", dimm_num); + } + } + + if (dimm_found == FALSE) { + printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n"); + spd_ddr_init_hang (); + } +} + + +/*------------------------------------------------------------------ + * For the memory DIMMs installed, this routine verifies that they + * really are DDR specific DIMMs. + *-----------------------------------------------------------------*/ +static void check_mem_type(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks) +{ + unsigned long dimm_num; + unsigned long dimm_type; + + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + if (dimm_populated[dimm_num] == TRUE) { + dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2); + switch (dimm_type) { + case 1: + printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in " + "slot %d.\n", (unsigned int)dimm_num); + printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); + printf("Replace the DIMM module with a supported DIMM.\n\n"); + spd_ddr_init_hang (); + break; + case 2: + printf("ERROR: EDO DIMM detected in slot %d.\n", + (unsigned int)dimm_num); + printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); + printf("Replace the DIMM module with a supported DIMM.\n\n"); + spd_ddr_init_hang (); + break; + case 3: + printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n", + (unsigned int)dimm_num); + printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); + printf("Replace the DIMM module with a supported DIMM.\n\n"); + spd_ddr_init_hang (); + break; + case 4: + printf("ERROR: SDRAM DIMM detected in slot %d.\n", + (unsigned int)dimm_num); + printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); + printf("Replace the DIMM module with a supported DIMM.\n\n"); + spd_ddr_init_hang (); + break; + case 5: + printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n", + (unsigned int)dimm_num); + printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); + printf("Replace the DIMM module with a supported DIMM.\n\n"); + spd_ddr_init_hang (); + break; + case 6: + printf("ERROR: SGRAM DIMM detected in slot %d.\n", + (unsigned int)dimm_num); + printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); + printf("Replace the DIMM module with a supported DIMM.\n\n"); + spd_ddr_init_hang (); + break; + case 7: + debug("DIMM slot %lu: DDR1 SDRAM detected\n", dimm_num); + dimm_populated[dimm_num] = SDRAM_DDR1; + break; + case 8: + debug("DIMM slot %lu: DDR2 SDRAM detected\n", dimm_num); + dimm_populated[dimm_num] = SDRAM_DDR2; + break; + default: + printf("ERROR: Unknown DIMM detected in slot %d.\n", + (unsigned int)dimm_num); + printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n"); + printf("Replace the DIMM module with a supported DIMM.\n\n"); + spd_ddr_init_hang (); + break; + } + } + } + for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) { + if ((dimm_populated[dimm_num-1] != SDRAM_NONE) + && (dimm_populated[dimm_num] != SDRAM_NONE) + && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) { + printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n"); + spd_ddr_init_hang (); + } + } +} + +/*------------------------------------------------------------------ + * For the memory DIMMs installed, this routine verifies that + * frequency previously calculated is supported. + *-----------------------------------------------------------------*/ +static void check_frequency(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks) +{ + unsigned long dimm_num; + unsigned long tcyc_reg; + unsigned long cycle_time; + unsigned long calc_cycle_time; + unsigned long sdram_freq; + unsigned long sdr_ddrpll; + PPC4xx_SYS_INFO board_cfg; + + /*------------------------------------------------------------------ + * Get the board configuration info. + *-----------------------------------------------------------------*/ + get_sys_info(&board_cfg); + + mfsdr(SDR0_DDR0, sdr_ddrpll); + sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll)); + + /* + * calc_cycle_time is calculated from DDR frequency set by board/chip + * and is expressed in multiple of 10 picoseconds + * to match the way DIMM cycle time is calculated below. + */ + calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq); + + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + if (dimm_populated[dimm_num] != SDRAM_NONE) { + tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); + /* + * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles: + * the higher order nibble (bits 4-7) designates the cycle time + * to a granularity of 1ns; + * the value presented by the lower order nibble (bits 0-3) + * has a granularity of .1ns and is added to the value designated + * by the higher nibble. In addition, four lines of the lower order + * nibble are assigned to support +.25,+.33, +.66 and +.75. + */ + /* Convert from hex to decimal */ + if ((tcyc_reg & 0x0F) == 0x0D) + cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75; + else if ((tcyc_reg & 0x0F) == 0x0C) + cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66; + else if ((tcyc_reg & 0x0F) == 0x0B) + cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33; + else if ((tcyc_reg & 0x0F) == 0x0A) + cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25; + else + cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + + ((tcyc_reg & 0x0F)*10); + debug("cycle_time=%lu [10 picoseconds]\n", cycle_time); + + if (cycle_time > (calc_cycle_time + 10)) { + /* + * the provided sdram cycle_time is too small + * for the available DIMM cycle_time. + * The additionnal 100ps is here to accept a small incertainty. + */ + printf("ERROR: DRAM DIMM detected with cycle_time %d ps in " + "slot %d \n while calculated cycle time is %d ps.\n", + (unsigned int)(cycle_time*10), + (unsigned int)dimm_num, + (unsigned int)(calc_cycle_time*10)); + printf("Replace the DIMM, or change DDR frequency via " + "strapping bits.\n\n"); + spd_ddr_init_hang (); + } + } + } +} + +/*------------------------------------------------------------------ + * For the memory DIMMs installed, this routine verifies two + * ranks/banks maximum are availables. + *-----------------------------------------------------------------*/ +static void check_rank_number(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks) +{ + unsigned long dimm_num; + unsigned long dimm_rank; + unsigned long total_rank = 0; + + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + if (dimm_populated[dimm_num] != SDRAM_NONE) { + dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5); + if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) + dimm_rank = (dimm_rank & 0x0F) +1; + else + dimm_rank = dimm_rank & 0x0F; + + + if (dimm_rank > MAXRANKS) { + printf("ERROR: DRAM DIMM detected with %lu ranks in " + "slot %lu is not supported.\n", dimm_rank, dimm_num); + printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS); + printf("Replace the DIMM module with a supported DIMM.\n\n"); + spd_ddr_init_hang (); + } else + total_rank += dimm_rank; + } + if (total_rank > MAXRANKS) { + printf("ERROR: DRAM DIMM detected with a total of %d ranks " + "for all slots.\n", (unsigned int)total_rank); + printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS); + printf("Remove one of the DIMM modules.\n\n"); + spd_ddr_init_hang (); + } + } +} + +/*------------------------------------------------------------------ + * only support 2.5V modules. + * This routine verifies this. + *-----------------------------------------------------------------*/ +static void check_voltage_type(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks) +{ + unsigned long dimm_num; + unsigned long voltage_type; + + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + if (dimm_populated[dimm_num] != SDRAM_NONE) { + voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); + switch (voltage_type) { + case 0x00: + printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); + printf("This DIMM is 5.0 Volt/TTL.\n"); + printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", + (unsigned int)dimm_num); + spd_ddr_init_hang (); + break; + case 0x01: + printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); + printf("This DIMM is LVTTL.\n"); + printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", + (unsigned int)dimm_num); + spd_ddr_init_hang (); + break; + case 0x02: + printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); + printf("This DIMM is 1.5 Volt.\n"); + printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", + (unsigned int)dimm_num); + spd_ddr_init_hang (); + break; + case 0x03: + printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); + printf("This DIMM is 3.3 Volt/TTL.\n"); + printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", + (unsigned int)dimm_num); + spd_ddr_init_hang (); + break; + case 0x04: + /* 2.5 Voltage only for DDR1 */ + break; + case 0x05: + /* 1.8 Voltage only for DDR2 */ + break; + default: + printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); + printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", + (unsigned int)dimm_num); + spd_ddr_init_hang (); + break; + } + } + } +} + +/*-----------------------------------------------------------------------------+ + * program_copt1. + *-----------------------------------------------------------------------------*/ +static void program_copt1(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks) +{ + unsigned long dimm_num; + unsigned long mcopt1; + unsigned long ecc_enabled; + unsigned long ecc = 0; + unsigned long data_width = 0; + unsigned long dimm_32bit; + unsigned long dimm_64bit; + unsigned long registered = 0; + unsigned long attribute = 0; + unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */ + unsigned long bankcount; + unsigned long ddrtype; + unsigned long val; + +#ifdef CONFIG_DDR_ECC + ecc_enabled = TRUE; +#else + ecc_enabled = FALSE; +#endif + dimm_32bit = FALSE; + dimm_64bit = FALSE; + buf0 = FALSE; + buf1 = FALSE; + + /*------------------------------------------------------------------ + * Set memory controller options reg 1, SDRAM_MCOPT1. + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_MCOPT1, val); + mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK | + SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK | + SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK | + SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK | + SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK | + SDRAM_MCOPT1_DREF_MASK); + + mcopt1 |= SDRAM_MCOPT1_QDEP; + mcopt1 |= SDRAM_MCOPT1_PMU_OPEN; + mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED; + mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED; + mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED; + mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL; + + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + if (dimm_populated[dimm_num] != SDRAM_NONE) { + /* test ecc support */ + ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11); + if (ecc != 0x02) /* ecc not supported */ + ecc_enabled = FALSE; + + /* test bank count */ + bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17); + if (bankcount == 0x04) /* bank count = 4 */ + mcopt1 |= SDRAM_MCOPT1_4_BANKS; + else /* bank count = 8 */ + mcopt1 |= SDRAM_MCOPT1_8_BANKS; + + /* test DDR type */ + ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2); + /* test for buffered/unbuffered, registered, differential clocks */ + registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20); + attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21); + + /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */ + if (dimm_num == 0) { + if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */ + mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE; + if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */ + mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE; + if (registered == 1) { /* DDR2 always buffered */ + /* TODO: what about above comments ? */ + mcopt1 |= SDRAM_MCOPT1_RDEN; + buf0 = TRUE; + } else { + /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */ + if ((attribute & 0x02) == 0x00) { + /* buffered not supported */ + buf0 = FALSE; + } else { + mcopt1 |= SDRAM_MCOPT1_RDEN; + buf0 = TRUE; + } + } + } + else if (dimm_num == 1) { + if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */ + mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE; + if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */ + mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE; + if (registered == 1) { + /* DDR2 always buffered */ + mcopt1 |= SDRAM_MCOPT1_RDEN; + buf1 = TRUE; + } else { + if ((attribute & 0x02) == 0x00) { + /* buffered not supported */ + buf1 = FALSE; + } else { + mcopt1 |= SDRAM_MCOPT1_RDEN; + buf1 = TRUE; + } + } + } + + /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */ + data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) + + (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8); + + switch (data_width) { + case 72: + case 64: + dimm_64bit = TRUE; + break; + case 40: + case 32: + dimm_32bit = TRUE; + break; + default: + printf("WARNING: Detected a DIMM with a data width of %lu bits.\n", + data_width); + printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n"); + break; + } + } + } + + /* verify matching properties */ + if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) { + if (buf0 != buf1) { + printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n"); + spd_ddr_init_hang (); + } + } + + if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) { + printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n"); + spd_ddr_init_hang (); + } + else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) { + mcopt1 |= SDRAM_MCOPT1_DMWD_64; + } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) { + mcopt1 |= SDRAM_MCOPT1_DMWD_32; + } else { + printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n"); + spd_ddr_init_hang (); + } + + if (ecc_enabled == TRUE) + mcopt1 |= SDRAM_MCOPT1_MCHK_GEN; + else + mcopt1 |= SDRAM_MCOPT1_MCHK_NON; + + mtsdram(SDRAM_MCOPT1, mcopt1); +} + +/*-----------------------------------------------------------------------------+ + * program_codt. + *-----------------------------------------------------------------------------*/ +static void program_codt(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks) +{ + unsigned long codt; + unsigned long modt0 = 0; + unsigned long modt1 = 0; + unsigned long modt2 = 0; + unsigned long modt3 = 0; + unsigned char dimm_num; + unsigned char dimm_rank; + unsigned char total_rank = 0; + unsigned char total_dimm = 0; + unsigned char dimm_type = 0; + unsigned char firstSlot = 0; + + /*------------------------------------------------------------------ + * Set the SDRAM Controller On Die Termination Register + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_CODT, codt); + codt &= ~(SDRAM_CODT_DQS_SINGLE_END | SDRAM_CODT_CKSE_SINGLE_END); + codt |= SDRAM_CODT_IO_NMODE; + + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + if (dimm_populated[dimm_num] != SDRAM_NONE) { + dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5); + if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) { + dimm_rank = (dimm_rank & 0x0F) + 1; + dimm_type = SDRAM_DDR2; + } else { + dimm_rank = dimm_rank & 0x0F; + dimm_type = SDRAM_DDR1; + } + + total_rank += dimm_rank; + total_dimm++; + if ((dimm_num == 0) && (total_dimm == 1)) + firstSlot = TRUE; + else + firstSlot = FALSE; + } + } + if (dimm_type == SDRAM_DDR2) { + codt |= SDRAM_CODT_DQS_1_8_V_DDR2; + if ((total_dimm == 1) && (firstSlot == TRUE)) { + if (total_rank == 1) { /* PUUU */ + codt |= CALC_ODT_R(0); + modt0 = CALC_ODT_W(0); + modt1 = 0x00000000; + modt2 = 0x00000000; + modt3 = 0x00000000; + } + if (total_rank == 2) { /* PPUU */ + codt |= CALC_ODT_R(0) | CALC_ODT_R(1); + modt0 = CALC_ODT_W(0) | CALC_ODT_W(1); + modt1 = 0x00000000; + modt2 = 0x00000000; + modt3 = 0x00000000; + } + } else if ((total_dimm == 1) && (firstSlot != TRUE)) { + if (total_rank == 1) { /* UUPU */ + codt |= CALC_ODT_R(2); + modt0 = 0x00000000; + modt1 = 0x00000000; + modt2 = CALC_ODT_W(2); + modt3 = 0x00000000; + } + if (total_rank == 2) { /* UUPP */ + codt |= CALC_ODT_R(2) | CALC_ODT_R(3); + modt0 = 0x00000000; + modt1 = 0x00000000; + modt2 = CALC_ODT_W(2) | CALC_ODT_W(3); + modt3 = 0x00000000; + } + } + if (total_dimm == 2) { + if (total_rank == 2) { /* PUPU */ + codt |= CALC_ODT_R(0) | CALC_ODT_R(2); + modt0 = CALC_ODT_RW(2); + modt1 = 0x00000000; + modt2 = CALC_ODT_RW(0); + modt3 = 0x00000000; + } + if (total_rank == 4) { /* PPPP */ + codt |= CALC_ODT_R(0) | CALC_ODT_R(1) | + CALC_ODT_R(2) | CALC_ODT_R(3); + modt0 = CALC_ODT_RW(2) | CALC_ODT_RW(3); + modt1 = 0x00000000; + modt2 = CALC_ODT_RW(0) | CALC_ODT_RW(1); + modt3 = 0x00000000; + } + } + } else { + codt |= SDRAM_CODT_DQS_2_5_V_DDR1; + modt0 = 0x00000000; + modt1 = 0x00000000; + modt2 = 0x00000000; + modt3 = 0x00000000; + + if (total_dimm == 1) { + if (total_rank == 1) + codt |= 0x00800000; + if (total_rank == 2) + codt |= 0x02800000; + } + if (total_dimm == 2) { + if (total_rank == 2) + codt |= 0x08800000; + if (total_rank == 4) + codt |= 0x2a800000; + } + } + + debug("nb of dimm %d\n", total_dimm); + debug("nb of rank %d\n", total_rank); + if (total_dimm == 1) + debug("dimm in slot %d\n", firstSlot); + + mtsdram(SDRAM_CODT, codt); + mtsdram(SDRAM_MODT0, modt0); + mtsdram(SDRAM_MODT1, modt1); + mtsdram(SDRAM_MODT2, modt2); + mtsdram(SDRAM_MODT3, modt3); +} + +/*-----------------------------------------------------------------------------+ + * program_initplr. + *-----------------------------------------------------------------------------*/ +static void program_initplr(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks, + ddr_cas_id_t selected_cas, + int write_recovery) +{ + u32 cas = 0; + u32 odt = 0; + u32 ods = 0; + u32 mr; + u32 wr; + u32 emr; + u32 emr2; + u32 emr3; + int dimm_num; + int total_dimm = 0; + + /****************************************************** + ** Assumption: if more than one DIMM, all DIMMs are the same + ** as already checked in check_memory_type + ******************************************************/ + + if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) { + mtsdram(SDRAM_INITPLR0, 0x81B80000); + mtsdram(SDRAM_INITPLR1, 0x81900400); + mtsdram(SDRAM_INITPLR2, 0x81810000); + mtsdram(SDRAM_INITPLR3, 0xff800162); + mtsdram(SDRAM_INITPLR4, 0x81900400); + mtsdram(SDRAM_INITPLR5, 0x86080000); + mtsdram(SDRAM_INITPLR6, 0x86080000); + mtsdram(SDRAM_INITPLR7, 0x81000062); + } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) { + switch (selected_cas) { + case DDR_CAS_3: + cas = 3 << 4; + break; + case DDR_CAS_4: + cas = 4 << 4; + break; + case DDR_CAS_5: + cas = 5 << 4; + break; + default: + printf("ERROR: ucode error on selected_cas value %d", selected_cas); + spd_ddr_init_hang (); + break; + } + +#if 0 + /* + * ToDo - Still a problem with the write recovery: + * On the Corsair CM2X512-5400C4 module, setting write recovery + * in the INITPLR reg to the value calculated in program_mode() + * results in not correctly working DDR2 memory (crash after + * relocation). + * + * So for now, set the write recovery to 3. This seems to work + * on the Corair module too. + * + * 2007-03-01, sr + */ + switch (write_recovery) { + case 3: + wr = WRITE_RECOV_3; + break; + case 4: + wr = WRITE_RECOV_4; + break; + case 5: + wr = WRITE_RECOV_5; + break; + case 6: + wr = WRITE_RECOV_6; + break; + default: + printf("ERROR: write recovery not support (%d)", write_recovery); + spd_ddr_init_hang (); + break; + } +#else + wr = WRITE_RECOV_3; /* test-only, see description above */ +#endif + + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) + if (dimm_populated[dimm_num] != SDRAM_NONE) + total_dimm++; + if (total_dimm == 1) { + odt = ODT_150_OHM; + ods = ODS_FULL; + } else if (total_dimm == 2) { + odt = ODT_75_OHM; + ods = ODS_REDUCED; + } else { + printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm); + spd_ddr_init_hang (); + } + + mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas; + emr = CMD_EMR | SELECT_EMR | odt | ods; + emr2 = CMD_EMR | SELECT_EMR2; + emr3 = CMD_EMR | SELECT_EMR3; + /* NOP - Wait 106 MemClk cycles */ + mtsdram(SDRAM_INITPLR0, SDRAM_INITPLR_ENABLE | CMD_NOP | + SDRAM_INITPLR_IMWT_ENCODE(106)); + udelay(1000); + /* precharge 4 MemClk cycles */ + mtsdram(SDRAM_INITPLR1, SDRAM_INITPLR_ENABLE | CMD_PRECHARGE | + SDRAM_INITPLR_IMWT_ENCODE(4)); + /* EMR2 - Wait tMRD (2 MemClk cycles) */ + mtsdram(SDRAM_INITPLR2, SDRAM_INITPLR_ENABLE | emr2 | + SDRAM_INITPLR_IMWT_ENCODE(2)); + /* EMR3 - Wait tMRD (2 MemClk cycles) */ + mtsdram(SDRAM_INITPLR3, SDRAM_INITPLR_ENABLE | emr3 | + SDRAM_INITPLR_IMWT_ENCODE(2)); + /* EMR DLL ENABLE - Wait tMRD (2 MemClk cycles) */ + mtsdram(SDRAM_INITPLR4, SDRAM_INITPLR_ENABLE | emr | + SDRAM_INITPLR_IMWT_ENCODE(2)); + /* MR w/ DLL reset - 200 cycle wait for DLL reset */ + mtsdram(SDRAM_INITPLR5, SDRAM_INITPLR_ENABLE | mr | DLL_RESET | + SDRAM_INITPLR_IMWT_ENCODE(200)); + udelay(1000); + /* precharge 4 MemClk cycles */ + mtsdram(SDRAM_INITPLR6, SDRAM_INITPLR_ENABLE | CMD_PRECHARGE | + SDRAM_INITPLR_IMWT_ENCODE(4)); + /* Refresh 25 MemClk cycles */ + mtsdram(SDRAM_INITPLR7, SDRAM_INITPLR_ENABLE | CMD_REFRESH | + SDRAM_INITPLR_IMWT_ENCODE(25)); + /* Refresh 25 MemClk cycles */ + mtsdram(SDRAM_INITPLR8, SDRAM_INITPLR_ENABLE | CMD_REFRESH | + SDRAM_INITPLR_IMWT_ENCODE(25)); + /* Refresh 25 MemClk cycles */ + mtsdram(SDRAM_INITPLR9, SDRAM_INITPLR_ENABLE | CMD_REFRESH | + SDRAM_INITPLR_IMWT_ENCODE(25)); + /* Refresh 25 MemClk cycles */ + mtsdram(SDRAM_INITPLR10, SDRAM_INITPLR_ENABLE | CMD_REFRESH | + SDRAM_INITPLR_IMWT_ENCODE(25)); + /* MR w/o DLL reset - Wait tMRD (2 MemClk cycles) */ + mtsdram(SDRAM_INITPLR11, SDRAM_INITPLR_ENABLE | mr | + SDRAM_INITPLR_IMWT_ENCODE(2)); + /* EMR OCD Default - Wait tMRD (2 MemClk cycles) */ + mtsdram(SDRAM_INITPLR12, SDRAM_INITPLR_ENABLE | OCD_CALIB_DEF | + SDRAM_INITPLR_IMWT_ENCODE(2) | emr); + /* EMR OCD Exit */ + mtsdram(SDRAM_INITPLR13, SDRAM_INITPLR_ENABLE | emr | + SDRAM_INITPLR_IMWT_ENCODE(2)); + } else { + printf("ERROR: ucode error as unknown DDR type in program_initplr"); + spd_ddr_init_hang (); + } +} + +/*------------------------------------------------------------------ + * This routine programs the SDRAM_MMODE register. + * the selected_cas is an output parameter, that will be passed + * by caller to call the above program_initplr( ) + *-----------------------------------------------------------------*/ +static void program_mode(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks, + ddr_cas_id_t *selected_cas, + int *write_recovery) +{ + unsigned long dimm_num; + unsigned long sdram_ddr1; + unsigned long t_wr_ns; + unsigned long t_wr_clk; + unsigned long cas_bit; + unsigned long cas_index; + unsigned long sdram_freq; + unsigned long ddr_check; + unsigned long mmode; + unsigned long tcyc_reg; + unsigned long cycle_2_0_clk; + unsigned long cycle_2_5_clk; + unsigned long cycle_3_0_clk; + unsigned long cycle_4_0_clk; + unsigned long cycle_5_0_clk; + unsigned long max_2_0_tcyc_ns_x_100; + unsigned long max_2_5_tcyc_ns_x_100; + unsigned long max_3_0_tcyc_ns_x_100; + unsigned long max_4_0_tcyc_ns_x_100; + unsigned long max_5_0_tcyc_ns_x_100; + unsigned long cycle_time_ns_x_100[3]; + PPC4xx_SYS_INFO board_cfg; + unsigned char cas_2_0_available; + unsigned char cas_2_5_available; + unsigned char cas_3_0_available; + unsigned char cas_4_0_available; + unsigned char cas_5_0_available; + unsigned long sdr_ddrpll; + + /*------------------------------------------------------------------ + * Get the board configuration info. + *-----------------------------------------------------------------*/ + get_sys_info(&board_cfg); + + mfsdr(SDR0_DDR0, sdr_ddrpll); + sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1); + debug("sdram_freq=%lu\n", sdram_freq); + + /*------------------------------------------------------------------ + * Handle the timing. We need to find the worst case timing of all + * the dimm modules installed. + *-----------------------------------------------------------------*/ + t_wr_ns = 0; + cas_2_0_available = TRUE; + cas_2_5_available = TRUE; + cas_3_0_available = TRUE; + cas_4_0_available = TRUE; + cas_5_0_available = TRUE; + max_2_0_tcyc_ns_x_100 = 10; + max_2_5_tcyc_ns_x_100 = 10; + max_3_0_tcyc_ns_x_100 = 10; + max_4_0_tcyc_ns_x_100 = 10; + max_5_0_tcyc_ns_x_100 = 10; + sdram_ddr1 = TRUE; + + /* loop through all the DIMM slots on the board */ + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + /* If a dimm is installed in a particular slot ... */ + if (dimm_populated[dimm_num] != SDRAM_NONE) { + if (dimm_populated[dimm_num] == SDRAM_DDR1) + sdram_ddr1 = TRUE; + else + sdram_ddr1 = FALSE; + + /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */ + cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18); + debug("cas_bit[SPD byte 18]=%02lx\n", cas_bit); + + /* For a particular DIMM, grab the three CAS values it supports */ + for (cas_index = 0; cas_index < 3; cas_index++) { + switch (cas_index) { + case 0: + tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); + break; + case 1: + tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23); + break; + default: + tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25); + break; + } + + if ((tcyc_reg & 0x0F) >= 10) { + if ((tcyc_reg & 0x0F) == 0x0D) { + /* Convert from hex to decimal */ + cycle_time_ns_x_100[cas_index] = + (((tcyc_reg & 0xF0) >> 4) * 100) + 75; + } else { + printf("ERROR: SPD reported Tcyc is incorrect for DIMM " + "in slot %d\n", (unsigned int)dimm_num); + spd_ddr_init_hang (); + } + } else { + /* Convert from hex to decimal */ + cycle_time_ns_x_100[cas_index] = + (((tcyc_reg & 0xF0) >> 4) * 100) + + ((tcyc_reg & 0x0F)*10); + } + debug("cas_index=%lu: cycle_time_ns_x_100=%lu\n", cas_index, + cycle_time_ns_x_100[cas_index]); + } + + /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */ + /* supported for a particular DIMM. */ + cas_index = 0; + + if (sdram_ddr1) { + /* + * DDR devices use the following bitmask for CAS latency: + * Bit 7 6 5 4 3 2 1 0 + * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0 + */ + if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) && + (cycle_time_ns_x_100[cas_index] != 0)) { + max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, + cycle_time_ns_x_100[cas_index]); + cas_index++; + } else { + if (cas_index != 0) + cas_index++; + cas_4_0_available = FALSE; + } + + if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && + (cycle_time_ns_x_100[cas_index] != 0)) { + max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, + cycle_time_ns_x_100[cas_index]); + cas_index++; + } else { + if (cas_index != 0) + cas_index++; + cas_3_0_available = FALSE; + } + + if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && + (cycle_time_ns_x_100[cas_index] != 0)) { + max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100, + cycle_time_ns_x_100[cas_index]); + cas_index++; + } else { + if (cas_index != 0) + cas_index++; + cas_2_5_available = FALSE; + } + + if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) && + (cycle_time_ns_x_100[cas_index] != 0)) { + max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100, + cycle_time_ns_x_100[cas_index]); + cas_index++; + } else { + if (cas_index != 0) + cas_index++; + cas_2_0_available = FALSE; + } + } else { + /* + * DDR2 devices use the following bitmask for CAS latency: + * Bit 7 6 5 4 3 2 1 0 + * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD + */ + if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) && + (cycle_time_ns_x_100[cas_index] != 0)) { + max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100, + cycle_time_ns_x_100[cas_index]); + cas_index++; + } else { + if (cas_index != 0) + cas_index++; + cas_5_0_available = FALSE; + } + + if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && + (cycle_time_ns_x_100[cas_index] != 0)) { + max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, + cycle_time_ns_x_100[cas_index]); + cas_index++; + } else { + if (cas_index != 0) + cas_index++; + cas_4_0_available = FALSE; + } + + if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && + (cycle_time_ns_x_100[cas_index] != 0)) { + max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, + cycle_time_ns_x_100[cas_index]); + cas_index++; + } else { + if (cas_index != 0) + cas_index++; + cas_3_0_available = FALSE; + } + } + } + } + + /*------------------------------------------------------------------ + * Set the SDRAM mode, SDRAM_MMODE + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_MMODE, mmode); + mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK); + + /* add 10 here because of rounding problems */ + cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10; + cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10; + cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10; + cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10; + cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10; + debug("cycle_3_0_clk=%lu\n", cycle_3_0_clk); + debug("cycle_4_0_clk=%lu\n", cycle_4_0_clk); + debug("cycle_5_0_clk=%lu\n", cycle_5_0_clk); + + if (sdram_ddr1 == TRUE) { /* DDR1 */ + if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) { + mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK; + *selected_cas = DDR_CAS_2; + } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) { + mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK; + *selected_cas = DDR_CAS_2_5; + } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) { + mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK; + *selected_cas = DDR_CAS_3; + } else { + printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n"); + printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n"); + printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n"); + spd_ddr_init_hang (); + } + } else { /* DDR2 */ + debug("cas_3_0_available=%d\n", cas_3_0_available); + debug("cas_4_0_available=%d\n", cas_4_0_available); + debug("cas_5_0_available=%d\n", cas_5_0_available); + if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) { + mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK; + *selected_cas = DDR_CAS_3; + } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) { + mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK; + *selected_cas = DDR_CAS_4; + } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) { + mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK; + *selected_cas = DDR_CAS_5; + } else { + printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n"); + printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n"); + printf("Make sure the PLB speed is within the supported range of the DIMMs.\n"); + printf("cas3=%d cas4=%d cas5=%d\n", + cas_3_0_available, cas_4_0_available, cas_5_0_available); + printf("sdram_freq=%lu cycle3=%lu cycle4=%lu cycle5=%lu\n\n", + sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk); + spd_ddr_init_hang (); + } + } + + if (sdram_ddr1 == TRUE) + mmode |= SDRAM_MMODE_WR_DDR1; + else { + + /* loop through all the DIMM slots on the board */ + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + /* If a dimm is installed in a particular slot ... */ + if (dimm_populated[dimm_num] != SDRAM_NONE) + t_wr_ns = max(t_wr_ns, + spd_read(iic0_dimm_addr[dimm_num], 36) >> 2); + } + + /* + * convert from nanoseconds to ddr clocks + * round up if necessary + */ + t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION); + ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns); + if (sdram_freq != ddr_check) + t_wr_clk++; + + switch (t_wr_clk) { + case 0: + case 1: + case 2: + case 3: + mmode |= SDRAM_MMODE_WR_DDR2_3_CYC; + break; + case 4: + mmode |= SDRAM_MMODE_WR_DDR2_4_CYC; + break; + case 5: + mmode |= SDRAM_MMODE_WR_DDR2_5_CYC; + break; + default: + mmode |= SDRAM_MMODE_WR_DDR2_6_CYC; + break; + } + *write_recovery = t_wr_clk; + } + + debug("CAS latency = %d\n", *selected_cas); + debug("Write recovery = %d\n", *write_recovery); + + mtsdram(SDRAM_MMODE, mmode); +} + +/*-----------------------------------------------------------------------------+ + * program_rtr. + *-----------------------------------------------------------------------------*/ +static void program_rtr(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks) +{ + PPC4xx_SYS_INFO board_cfg; + unsigned long max_refresh_rate; + unsigned long dimm_num; + unsigned long refresh_rate_type; + unsigned long refresh_rate; + unsigned long rint; + unsigned long sdram_freq; + unsigned long sdr_ddrpll; + unsigned long val; + + /*------------------------------------------------------------------ + * Get the board configuration info. + *-----------------------------------------------------------------*/ + get_sys_info(&board_cfg); + + /*------------------------------------------------------------------ + * Set the SDRAM Refresh Timing Register, SDRAM_RTR + *-----------------------------------------------------------------*/ + mfsdr(SDR0_DDR0, sdr_ddrpll); + sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll)); + + max_refresh_rate = 0; + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + if (dimm_populated[dimm_num] != SDRAM_NONE) { + + refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12); + refresh_rate_type &= 0x7F; + switch (refresh_rate_type) { + case 0: + refresh_rate = 15625; + break; + case 1: + refresh_rate = 3906; + break; + case 2: + refresh_rate = 7812; + break; + case 3: + refresh_rate = 31250; + break; + case 4: + refresh_rate = 62500; + break; + case 5: + refresh_rate = 125000; + break; + default: + refresh_rate = 0; + printf("ERROR: DIMM %d unsupported refresh rate/type.\n", + (unsigned int)dimm_num); + printf("Replace the DIMM module with a supported DIMM.\n\n"); + spd_ddr_init_hang (); + break; + } + + max_refresh_rate = max(max_refresh_rate, refresh_rate); + } + } + + rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION); + mfsdram(SDRAM_RTR, val); + mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) | + (SDRAM_RTR_RINT_ENCODE(rint))); +} + +/*------------------------------------------------------------------ + * This routine programs the SDRAM_TRx registers. + *-----------------------------------------------------------------*/ +static void program_tr(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks) +{ + unsigned long dimm_num; + unsigned long sdram_ddr1; + unsigned long t_rp_ns; + unsigned long t_rcd_ns; + unsigned long t_rrd_ns; + unsigned long t_ras_ns; + unsigned long t_rc_ns; + unsigned long t_rfc_ns; + unsigned long t_wpc_ns; + unsigned long t_wtr_ns; + unsigned long t_rpc_ns; + unsigned long t_rp_clk; + unsigned long t_rcd_clk; + unsigned long t_rrd_clk; + unsigned long t_ras_clk; + unsigned long t_rc_clk; + unsigned long t_rfc_clk; + unsigned long t_wpc_clk; + unsigned long t_wtr_clk; + unsigned long t_rpc_clk; + unsigned long sdtr1, sdtr2, sdtr3; + unsigned long ddr_check; + unsigned long sdram_freq; + unsigned long sdr_ddrpll; + + PPC4xx_SYS_INFO board_cfg; + + /*------------------------------------------------------------------ + * Get the board configuration info. + *-----------------------------------------------------------------*/ + get_sys_info(&board_cfg); + + mfsdr(SDR0_DDR0, sdr_ddrpll); + sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll)); + + /*------------------------------------------------------------------ + * Handle the timing. We need to find the worst case timing of all + * the dimm modules installed. + *-----------------------------------------------------------------*/ + t_rp_ns = 0; + t_rrd_ns = 0; + t_rcd_ns = 0; + t_ras_ns = 0; + t_rc_ns = 0; + t_rfc_ns = 0; + t_wpc_ns = 0; + t_wtr_ns = 0; + t_rpc_ns = 0; + sdram_ddr1 = TRUE; + + /* loop through all the DIMM slots on the board */ + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + /* If a dimm is installed in a particular slot ... */ + if (dimm_populated[dimm_num] != SDRAM_NONE) { + if (dimm_populated[dimm_num] == SDRAM_DDR2) + sdram_ddr1 = TRUE; + else + sdram_ddr1 = FALSE; + + t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2); + t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2); + t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2); + t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30)); + t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41)); + t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42)); + } + } + + /*------------------------------------------------------------------ + * Set the SDRAM Timing Reg 1, SDRAM_TR1 + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_SDTR1, sdtr1); + sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK | + SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK); + + /* default values */ + sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK; + sdtr1 |= SDRAM_SDTR1_RTW_2_CLK; + + /* normal operations */ + sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK; + sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK; + + mtsdram(SDRAM_SDTR1, sdtr1); + + /*------------------------------------------------------------------ + * Set the SDRAM Timing Reg 2, SDRAM_TR2 + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_SDTR2, sdtr2); + sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK | + SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK | + SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK | + SDRAM_SDTR2_RRD_MASK); + + /* + * convert t_rcd from nanoseconds to ddr clocks + * round up if necessary + */ + t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION); + ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns); + if (sdram_freq != ddr_check) + t_rcd_clk++; + + switch (t_rcd_clk) { + case 0: + case 1: + sdtr2 |= SDRAM_SDTR2_RCD_1_CLK; + break; + case 2: + sdtr2 |= SDRAM_SDTR2_RCD_2_CLK; + break; + case 3: + sdtr2 |= SDRAM_SDTR2_RCD_3_CLK; + break; + case 4: + sdtr2 |= SDRAM_SDTR2_RCD_4_CLK; + break; + default: + sdtr2 |= SDRAM_SDTR2_RCD_5_CLK; + break; + } + + if (sdram_ddr1 == TRUE) { /* DDR1 */ + if (sdram_freq < 200000000) { + sdtr2 |= SDRAM_SDTR2_WTR_1_CLK; + sdtr2 |= SDRAM_SDTR2_WPC_2_CLK; + sdtr2 |= SDRAM_SDTR2_RPC_2_CLK; + } else { + sdtr2 |= SDRAM_SDTR2_WTR_2_CLK; + sdtr2 |= SDRAM_SDTR2_WPC_3_CLK; + sdtr2 |= SDRAM_SDTR2_RPC_2_CLK; + } + } else { /* DDR2 */ + /* loop through all the DIMM slots on the board */ + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + /* If a dimm is installed in a particular slot ... */ + if (dimm_populated[dimm_num] != SDRAM_NONE) { + t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2); + t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2); + t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2); + } + } + + /* + * convert from nanoseconds to ddr clocks + * round up if necessary + */ + t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION); + ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns); + if (sdram_freq != ddr_check) + t_wpc_clk++; + + switch (t_wpc_clk) { + case 0: + case 1: + case 2: + sdtr2 |= SDRAM_SDTR2_WPC_2_CLK; + break; + case 3: + sdtr2 |= SDRAM_SDTR2_WPC_3_CLK; + break; + case 4: + sdtr2 |= SDRAM_SDTR2_WPC_4_CLK; + break; + case 5: + sdtr2 |= SDRAM_SDTR2_WPC_5_CLK; + break; + default: + sdtr2 |= SDRAM_SDTR2_WPC_6_CLK; + break; + } + + /* + * convert from nanoseconds to ddr clocks + * round up if necessary + */ + t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION); + ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns); + if (sdram_freq != ddr_check) + t_wtr_clk++; + + switch (t_wtr_clk) { + case 0: + case 1: + sdtr2 |= SDRAM_SDTR2_WTR_1_CLK; + break; + case 2: + sdtr2 |= SDRAM_SDTR2_WTR_2_CLK; + break; + case 3: + sdtr2 |= SDRAM_SDTR2_WTR_3_CLK; + break; + default: + sdtr2 |= SDRAM_SDTR2_WTR_4_CLK; + break; + } + + /* + * convert from nanoseconds to ddr clocks + * round up if necessary + */ + t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION); + ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns); + if (sdram_freq != ddr_check) + t_rpc_clk++; + + switch (t_rpc_clk) { + case 0: + case 1: + case 2: + sdtr2 |= SDRAM_SDTR2_RPC_2_CLK; + break; + case 3: + sdtr2 |= SDRAM_SDTR2_RPC_3_CLK; + break; + default: + sdtr2 |= SDRAM_SDTR2_RPC_4_CLK; + break; + } + } + + /* default value */ + sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK; + + /* + * convert t_rrd from nanoseconds to ddr clocks + * round up if necessary + */ + t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION); + ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns); + if (sdram_freq != ddr_check) + t_rrd_clk++; + + if (t_rrd_clk == 3) + sdtr2 |= SDRAM_SDTR2_RRD_3_CLK; + else + sdtr2 |= SDRAM_SDTR2_RRD_2_CLK; + + /* + * convert t_rp from nanoseconds to ddr clocks + * round up if necessary + */ + t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION); + ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns); + if (sdram_freq != ddr_check) + t_rp_clk++; + + switch (t_rp_clk) { + case 0: + case 1: + case 2: + case 3: + sdtr2 |= SDRAM_SDTR2_RP_3_CLK; + break; + case 4: + sdtr2 |= SDRAM_SDTR2_RP_4_CLK; + break; + case 5: + sdtr2 |= SDRAM_SDTR2_RP_5_CLK; + break; + case 6: + sdtr2 |= SDRAM_SDTR2_RP_6_CLK; + break; + default: + sdtr2 |= SDRAM_SDTR2_RP_7_CLK; + break; + } + + mtsdram(SDRAM_SDTR2, sdtr2); + + /*------------------------------------------------------------------ + * Set the SDRAM Timing Reg 3, SDRAM_TR3 + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_SDTR3, sdtr3); + sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK | + SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK); + + /* + * convert t_ras from nanoseconds to ddr clocks + * round up if necessary + */ + t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION); + ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns); + if (sdram_freq != ddr_check) + t_ras_clk++; + + sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk); + + /* + * convert t_rc from nanoseconds to ddr clocks + * round up if necessary + */ + t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION); + ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns); + if (sdram_freq != ddr_check) + t_rc_clk++; + + sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk); + + /* default xcs value */ + sdtr3 |= SDRAM_SDTR3_XCS; + + /* + * convert t_rfc from nanoseconds to ddr clocks + * round up if necessary + */ + t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION); + ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns); + if (sdram_freq != ddr_check) + t_rfc_clk++; + + sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk); + + mtsdram(SDRAM_SDTR3, sdtr3); +} + +/*-----------------------------------------------------------------------------+ + * program_bxcf. + *-----------------------------------------------------------------------------*/ +static void program_bxcf(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks) +{ + unsigned long dimm_num; + unsigned long num_col_addr; + unsigned long num_ranks; + unsigned long num_banks; + unsigned long mode; + unsigned long ind_rank; + unsigned long ind; + unsigned long ind_bank; + unsigned long bank_0_populated; + + /*------------------------------------------------------------------ + * Set the BxCF regs. First, wipe out the bank config registers. + *-----------------------------------------------------------------*/ + mtsdram(SDRAM_MB0CF, 0x00000000); + mtsdram(SDRAM_MB1CF, 0x00000000); + mtsdram(SDRAM_MB2CF, 0x00000000); + mtsdram(SDRAM_MB3CF, 0x00000000); + + mode = SDRAM_BXCF_M_BE_ENABLE; + + bank_0_populated = 0; + + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + if (dimm_populated[dimm_num] != SDRAM_NONE) { + num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4); + num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5); + if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) + num_ranks = (num_ranks & 0x0F) +1; + else + num_ranks = num_ranks & 0x0F; + + num_banks = spd_read(iic0_dimm_addr[dimm_num], 17); + + for (ind_bank = 0; ind_bank < 2; ind_bank++) { + if (num_banks == 4) + ind = 0; + else + ind = 5 << 8; + switch (num_col_addr) { + case 0x08: + mode |= (SDRAM_BXCF_M_AM_0 + ind); + break; + case 0x09: + mode |= (SDRAM_BXCF_M_AM_1 + ind); + break; + case 0x0A: + mode |= (SDRAM_BXCF_M_AM_2 + ind); + break; + case 0x0B: + mode |= (SDRAM_BXCF_M_AM_3 + ind); + break; + case 0x0C: + mode |= (SDRAM_BXCF_M_AM_4 + ind); + break; + default: + printf("DDR-SDRAM: DIMM %d BxCF configuration.\n", + (unsigned int)dimm_num); + printf("ERROR: Unsupported value for number of " + "column addresses: %d.\n", (unsigned int)num_col_addr); + printf("Replace the DIMM module with a supported DIMM.\n\n"); + spd_ddr_init_hang (); + } + } + + if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1)) + bank_0_populated = 1; + + for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) { + mtsdram(SDRAM_MB0CF + + ((dimm_num + bank_0_populated + ind_rank) << 2), + mode); + } + } + } +} + +/*------------------------------------------------------------------ + * program memory queue. + *-----------------------------------------------------------------*/ +static void program_memory_queue(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks) +{ + unsigned long dimm_num; + phys_size_t rank_base_addr; + unsigned long rank_reg; + phys_size_t rank_size_bytes; + unsigned long rank_size_id; + unsigned long num_ranks; + unsigned long baseadd_size; + unsigned long i; + unsigned long bank_0_populated = 0; + phys_size_t total_size = 0; + + /*------------------------------------------------------------------ + * Reset the rank_base_address. + *-----------------------------------------------------------------*/ + rank_reg = SDRAM_R0BAS; + + rank_base_addr = 0x00000000; + + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + if (dimm_populated[dimm_num] != SDRAM_NONE) { + num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5); + if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) + num_ranks = (num_ranks & 0x0F) + 1; + else + num_ranks = num_ranks & 0x0F; + + rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31); + + /*------------------------------------------------------------------ + * Set the sizes + *-----------------------------------------------------------------*/ + baseadd_size = 0; + switch (rank_size_id) { + case 0x01: + baseadd_size |= SDRAM_RXBAS_SDSZ_1024; + total_size = 1024; + break; + case 0x02: + baseadd_size |= SDRAM_RXBAS_SDSZ_2048; + total_size = 2048; + break; + case 0x04: + baseadd_size |= SDRAM_RXBAS_SDSZ_4096; + total_size = 4096; + break; + case 0x08: + baseadd_size |= SDRAM_RXBAS_SDSZ_32; + total_size = 32; + break; + case 0x10: + baseadd_size |= SDRAM_RXBAS_SDSZ_64; + total_size = 64; + break; + case 0x20: + baseadd_size |= SDRAM_RXBAS_SDSZ_128; + total_size = 128; + break; + case 0x40: + baseadd_size |= SDRAM_RXBAS_SDSZ_256; + total_size = 256; + break; + case 0x80: + baseadd_size |= SDRAM_RXBAS_SDSZ_512; + total_size = 512; + break; + default: + printf("DDR-SDRAM: DIMM %d memory queue configuration.\n", + (unsigned int)dimm_num); + printf("ERROR: Unsupported value for the banksize: %d.\n", + (unsigned int)rank_size_id); + printf("Replace the DIMM module with a supported DIMM.\n\n"); + spd_ddr_init_hang (); + } + rank_size_bytes = total_size << 20; + + if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1)) + bank_0_populated = 1; + + for (i = 0; i < num_ranks; i++) { + mtdcr_any(rank_reg+i+dimm_num+bank_0_populated, + (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) | + baseadd_size)); + rank_base_addr += rank_size_bytes; + } + } + } + +#if defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \ + defined(CONFIG_460EX) || defined(CONFIG_460GT) || \ + defined(CONFIG_460SX) + /* + * Enable high bandwidth access + * This is currently not used, but with this setup + * it is possible to use it later on in e.g. the Linux + * EMAC driver for performance gain. + */ + mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */ + mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */ + + /* + * Set optimal value for Memory Queue HB/LL Configuration registers + */ + mtdcr(SDRAM_CONF1HB, (mfdcr(SDRAM_CONF1HB) & ~SDRAM_CONF1HB_MASK) | + SDRAM_CONF1HB_AAFR | SDRAM_CONF1HB_RPEN | SDRAM_CONF1HB_RFTE | + SDRAM_CONF1HB_RPLM | SDRAM_CONF1HB_WRCL); + mtdcr(SDRAM_CONF1LL, (mfdcr(SDRAM_CONF1LL) & ~SDRAM_CONF1LL_MASK) | + SDRAM_CONF1LL_AAFR | SDRAM_CONF1LL_RPEN | SDRAM_CONF1LL_RFTE | + SDRAM_CONF1LL_RPLM); + mtdcr(SDRAM_CONFPATHB, mfdcr(SDRAM_CONFPATHB) | SDRAM_CONFPATHB_TPEN); +#endif +} + +#ifdef CONFIG_DDR_ECC +/*-----------------------------------------------------------------------------+ + * program_ecc. + *-----------------------------------------------------------------------------*/ +static void program_ecc(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks, + unsigned long tlb_word2_i_value) +{ + unsigned long dimm_num; + unsigned long ecc; + + ecc = 0; + /* loop through all the DIMM slots on the board */ + for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) { + /* If a dimm is installed in a particular slot ... */ + if (dimm_populated[dimm_num] != SDRAM_NONE) + ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11)); + } + if (ecc == 0) + return; + + do_program_ecc(tlb_word2_i_value); +} +#endif + +#if !defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION) +/*-----------------------------------------------------------------------------+ + * program_DQS_calibration. + *-----------------------------------------------------------------------------*/ +static void program_DQS_calibration(unsigned long *dimm_populated, + unsigned char *iic0_dimm_addr, + unsigned long num_dimm_banks) +{ + unsigned long val; + +#ifdef HARD_CODED_DQS /* calibration test with hardvalues */ + mtsdram(SDRAM_RQDC, 0x80000037); + mtsdram(SDRAM_RDCC, 0x40000000); + mtsdram(SDRAM_RFDC, 0x000001DF); + + test(); +#else + /*------------------------------------------------------------------ + * Program RDCC register + * Read sample cycle auto-update enable + *-----------------------------------------------------------------*/ + + mfsdram(SDRAM_RDCC, val); + mtsdram(SDRAM_RDCC, + (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK)) + | SDRAM_RDCC_RSAE_ENABLE); + + /*------------------------------------------------------------------ + * Program RQDC register + * Internal DQS delay mechanism enable + *-----------------------------------------------------------------*/ + mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38))); + + /*------------------------------------------------------------------ + * Program RFDC register + * Set Feedback Fractional Oversample + * Auto-detect read sample cycle enable + * Set RFOS to 1/4 of memclk cycle (0x3f) + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_RFDC, val); + mtsdram(SDRAM_RFDC, + (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK | + SDRAM_RFDC_RFFD_MASK)) + | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0x3f) | + SDRAM_RFDC_RFFD_ENCODE(0))); + + DQS_calibration_process(); +#endif +} + +static int short_mem_test(void) +{ + u32 *membase; + u32 bxcr_num; + u32 bxcf; + int i; + int j; + phys_size_t base_addr; + u32 test[NUMMEMTESTS][NUMMEMWORDS] = { + {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, + 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, + {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, + 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, + {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, + 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, + {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, + 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, + {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, + 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, + {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, + 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, + {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, + 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, + {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, + 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} }; + int l; + + for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) { + mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf); + + /* Banks enabled */ + if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) { + /* Bank is enabled */ + + /* + * Only run test on accessable memory (below 2GB) + */ + base_addr = SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)); + if (base_addr >= CONFIG_MAX_MEM_MAPPED) + continue; + + /*------------------------------------------------------------------ + * Run the short memory test. + *-----------------------------------------------------------------*/ + membase = (u32 *)(u32)base_addr; + + for (i = 0; i < NUMMEMTESTS; i++) { + for (j = 0; j < NUMMEMWORDS; j++) { + membase[j] = test[i][j]; + ppcDcbf((u32)&(membase[j])); + } + sync(); + for (l=0; l<NUMLOOPS; l++) { + for (j = 0; j < NUMMEMWORDS; j++) { + if (membase[j] != test[i][j]) { + ppcDcbf((u32)&(membase[j])); + return 0; + } + ppcDcbf((u32)&(membase[j])); + } + sync(); + } + } + } /* if bank enabled */ + } /* for bxcf_num */ + + return 1; +} + +#ifndef HARD_CODED_DQS +/*-----------------------------------------------------------------------------+ + * DQS_calibration_process. + *-----------------------------------------------------------------------------*/ +static void DQS_calibration_process(void) +{ + unsigned long rfdc_reg; + unsigned long rffd; + unsigned long val; + long rffd_average; + long max_start; + long min_end; + unsigned long begin_rqfd[MAXRANKS]; + unsigned long begin_rffd[MAXRANKS]; + unsigned long end_rqfd[MAXRANKS]; + unsigned long end_rffd[MAXRANKS]; + char window_found; + unsigned long dlycal; + unsigned long dly_val; + unsigned long max_pass_length; + unsigned long current_pass_length; + unsigned long current_fail_length; + unsigned long current_start; + long max_end; + unsigned char fail_found; + unsigned char pass_found; +#if !defined(CONFIG_DDR_RQDC_FIXED) + u32 rqdc_reg; + u32 rqfd; + u32 rqfd_start; + u32 rqfd_average; + int loopi = 0; + char str[] = "Auto calibration -"; + char slash[] = "\\|/-\\|/-"; + + /*------------------------------------------------------------------ + * Test to determine the best read clock delay tuning bits. + * + * Before the DDR controller can be used, the read clock delay needs to be + * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD]. + * This value cannot be hardcoded into the program because it changes + * depending on the board's setup and environment. + * To do this, all delay values are tested to see if they + * work or not. By doing this, you get groups of fails with groups of + * passing values. The idea is to find the start and end of a passing + * window and take the center of it to use as the read clock delay. + * + * A failure has to be seen first so that when we hit a pass, we know + * that it is truely the start of the window. If we get passing values + * to start off with, we don't know if we are at the start of the window. + * + * The code assumes that a failure will always be found. + * If a failure is not found, there is no easy way to get the middle + * of the passing window. I guess we can pretty much pick any value + * but some values will be better than others. Since the lowest speed + * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed), + * from experimentation it is safe to say you will always have a failure. + *-----------------------------------------------------------------*/ + + /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */ + rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */ + + puts(str); + +calibration_loop: + mfsdram(SDRAM_RQDC, rqdc_reg); + mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) | + SDRAM_RQDC_RQFD_ENCODE(rqfd_start)); +#else /* CONFIG_DDR_RQDC_FIXED */ + /* + * On Katmai the complete auto-calibration somehow doesn't seem to + * produce the best results, meaning optimal values for RQFD/RFFD. + * This was discovered by GDA using a high bandwidth scope, + * analyzing the DDR2 signals. GDA provided a fixed value for RQFD, + * so now on Katmai "only" RFFD is auto-calibrated. + */ + mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED); +#endif /* CONFIG_DDR_RQDC_FIXED */ + + max_start = 0; + min_end = 0; + begin_rqfd[0] = 0; + begin_rffd[0] = 0; + begin_rqfd[1] = 0; + begin_rffd[1] = 0; + end_rqfd[0] = 0; + end_rffd[0] = 0; + end_rqfd[1] = 0; + end_rffd[1] = 0; + window_found = FALSE; + + max_pass_length = 0; + max_start = 0; + max_end = 0; + current_pass_length = 0; + current_fail_length = 0; + current_start = 0; + window_found = FALSE; + fail_found = FALSE; + pass_found = FALSE; + + /* + * get the delay line calibration register value + */ + mfsdram(SDRAM_DLCR, dlycal); + dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2; + + for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) { + mfsdram(SDRAM_RFDC, rfdc_reg); + rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK); + + /*------------------------------------------------------------------ + * Set the timing reg for the test. + *-----------------------------------------------------------------*/ + mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd)); + + /*------------------------------------------------------------------ + * See if the rffd value passed. + *-----------------------------------------------------------------*/ + if (short_mem_test()) { + if (fail_found == TRUE) { + pass_found = TRUE; + if (current_pass_length == 0) + current_start = rffd; + + current_fail_length = 0; + current_pass_length++; + + if (current_pass_length > max_pass_length) { + max_pass_length = current_pass_length; + max_start = current_start; + max_end = rffd; + } + } + } else { + current_pass_length = 0; + current_fail_length++; + + if (current_fail_length >= (dly_val >> 2)) { + if (fail_found == FALSE) { + fail_found = TRUE; + } else if (pass_found == TRUE) { + window_found = TRUE; + break; + } + } + } + } /* for rffd */ + + /*------------------------------------------------------------------ + * Set the average RFFD value + *-----------------------------------------------------------------*/ + rffd_average = ((max_start + max_end) >> 1); + + if (rffd_average < 0) + rffd_average = 0; + + if (rffd_average > SDRAM_RFDC_RFFD_MAX) + rffd_average = SDRAM_RFDC_RFFD_MAX; + /* now fix RFDC[RFFD] found and find RQDC[RQFD] */ + mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average)); + +#if !defined(CONFIG_DDR_RQDC_FIXED) + max_pass_length = 0; + max_start = 0; + max_end = 0; + current_pass_length = 0; + current_fail_length = 0; + current_start = 0; + window_found = FALSE; + fail_found = FALSE; + pass_found = FALSE; + + for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) { + mfsdram(SDRAM_RQDC, rqdc_reg); + rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK); + + /*------------------------------------------------------------------ + * Set the timing reg for the test. + *-----------------------------------------------------------------*/ + mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd)); + + /*------------------------------------------------------------------ + * See if the rffd value passed. + *-----------------------------------------------------------------*/ + if (short_mem_test()) { + if (fail_found == TRUE) { + pass_found = TRUE; + if (current_pass_length == 0) + current_start = rqfd; + + current_fail_length = 0; + current_pass_length++; + + if (current_pass_length > max_pass_length) { + max_pass_length = current_pass_length; + max_start = current_start; + max_end = rqfd; + } + } + } else { + current_pass_length = 0; + current_fail_length++; + + if (fail_found == FALSE) { + fail_found = TRUE; + } else if (pass_found == TRUE) { + window_found = TRUE; + break; + } + } + } + + rqfd_average = ((max_start + max_end) >> 1); + + /*------------------------------------------------------------------ + * Make sure we found the valid read passing window. Halt if not + *-----------------------------------------------------------------*/ + if (window_found == FALSE) { + if (rqfd_start < SDRAM_RQDC_RQFD_MAX) { + putc('\b'); + putc(slash[loopi++ % 8]); + + /* try again from with a different RQFD start value */ + rqfd_start++; + goto calibration_loop; + } + + printf("\nERROR: Cannot determine a common read delay for the " + "DIMM(s) installed.\n"); + debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__); + ppc4xx_ibm_ddr2_register_dump(); + spd_ddr_init_hang (); + } + + if (rqfd_average < 0) + rqfd_average = 0; + + if (rqfd_average > SDRAM_RQDC_RQFD_MAX) + rqfd_average = SDRAM_RQDC_RQFD_MAX; + + mtsdram(SDRAM_RQDC, + (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) | + SDRAM_RQDC_RQFD_ENCODE(rqfd_average)); + + blank_string(strlen(str)); +#endif /* CONFIG_DDR_RQDC_FIXED */ + + /* + * Now complete RDSS configuration as mentioned on page 7 of the AMCC + * PowerPC440SP/SPe DDR2 application note: + * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning" + */ + mfsdram(SDRAM_RTSR, val); + if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) { + mfsdram(SDRAM_RDCC, val); + if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) { + val += 0x40000000; + mtsdram(SDRAM_RDCC, val); + } + } + + mfsdram(SDRAM_DLCR, val); + debug("%s[%d] DLCR: 0x%08lX\n", __FUNCTION__, __LINE__, val); + mfsdram(SDRAM_RQDC, val); + debug("%s[%d] RQDC: 0x%08lX\n", __FUNCTION__, __LINE__, val); + mfsdram(SDRAM_RFDC, val); + debug("%s[%d] RFDC: 0x%08lX\n", __FUNCTION__, __LINE__, val); + mfsdram(SDRAM_RDCC, val); + debug("%s[%d] RDCC: 0x%08lX\n", __FUNCTION__, __LINE__, val); +} +#else /* calibration test with hardvalues */ +/*-----------------------------------------------------------------------------+ + * DQS_calibration_process. + *-----------------------------------------------------------------------------*/ +static void test(void) +{ + unsigned long dimm_num; + unsigned long ecc_temp; + unsigned long i, j; + unsigned long *membase; + unsigned long bxcf[MAXRANKS]; + unsigned long val; + char window_found; + char begin_found[MAXDIMMS]; + char end_found[MAXDIMMS]; + char search_end[MAXDIMMS]; + unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = { + {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, + 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, + {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, + 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, + {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, + 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, + {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, + 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, + {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, + 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, + {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, + 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, + {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, + 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, + {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, + 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} }; + + /*------------------------------------------------------------------ + * Test to determine the best read clock delay tuning bits. + * + * Before the DDR controller can be used, the read clock delay needs to be + * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD]. + * This value cannot be hardcoded into the program because it changes + * depending on the board's setup and environment. + * To do this, all delay values are tested to see if they + * work or not. By doing this, you get groups of fails with groups of + * passing values. The idea is to find the start and end of a passing + * window and take the center of it to use as the read clock delay. + * + * A failure has to be seen first so that when we hit a pass, we know + * that it is truely the start of the window. If we get passing values + * to start off with, we don't know if we are at the start of the window. + * + * The code assumes that a failure will always be found. + * If a failure is not found, there is no easy way to get the middle + * of the passing window. I guess we can pretty much pick any value + * but some values will be better than others. Since the lowest speed + * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed), + * from experimentation it is safe to say you will always have a failure. + *-----------------------------------------------------------------*/ + mfsdram(SDRAM_MCOPT1, ecc_temp); + ecc_temp &= SDRAM_MCOPT1_MCHK_MASK; + mfsdram(SDRAM_MCOPT1, val); + mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) | + SDRAM_MCOPT1_MCHK_NON); + + window_found = FALSE; + begin_found[0] = FALSE; + end_found[0] = FALSE; + search_end[0] = FALSE; + begin_found[1] = FALSE; + end_found[1] = FALSE; + search_end[1] = FALSE; + + for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) { + mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]); + + /* Banks enabled */ + if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) { + + /* Bank is enabled */ + membase = + (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num))); + + /*------------------------------------------------------------------ + * Run the short memory test. + *-----------------------------------------------------------------*/ + for (i = 0; i < NUMMEMTESTS; i++) { + for (j = 0; j < NUMMEMWORDS; j++) { + membase[j] = test[i][j]; + ppcDcbf((u32)&(membase[j])); + } + sync(); + for (j = 0; j < NUMMEMWORDS; j++) { + if (membase[j] != test[i][j]) { + ppcDcbf((u32)&(membase[j])); + break; + } + ppcDcbf((u32)&(membase[j])); + } + sync(); + if (j < NUMMEMWORDS) + break; + } + + /*------------------------------------------------------------------ + * See if the rffd value passed. + *-----------------------------------------------------------------*/ + if (i < NUMMEMTESTS) { + if ((end_found[dimm_num] == FALSE) && + (search_end[dimm_num] == TRUE)) { + end_found[dimm_num] = TRUE; + } + if ((end_found[0] == TRUE) && + (end_found[1] == TRUE)) + break; + } else { + if (begin_found[dimm_num] == FALSE) { + begin_found[dimm_num] = TRUE; + search_end[dimm_num] = TRUE; + } + } + } else { + begin_found[dimm_num] = TRUE; + end_found[dimm_num] = TRUE; + } + } + + if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE)) + window_found = TRUE; + + /*------------------------------------------------------------------ + * Make sure we found the valid read passing window. Halt if not + *-----------------------------------------------------------------*/ + if (window_found == FALSE) { + printf("ERROR: Cannot determine a common read delay for the " + "DIMM(s) installed.\n"); + spd_ddr_init_hang (); + } + + /*------------------------------------------------------------------ + * Restore the ECC variable to what it originally was + *-----------------------------------------------------------------*/ + mtsdram(SDRAM_MCOPT1, + (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK) + | ecc_temp); +} +#endif /* !HARD_CODED_DQS */ +#endif /* !defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION) */ + +#else /* CONFIG_SPD_EEPROM */ + +/*----------------------------------------------------------------------------- + * Function: initdram + * Description: Configures the PPC4xx IBM DDR1/DDR2 SDRAM memory controller. + * The configuration is performed using static, compile- + * time parameters. + * Configures the PPC405EX(r) and PPC460EX/GT + *---------------------------------------------------------------------------*/ +phys_size_t initdram(int board_type) +{ + /* + * Only run this SDRAM init code once. For NAND booting + * targets like Kilauea, we call initdram() early from the + * 4k NAND booting image (CONFIG_NAND_SPL) from nand_boot(). + * Later on the NAND U-Boot image runs (CONFIG_NAND_U_BOOT) + * which calls initdram() again. This time the controller + * mustn't be reconfigured again since we're already running + * from SDRAM. + */ +#if !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) + unsigned long val; + +#if defined(CONFIG_440) + mtdcr(SDRAM_R0BAS, CONFIG_SYS_SDRAM_R0BAS); + mtdcr(SDRAM_R1BAS, CONFIG_SYS_SDRAM_R1BAS); + mtdcr(SDRAM_R2BAS, CONFIG_SYS_SDRAM_R2BAS); + mtdcr(SDRAM_R3BAS, CONFIG_SYS_SDRAM_R3BAS); + mtdcr(SDRAM_PLBADDULL, CONFIG_SYS_SDRAM_PLBADDULL); /* MQ0_BAUL */ + mtdcr(SDRAM_PLBADDUHB, CONFIG_SYS_SDRAM_PLBADDUHB); /* MQ0_BAUH */ + mtdcr(SDRAM_CONF1LL, CONFIG_SYS_SDRAM_CONF1LL); + mtdcr(SDRAM_CONF1HB, CONFIG_SYS_SDRAM_CONF1HB); + mtdcr(SDRAM_CONFPATHB, CONFIG_SYS_SDRAM_CONFPATHB); +#endif + + /* Set Memory Bank Configuration Registers */ + + mtsdram(SDRAM_MB0CF, CONFIG_SYS_SDRAM0_MB0CF); + mtsdram(SDRAM_MB1CF, CONFIG_SYS_SDRAM0_MB1CF); + mtsdram(SDRAM_MB2CF, CONFIG_SYS_SDRAM0_MB2CF); + mtsdram(SDRAM_MB3CF, CONFIG_SYS_SDRAM0_MB3CF); + + /* Set Memory Clock Timing Register */ + + mtsdram(SDRAM_CLKTR, CONFIG_SYS_SDRAM0_CLKTR); + + /* Set Refresh Time Register */ + + mtsdram(SDRAM_RTR, CONFIG_SYS_SDRAM0_RTR); + + /* Set SDRAM Timing Registers */ + + mtsdram(SDRAM_SDTR1, CONFIG_SYS_SDRAM0_SDTR1); + mtsdram(SDRAM_SDTR2, CONFIG_SYS_SDRAM0_SDTR2); + mtsdram(SDRAM_SDTR3, CONFIG_SYS_SDRAM0_SDTR3); + + /* Set Mode and Extended Mode Registers */ + + mtsdram(SDRAM_MMODE, CONFIG_SYS_SDRAM0_MMODE); + mtsdram(SDRAM_MEMODE, CONFIG_SYS_SDRAM0_MEMODE); + + /* Set Memory Controller Options 1 Register */ + + mtsdram(SDRAM_MCOPT1, CONFIG_SYS_SDRAM0_MCOPT1); + + /* Set Manual Initialization Control Registers */ + + mtsdram(SDRAM_INITPLR0, CONFIG_SYS_SDRAM0_INITPLR0); + mtsdram(SDRAM_INITPLR1, CONFIG_SYS_SDRAM0_INITPLR1); + mtsdram(SDRAM_INITPLR2, CONFIG_SYS_SDRAM0_INITPLR2); + mtsdram(SDRAM_INITPLR3, CONFIG_SYS_SDRAM0_INITPLR3); + mtsdram(SDRAM_INITPLR4, CONFIG_SYS_SDRAM0_INITPLR4); + mtsdram(SDRAM_INITPLR5, CONFIG_SYS_SDRAM0_INITPLR5); + mtsdram(SDRAM_INITPLR6, CONFIG_SYS_SDRAM0_INITPLR6); + mtsdram(SDRAM_INITPLR7, CONFIG_SYS_SDRAM0_INITPLR7); + mtsdram(SDRAM_INITPLR8, CONFIG_SYS_SDRAM0_INITPLR8); + mtsdram(SDRAM_INITPLR9, CONFIG_SYS_SDRAM0_INITPLR9); + mtsdram(SDRAM_INITPLR10, CONFIG_SYS_SDRAM0_INITPLR10); + mtsdram(SDRAM_INITPLR11, CONFIG_SYS_SDRAM0_INITPLR11); + mtsdram(SDRAM_INITPLR12, CONFIG_SYS_SDRAM0_INITPLR12); + mtsdram(SDRAM_INITPLR13, CONFIG_SYS_SDRAM0_INITPLR13); + mtsdram(SDRAM_INITPLR14, CONFIG_SYS_SDRAM0_INITPLR14); + mtsdram(SDRAM_INITPLR15, CONFIG_SYS_SDRAM0_INITPLR15); + + /* Set On-Die Termination Registers */ + + mtsdram(SDRAM_CODT, CONFIG_SYS_SDRAM0_CODT); + mtsdram(SDRAM_MODT0, CONFIG_SYS_SDRAM0_MODT0); + mtsdram(SDRAM_MODT1, CONFIG_SYS_SDRAM0_MODT1); + + /* Set Write Timing Register */ + + mtsdram(SDRAM_WRDTR, CONFIG_SYS_SDRAM0_WRDTR); + + /* + * Start Initialization by SDRAM0_MCOPT2[SREN] = 0 and + * SDRAM0_MCOPT2[IPTR] = 1 + */ + + mtsdram(SDRAM_MCOPT2, (SDRAM_MCOPT2_SREN_EXIT | + SDRAM_MCOPT2_IPTR_EXECUTE)); + + /* + * Poll SDRAM0_MCSTAT[MIC] for assertion to indicate the + * completion of initialization. + */ + + do { + mfsdram(SDRAM_MCSTAT, val); + } while ((val & SDRAM_MCSTAT_MIC_MASK) != SDRAM_MCSTAT_MIC_COMP); + + /* Set Delay Control Registers */ + + mtsdram(SDRAM_DLCR, CONFIG_SYS_SDRAM0_DLCR); + +#if !defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION) + mtsdram(SDRAM_RDCC, CONFIG_SYS_SDRAM0_RDCC); + mtsdram(SDRAM_RQDC, CONFIG_SYS_SDRAM0_RQDC); + mtsdram(SDRAM_RFDC, CONFIG_SYS_SDRAM0_RFDC); +#endif /* !CONFIG_PPC4xx_DDR_AUTOCALIBRATION */ + + /* + * Enable Controller by SDRAM0_MCOPT2[DCEN] = 1: + */ + + mfsdram(SDRAM_MCOPT2, val); + mtsdram(SDRAM_MCOPT2, val | SDRAM_MCOPT2_DCEN_ENABLE); + +#if defined(CONFIG_440) + /* + * Program TLB entries with caches enabled, for best performace + * while auto-calibrating and ECC generation + */ + program_tlb(0, 0, (CONFIG_SYS_MBYTES_SDRAM << 20), 0); +#endif + +#if defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION) +#if !defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL) + /*------------------------------------------------------------------ + | DQS calibration. + +-----------------------------------------------------------------*/ + DQS_autocalibration(); +#endif /* !defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL) */ +#endif /* CONFIG_PPC4xx_DDR_AUTOCALIBRATION */ + +#if defined(CONFIG_DDR_ECC) + do_program_ecc(0); +#endif /* defined(CONFIG_DDR_ECC) */ + +#if defined(CONFIG_440) + /* + * Now after initialization (auto-calibration and ECC generation) + * remove the TLB entries with caches enabled and program again with + * desired cache functionality + */ + remove_tlb(0, (CONFIG_SYS_MBYTES_SDRAM << 20)); + program_tlb(0, 0, (CONFIG_SYS_MBYTES_SDRAM << 20), MY_TLB_WORD2_I_ENABLE); +#endif + + ppc4xx_ibm_ddr2_register_dump(); + +#if defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION) + /* + * Clear potential errors resulting from auto-calibration. + * If not done, then we could get an interrupt later on when + * exceptions are enabled. + */ + set_mcsr(get_mcsr()); +#endif /* CONFIG_PPC4xx_DDR_AUTOCALIBRATION */ + +#endif /* !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) */ + + return (CONFIG_SYS_MBYTES_SDRAM << 20); +} +#endif /* CONFIG_SPD_EEPROM */ + +#if !defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL) +#if defined(CONFIG_440) +u32 mfdcr_any(u32 dcr) +{ + u32 val; + + switch (dcr) { + case SDRAM_R0BAS + 0: + val = mfdcr(SDRAM_R0BAS + 0); + break; + case SDRAM_R0BAS + 1: + val = mfdcr(SDRAM_R0BAS + 1); + break; + case SDRAM_R0BAS + 2: + val = mfdcr(SDRAM_R0BAS + 2); + break; + case SDRAM_R0BAS + 3: + val = mfdcr(SDRAM_R0BAS + 3); + break; + default: + printf("DCR %d not defined in case statement!!!\n", dcr); + val = 0; /* just to satisfy the compiler */ + } + + return val; +} + +void mtdcr_any(u32 dcr, u32 val) +{ + switch (dcr) { + case SDRAM_R0BAS + 0: + mtdcr(SDRAM_R0BAS + 0, val); + break; + case SDRAM_R0BAS + 1: + mtdcr(SDRAM_R0BAS + 1, val); + break; + case SDRAM_R0BAS + 2: + mtdcr(SDRAM_R0BAS + 2, val); + break; + case SDRAM_R0BAS + 3: + mtdcr(SDRAM_R0BAS + 3, val); + break; + default: + printf("DCR %d not defined in case statement!!!\n", dcr); + } +} +#endif /* defined(CONFIG_440) */ +#endif /* !defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL) */ + +inline void ppc4xx_ibm_ddr2_register_dump(void) +{ +#if defined(DEBUG) + printf("\nPPC4xx IBM DDR2 Register Dump:\n"); + +#if (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \ + defined(CONFIG_460EX) || defined(CONFIG_460GT)) + PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(R0BAS); + PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(R1BAS); + PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(R2BAS); + PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(R3BAS); +#endif /* (defined(CONFIG_440SP) || ... */ +#if defined(CONFIG_405EX) + PPC4xx_IBM_DDR2_DUMP_REGISTER(BESR); + PPC4xx_IBM_DDR2_DUMP_REGISTER(BEARL); + PPC4xx_IBM_DDR2_DUMP_REGISTER(BEARH); + PPC4xx_IBM_DDR2_DUMP_REGISTER(WMIRQ); + PPC4xx_IBM_DDR2_DUMP_REGISTER(PLBOPT); + PPC4xx_IBM_DDR2_DUMP_REGISTER(PUABA); +#endif /* defined(CONFIG_405EX) */ + PPC4xx_IBM_DDR2_DUMP_REGISTER(MB0CF); + PPC4xx_IBM_DDR2_DUMP_REGISTER(MB1CF); + PPC4xx_IBM_DDR2_DUMP_REGISTER(MB2CF); + PPC4xx_IBM_DDR2_DUMP_REGISTER(MB3CF); + PPC4xx_IBM_DDR2_DUMP_REGISTER(MCSTAT); + PPC4xx_IBM_DDR2_DUMP_REGISTER(MCOPT1); + PPC4xx_IBM_DDR2_DUMP_REGISTER(MCOPT2); + PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT0); + PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT1); + PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT2); + PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT3); + PPC4xx_IBM_DDR2_DUMP_REGISTER(CODT); +#if (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \ + defined(CONFIG_460EX) || defined(CONFIG_460GT)) + PPC4xx_IBM_DDR2_DUMP_REGISTER(VVPR); + PPC4xx_IBM_DDR2_DUMP_REGISTER(OPARS); + /* + * OPART is only used as a trigger register. + * + * No data is contained in this register, and reading or writing + * to is can cause bad things to happen (hangs). Just skip it and + * report "N/A". + */ + printf("%20s = N/A\n", "SDRAM_OPART"); +#endif /* defined(CONFIG_440SP) || ... */ + PPC4xx_IBM_DDR2_DUMP_REGISTER(RTR); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR0); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR1); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR2); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR3); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR4); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR5); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR6); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR7); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR8); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR9); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR10); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR11); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR12); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR13); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR14); + PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR15); + PPC4xx_IBM_DDR2_DUMP_REGISTER(RQDC); + PPC4xx_IBM_DDR2_DUMP_REGISTER(RFDC); + PPC4xx_IBM_DDR2_DUMP_REGISTER(RDCC); + PPC4xx_IBM_DDR2_DUMP_REGISTER(DLCR); + PPC4xx_IBM_DDR2_DUMP_REGISTER(CLKTR); + PPC4xx_IBM_DDR2_DUMP_REGISTER(WRDTR); + PPC4xx_IBM_DDR2_DUMP_REGISTER(SDTR1); + PPC4xx_IBM_DDR2_DUMP_REGISTER(SDTR2); + PPC4xx_IBM_DDR2_DUMP_REGISTER(SDTR3); + PPC4xx_IBM_DDR2_DUMP_REGISTER(MMODE); + PPC4xx_IBM_DDR2_DUMP_REGISTER(MEMODE); + PPC4xx_IBM_DDR2_DUMP_REGISTER(ECCES); +#if (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \ + defined(CONFIG_460EX) || defined(CONFIG_460GT)) + PPC4xx_IBM_DDR2_DUMP_REGISTER(CID); +#endif /* defined(CONFIG_440SP) || ... */ + PPC4xx_IBM_DDR2_DUMP_REGISTER(RID); + PPC4xx_IBM_DDR2_DUMP_REGISTER(FCSR); + PPC4xx_IBM_DDR2_DUMP_REGISTER(RTSR); +#endif /* defined(DEBUG) */ +} + +#endif /* CONFIG_SDRAM_PPC4xx_IBM_DDR2 */ |