diff options
author | Tom Rini <trini@konsulko.com> | 2018-10-02 13:02:22 -0400 |
---|---|---|
committer | Tom Rini <trini@konsulko.com> | 2018-10-02 17:01:46 -0400 |
commit | 592cd5defd4f71d34ffcbd8dd3326bc10f662e20 (patch) | |
tree | 0824c4d2c60d79b7be18ba82209d899e4d4f8c34 /drivers/mtd/nand/raw/davinci_nand.c | |
parent | 2ba8bf207481cfb319f54a1bef67f6f068831a58 (diff) | |
parent | b3bec2525604d6b42bb9e7fd719c84b022447db3 (diff) |
Merge branch 'master' of git://git.denx.de/u-boot-spi
This is the PR for SPI-NAND changes along with few spi changes.
[trini: Re-sync changes for ls1012afrwy_qspi*_defconfig]
Signed-off-by: Tom Rini <trini@konsulko.com>
Diffstat (limited to 'drivers/mtd/nand/raw/davinci_nand.c')
-rw-r--r-- | drivers/mtd/nand/raw/davinci_nand.c | 833 |
1 files changed, 833 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c new file mode 100644 index 0000000000..e6a84a52b4 --- /dev/null +++ b/drivers/mtd/nand/raw/davinci_nand.c @@ -0,0 +1,833 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * NAND driver for TI DaVinci based boards. + * + * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net> + * + * Based on Linux DaVinci NAND driver by TI. Original copyright follows: + */ + +/* + * + * linux/drivers/mtd/nand/raw/nand_davinci.c + * + * NAND Flash Driver + * + * Copyright (C) 2006 Texas Instruments. + * + * ---------------------------------------------------------------------------- + * + * ---------------------------------------------------------------------------- + * + * Overview: + * This is a device driver for the NAND flash device found on the + * DaVinci board which utilizes the Samsung k9k2g08 part. + * + Modifications: + ver. 1.0: Feb 2005, Vinod/Sudhakar + - + */ + +#include <common.h> +#include <asm/io.h> +#include <nand.h> +#include <asm/ti-common/davinci_nand.h> + +/* Definitions for 4-bit hardware ECC */ +#define NAND_TIMEOUT 10240 +#define NAND_ECC_BUSY 0xC +#define NAND_4BITECC_MASK 0x03FF03FF +#define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00 +#define ECC_STATE_NO_ERR 0x0 +#define ECC_STATE_TOO_MANY_ERRS 0x1 +#define ECC_STATE_ERR_CORR_COMP_P 0x2 +#define ECC_STATE_ERR_CORR_COMP_N 0x3 + +/* + * Exploit the little endianness of the ARM to do multi-byte transfers + * per device read. This can perform over twice as quickly as individual + * byte transfers when buffer alignment is conducive. + * + * NOTE: This only works if the NAND is not connected to the 2 LSBs of + * the address bus. On Davinci EVM platforms this has always been true. + */ +static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + const u32 *nand = chip->IO_ADDR_R; + + /* Make sure that buf is 32 bit aligned */ + if (((int)buf & 0x3) != 0) { + if (((int)buf & 0x1) != 0) { + if (len) { + *buf = readb(nand); + buf += 1; + len--; + } + } + + if (((int)buf & 0x3) != 0) { + if (len >= 2) { + *(u16 *)buf = readw(nand); + buf += 2; + len -= 2; + } + } + } + + /* copy aligned data */ + while (len >= 4) { + *(u32 *)buf = __raw_readl(nand); + buf += 4; + len -= 4; + } + + /* mop up any remaining bytes */ + if (len) { + if (len >= 2) { + *(u16 *)buf = readw(nand); + buf += 2; + len -= 2; + } + + if (len) + *buf = readb(nand); + } +} + +static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + const u32 *nand = chip->IO_ADDR_W; + + /* Make sure that buf is 32 bit aligned */ + if (((int)buf & 0x3) != 0) { + if (((int)buf & 0x1) != 0) { + if (len) { + writeb(*buf, nand); + buf += 1; + len--; + } + } + + if (((int)buf & 0x3) != 0) { + if (len >= 2) { + writew(*(u16 *)buf, nand); + buf += 2; + len -= 2; + } + } + } + + /* copy aligned data */ + while (len >= 4) { + __raw_writel(*(u32 *)buf, nand); + buf += 4; + len -= 4; + } + + /* mop up any remaining bytes */ + if (len) { + if (len >= 2) { + writew(*(u16 *)buf, nand); + buf += 2; + len -= 2; + } + + if (len) + writeb(*buf, nand); + } +} + +static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *this = mtd_to_nand(mtd); + u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W; + + if (ctrl & NAND_CTRL_CHANGE) { + IO_ADDR_W &= ~(MASK_ALE|MASK_CLE); + + if (ctrl & NAND_CLE) + IO_ADDR_W |= MASK_CLE; + if (ctrl & NAND_ALE) + IO_ADDR_W |= MASK_ALE; + this->IO_ADDR_W = (void __iomem *) IO_ADDR_W; + } + + if (cmd != NAND_CMD_NONE) + writeb(cmd, IO_ADDR_W); +} + +#ifdef CONFIG_SYS_NAND_HW_ECC + +static u_int32_t nand_davinci_readecc(struct mtd_info *mtd) +{ + u_int32_t ecc = 0; + + ecc = __raw_readl(&(davinci_emif_regs->nandfecc[ + CONFIG_SYS_NAND_CS - 2])); + + return ecc; +} + +static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode) +{ + u_int32_t val; + + /* reading the ECC result register resets the ECC calculation */ + nand_davinci_readecc(mtd); + + val = __raw_readl(&davinci_emif_regs->nandfcr); + val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS); + val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS); + __raw_writel(val, &davinci_emif_regs->nandfcr); +} + +static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + u_int32_t tmp; + + tmp = nand_davinci_readecc(mtd); + + /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits + * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */ + tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4); + + /* Invert so that erased block ECC is correct */ + tmp = ~tmp; + + *ecc_code++ = tmp; + *ecc_code++ = tmp >> 8; + *ecc_code++ = tmp >> 16; + + /* NOTE: the above code matches mainline Linux: + * .PQR.stu ==> ~PQRstu + * + * MontaVista/TI kernels encode those bytes differently, use + * complicated (and allegedly sometimes-wrong) correction code, + * and usually shipped with U-Boot that uses software ECC: + * .PQR.stu ==> PsQRtu + * + * If you need MV/TI compatible NAND I/O in U-Boot, it should + * be possible to (a) change the mangling above, (b) reverse + * that mangling in nand_davinci_correct_data() below. + */ + + return 0; +} + +static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct nand_chip *this = mtd_to_nand(mtd); + u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) | + (read_ecc[2] << 16); + u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) | + (calc_ecc[2] << 16); + u_int32_t diff = ecc_calc ^ ecc_nand; + + if (diff) { + if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { + /* Correctable error */ + if ((diff >> (12 + 3)) < this->ecc.size) { + uint8_t find_bit = 1 << ((diff >> 12) & 7); + uint32_t find_byte = diff >> (12 + 3); + + dat[find_byte] ^= find_bit; + pr_debug("Correcting single " + "bit ECC error at offset: %d, bit: " + "%d\n", find_byte, find_bit); + return 1; + } else { + return -EBADMSG; + } + } else if (!(diff & (diff - 1))) { + /* Single bit ECC error in the ECC itself, + nothing to fix */ + pr_debug("Single bit ECC error in " "ECC.\n"); + return 1; + } else { + /* Uncorrectable error */ + pr_debug("ECC UNCORRECTED_ERROR 1\n"); + return -EBADMSG; + } + } + return 0; +} +#endif /* CONFIG_SYS_NAND_HW_ECC */ + +#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST +static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = { +#if defined(CONFIG_SYS_NAND_PAGE_2K) + .eccbytes = 40, +#ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC + .eccpos = { + 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + }, + .oobfree = { + {2, 4}, {16, 6}, {32, 6}, {48, 6}, + }, +#else + .eccpos = { + 24, 25, 26, 27, 28, + 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, + 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, + 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, + 59, 60, 61, 62, 63, + }, + .oobfree = { + {.offset = 2, .length = 22, }, + }, +#endif /* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */ +#elif defined(CONFIG_SYS_NAND_PAGE_4K) + .eccbytes = 80, + .eccpos = { + 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, + 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, + 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, + 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, + 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, + 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, + 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + }, + .oobfree = { + {.offset = 2, .length = 46, }, + }, +#endif +}; + +#if defined CONFIG_KEYSTONE_RBL_NAND +static struct nand_ecclayout nand_keystone_rbl_4bit_layout_oobfirst = { +#if defined(CONFIG_SYS_NAND_PAGE_2K) + .eccbytes = 40, + .eccpos = { + 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + }, + .oobfree = { + {.offset = 2, .length = 4, }, + {.offset = 16, .length = 6, }, + {.offset = 32, .length = 6, }, + {.offset = 48, .length = 6, }, + }, +#elif defined(CONFIG_SYS_NAND_PAGE_4K) + .eccbytes = 80, + .eccpos = { + 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, + 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, + 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + }, + .oobfree = { + {.offset = 2, .length = 4, }, + {.offset = 16, .length = 6, }, + {.offset = 32, .length = 6, }, + {.offset = 48, .length = 6, }, + {.offset = 64, .length = 6, }, + {.offset = 80, .length = 6, }, + {.offset = 96, .length = 6, }, + {.offset = 112, .length = 6, }, + }, +#endif +}; + +#ifdef CONFIG_SYS_NAND_PAGE_2K +#define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 11 +#elif defined(CONFIG_SYS_NAND_PAGE_4K) +#define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 12 +#endif + +/** + * nand_davinci_write_page - write one page + * @mtd: MTD device structure + * @chip: NAND chip descriptor + * @buf: the data to write + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * @raw: use _raw version of write_page + */ +static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t offset, int data_len, + const uint8_t *buf, int oob_required, + int page, int raw) +{ + int status; + int ret = 0; + struct nand_ecclayout *saved_ecc_layout; + + /* save current ECC layout and assign Keystone RBL ECC layout */ + if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) { + saved_ecc_layout = chip->ecc.layout; + chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst; + mtd->oobavail = chip->ecc.layout->oobavail; + } + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); + + if (unlikely(raw)) { + status = chip->ecc.write_page_raw(mtd, chip, buf, + oob_required, page); + } else { + status = chip->ecc.write_page(mtd, chip, buf, + oob_required, page); + } + + if (status < 0) { + ret = status; + goto err; + } + + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + status = chip->waitfunc(mtd, chip); + + if (status & NAND_STATUS_FAIL) { + ret = -EIO; + goto err; + } + +err: + /* restore ECC layout */ + if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) { + chip->ecc.layout = saved_ecc_layout; + mtd->oobavail = saved_ecc_layout->oobavail; + } + + return ret; +} + +/** + * nand_davinci_read_page_hwecc - hardware ECC based page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Not for syndrome calculating ECC controllers which need a special oob layout. + */ +static int nand_davinci_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint32_t *eccpos; + uint8_t *p = buf; + uint8_t *ecc_code = chip->buffers->ecccode; + uint8_t *ecc_calc = chip->buffers->ecccalc; + struct nand_ecclayout *saved_ecc_layout = chip->ecc.layout; + + /* save current ECC layout and assign Keystone RBL ECC layout */ + if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) { + chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst; + mtd->oobavail = chip->ecc.layout->oobavail; + } + + eccpos = chip->ecc.layout->eccpos; + + /* Read the OOB area first */ + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + + for (i = 0; i < chip->ecc.total; i++) + ecc_code[i] = chip->oob_poi[eccpos[i]]; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + chip->ecc.hwctl(mtd, NAND_ECC_READ); + chip->read_buf(mtd, p, eccsize); + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + } + + /* restore ECC layout */ + if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) { + chip->ecc.layout = saved_ecc_layout; + mtd->oobavail = saved_ecc_layout->oobavail; + } + + return 0; +} +#endif /* CONFIG_KEYSTONE_RBL_NAND */ + +static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode) +{ + u32 val; + + switch (mode) { + case NAND_ECC_WRITE: + case NAND_ECC_READ: + /* + * Start a new ECC calculation for reading or writing 512 bytes + * of data. + */ + val = __raw_readl(&davinci_emif_regs->nandfcr); + val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK; + val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS); + val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS); + val |= DAVINCI_NANDFCR_4BIT_ECC_START; + __raw_writel(val, &davinci_emif_regs->nandfcr); + break; + case NAND_ECC_READSYN: + val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]); + break; + default: + break; + } +} + +static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4]) +{ + int i; + + for (i = 0; i < 4; i++) { + ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) & + NAND_4BITECC_MASK; + } + + return 0; +} + +static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd, + const uint8_t *dat, + uint8_t *ecc_code) +{ + unsigned int hw_4ecc[4]; + unsigned int i; + + nand_davinci_4bit_readecc(mtd, hw_4ecc); + + /*Convert 10 bit ecc value to 8 bit */ + for (i = 0; i < 2; i++) { + unsigned int hw_ecc_low = hw_4ecc[i * 2]; + unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1]; + + /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */ + *ecc_code++ = hw_ecc_low & 0xFF; + + /* + * Take 2 bits as LSB bits from val1 (count1=0) or val5 + * (count1=1) and 6 bits from val2 (count1=0) or + * val5 (count1=1) + */ + *ecc_code++ = + ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC); + + /* + * Take 4 bits from val2 (count1=0) or val5 (count1=1) and + * 4 bits from val3 (count1=0) or val6 (count1=1) + */ + *ecc_code++ = + ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0); + + /* + * Take 6 bits from val3(count1=0) or val6 (count1=1) and + * 2 bits from val4 (count1=0) or val7 (count1=1) + */ + *ecc_code++ = + ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0); + + /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */ + *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF; + } + + return 0; +} + +static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat, + uint8_t *read_ecc, uint8_t *calc_ecc) +{ + int i; + unsigned int hw_4ecc[4]; + unsigned int iserror; + unsigned short *ecc16; + unsigned int numerrors, erroraddress, errorvalue; + u32 val; + + /* + * Check for an ECC where all bytes are 0xFF. If this is the case, we + * will assume we are looking at an erased page and we should ignore + * the ECC. + */ + for (i = 0; i < 10; i++) { + if (read_ecc[i] != 0xFF) + break; + } + if (i == 10) + return 0; + + /* Convert 8 bit in to 10 bit */ + ecc16 = (unsigned short *)&read_ecc[0]; + + /* + * Write the parity values in the NAND Flash 4-bit ECC Load register. + * Write each parity value one at a time starting from 4bit_ecc_val8 + * to 4bit_ecc_val1. + */ + + /*Take 2 bits from 8th byte and 8 bits from 9th byte */ + __raw_writel(((ecc16[4]) >> 6) & 0x3FF, + &davinci_emif_regs->nand4biteccload); + + /* Take 4 bits from 7th byte and 6 bits from 8th byte */ + __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0), + &davinci_emif_regs->nand4biteccload); + + /* Take 6 bits from 6th byte and 4 bits from 7th byte */ + __raw_writel((ecc16[3] >> 2) & 0x3FF, + &davinci_emif_regs->nand4biteccload); + + /* Take 8 bits from 5th byte and 2 bits from 6th byte */ + __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300), + &davinci_emif_regs->nand4biteccload); + + /*Take 2 bits from 3rd byte and 8 bits from 4th byte */ + __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC), + &davinci_emif_regs->nand4biteccload); + + /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */ + __raw_writel(((ecc16[1]) >> 4) & 0x3FF, + &davinci_emif_regs->nand4biteccload); + + /* Take 6 bits from 1st byte and 4 bits from 2nd byte */ + __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0), + &davinci_emif_regs->nand4biteccload); + + /* Take 10 bits from 0th and 1st bytes */ + __raw_writel((ecc16[0]) & 0x3FF, + &davinci_emif_regs->nand4biteccload); + + /* + * Perform a dummy read to the EMIF Revision Code and Status register. + * This is required to ensure time for syndrome calculation after + * writing the ECC values in previous step. + */ + + val = __raw_readl(&davinci_emif_regs->nandfsr); + + /* + * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers. + * A syndrome value of 0 means no bit errors. If the syndrome is + * non-zero then go further otherwise return. + */ + nand_davinci_4bit_readecc(mtd, hw_4ecc); + + if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3])) + return 0; + + /* + * Clear any previous address calculation by doing a dummy read of an + * error address register. + */ + val = __raw_readl(&davinci_emif_regs->nanderradd1); + + /* + * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control + * register to 1. + */ + __raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START, + &davinci_emif_regs->nandfcr); + + /* + * Wait for the corr_state field (bits 8 to 11) in the + * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3. + * Otherwise ECC calculation has not even begun and the next loop might + * fail because of a false positive! + */ + i = NAND_TIMEOUT; + do { + val = __raw_readl(&davinci_emif_regs->nandfsr); + val &= 0xc00; + i--; + } while ((i > 0) && !val); + + /* + * Wait for the corr_state field (bits 8 to 11) in the + * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3. + */ + i = NAND_TIMEOUT; + do { + val = __raw_readl(&davinci_emif_regs->nandfsr); + val &= 0xc00; + i--; + } while ((i > 0) && val); + + iserror = __raw_readl(&davinci_emif_regs->nandfsr); + iserror &= EMIF_NANDFSR_ECC_STATE_MASK; + iserror = iserror >> 8; + + /* + * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be + * corrected (five or more errors). The number of errors + * calculated (err_num field) differs from the number of errors + * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error + * correction complete (errors on bit 8 or 9). + * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction + * complete (error exists). + */ + + if (iserror == ECC_STATE_NO_ERR) { + val = __raw_readl(&davinci_emif_regs->nanderrval1); + return 0; + } else if (iserror == ECC_STATE_TOO_MANY_ERRS) { + val = __raw_readl(&davinci_emif_regs->nanderrval1); + return -EBADMSG; + } + + numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16) + & 0x3) + 1; + + /* Read the error address, error value and correct */ + for (i = 0; i < numerrors; i++) { + if (i > 1) { + erroraddress = + ((__raw_readl(&davinci_emif_regs->nanderradd2) >> + (16 * (i & 1))) & 0x3FF); + erroraddress = ((512 + 7) - erroraddress); + errorvalue = + ((__raw_readl(&davinci_emif_regs->nanderrval2) >> + (16 * (i & 1))) & 0xFF); + } else { + erroraddress = + ((__raw_readl(&davinci_emif_regs->nanderradd1) >> + (16 * (i & 1))) & 0x3FF); + erroraddress = ((512 + 7) - erroraddress); + errorvalue = + ((__raw_readl(&davinci_emif_regs->nanderrval1) >> + (16 * (i & 1))) & 0xFF); + } + /* xor the corrupt data with error value */ + if (erroraddress < 512) + dat[erroraddress] ^= errorvalue; + } + + return numerrors; +} +#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */ + +static int nand_davinci_dev_ready(struct mtd_info *mtd) +{ + return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1; +} + +static void nand_flash_init(void) +{ + /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS! + * Instead, have your board_init() set EMIF timings, based on its + * knowledge of the clocks and what devices are hooked up ... and + * don't even do that unless no UBL handled it. + */ +#ifdef CONFIG_SOC_DM644X + u_int32_t acfg1 = 0x3ffffffc; + + /*------------------------------------------------------------------* + * NAND FLASH CHIP TIMEOUT @ 459 MHz * + * * + * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz * + * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns * + * * + *------------------------------------------------------------------*/ + acfg1 = 0 + | (0 << 31) /* selectStrobe */ + | (0 << 30) /* extWait */ + | (1 << 26) /* writeSetup 10 ns */ + | (3 << 20) /* writeStrobe 40 ns */ + | (1 << 17) /* writeHold 10 ns */ + | (1 << 13) /* readSetup 10 ns */ + | (5 << 7) /* readStrobe 60 ns */ + | (1 << 4) /* readHold 10 ns */ + | (3 << 2) /* turnAround ?? ns */ + | (0 << 0) /* asyncSize 8-bit bus */ + ; + + __raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */ + + /* NAND flash on CS2 */ + __raw_writel(0x00000101, &davinci_emif_regs->nandfcr); +#endif +} + +void davinci_nand_init(struct nand_chip *nand) +{ +#if defined CONFIG_KEYSTONE_RBL_NAND + int i; + struct nand_ecclayout *layout; + + layout = &nand_keystone_rbl_4bit_layout_oobfirst; + layout->oobavail = 0; + for (i = 0; layout->oobfree[i].length && + i < ARRAY_SIZE(layout->oobfree); i++) + layout->oobavail += layout->oobfree[i].length; + + nand->write_page = nand_davinci_write_page; + nand->ecc.read_page = nand_davinci_read_page_hwecc; +#endif + nand->chip_delay = 0; +#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT + nand->bbt_options |= NAND_BBT_USE_FLASH; +#endif +#ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE + nand->options |= NAND_NO_SUBPAGE_WRITE; +#endif +#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT + nand->options |= NAND_BUSWIDTH_16; +#endif +#ifdef CONFIG_SYS_NAND_HW_ECC + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.size = 512; + nand->ecc.bytes = 3; + nand->ecc.strength = 1; + nand->ecc.calculate = nand_davinci_calculate_ecc; + nand->ecc.correct = nand_davinci_correct_data; + nand->ecc.hwctl = nand_davinci_enable_hwecc; +#else + nand->ecc.mode = NAND_ECC_SOFT; +#endif /* CONFIG_SYS_NAND_HW_ECC */ +#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST + nand->ecc.mode = NAND_ECC_HW_OOB_FIRST; + nand->ecc.size = 512; + nand->ecc.bytes = 10; + nand->ecc.strength = 4; + nand->ecc.calculate = nand_davinci_4bit_calculate_ecc; + nand->ecc.correct = nand_davinci_4bit_correct_data; + nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc; + nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst; +#endif + /* Set address of hardware control function */ + nand->cmd_ctrl = nand_davinci_hwcontrol; + + nand->read_buf = nand_davinci_read_buf; + nand->write_buf = nand_davinci_write_buf; + + nand->dev_ready = nand_davinci_dev_ready; + + nand_flash_init(); +} + +int board_nand_init(struct nand_chip *chip) __attribute__((weak)); + +int board_nand_init(struct nand_chip *chip) +{ + davinci_nand_init(chip); + return 0; +} |