diff options
author | Philipp Tomsich <philipp.tomsich@theobroma-systems.com> | 2017-06-23 00:12:05 +0200 |
---|---|---|
committer | Philipp Tomsich <philipp.tomsich@theobroma-systems.com> | 2017-08-13 17:12:33 +0200 |
commit | 403e9cbcd5d2da3f5af0e67552c6ecc13a472830 (patch) | |
tree | 999ad9d94cbbfdd47e68be28ad65bc02b6139228 /drivers/ram/rockchip/dmc-rk3368.c | |
parent | 832567d5aac53a95138b46fe4a0f42e8357e9934 (diff) |
rockchip: rk3368: add DRAM controller driver with DRAM initialisation
This adds a DRAM controller driver for the RK3368 and places it in
drivers/ram/rockchip (where the other DM-enabled DRAM controller
drivers for rockchip devices should also be moved eventually).
At this stage, only the following feature-set is supported:
- DDR3
- 32-bit configuration (i.e. fully populated)
- dual-rank (i.e. no auto-detection of ranks)
- DDR3-1600K speed-bin
This driver expects to run from a TPL stage that will later return to
the RK3368 BROM. It communicates with later stages through the
os_reg2 in the pmugrf (i.e. using the same mechanism as Rockchip's DDR
init code).
Unlike other DMC drivers for RK32xx and RK33xx parts, the required
timings are calculated within the driver based on a target frequency
and a DDR3 speed-bin (only the DDR3-1600K speed-bin is support at this
time).
The RK3368 also has the DDRC0_CON0 (DDR ch. 0, control-register 0)
register for controlling the operation of its (single-channel) DRAM
controller in the GRF block. This provides for selecting DDR3, mobile
DDR modes, and control low-power operation.
As part of this change, DDRC0_CON0 is also added to the GRF structure
definition (at offset 0x600).
Signed-off-by: Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Diffstat (limited to 'drivers/ram/rockchip/dmc-rk3368.c')
-rw-r--r-- | drivers/ram/rockchip/dmc-rk3368.c | 1007 |
1 files changed, 1007 insertions, 0 deletions
diff --git a/drivers/ram/rockchip/dmc-rk3368.c b/drivers/ram/rockchip/dmc-rk3368.c new file mode 100644 index 0000000000..ca7b1ff0c8 --- /dev/null +++ b/drivers/ram/rockchip/dmc-rk3368.c @@ -0,0 +1,1007 @@ +/* + * (C) Copyright 2017 Theobroma Systems Design und Consulting GmbH + * + * SPDX-License-Identifier: GPL-2.0 + */ + +#include <common.h> +#include <clk.h> +#include <dm.h> +#include <dt-bindings/memory/rk3368-dmc.h> +#include <dt-structs.h> +#include <ram.h> +#include <regmap.h> +#include <syscon.h> +#include <asm/io.h> +#include <asm/arch/clock.h> +#include <asm/arch/cru_rk3368.h> +#include <asm/arch/grf_rk3368.h> +#include <asm/arch/ddr_rk3368.h> +#include <asm/arch/sdram.h> +#include <asm/arch/sdram_common.h> + +DECLARE_GLOBAL_DATA_PTR; + +struct dram_info { + struct ram_info info; + struct clk ddr_clk; + struct rk3368_cru *cru; + struct rk3368_grf *grf; + struct rk3368_ddr_pctl *pctl; + struct rk3368_ddrphy *phy; + struct rk3368_pmu_grf *pmugrf; + struct rk3368_msch *msch; +}; + +struct rk3368_sdram_params { +#if CONFIG_IS_ENABLED(OF_PLATDATA) + struct dtd_rockchip_rk3368_dmc of_plat; +#endif + struct rk3288_sdram_pctl_timing pctl_timing; + u32 trefi_mem_ddr3; + struct rk3288_sdram_channel chan; + struct regmap *map; + u32 ddr_freq; + u32 memory_schedule; + u32 ddr_speed_bin; + u32 tfaw_mult; +}; + +/* PTCL bits */ +enum { + /* PCTL_DFISTCFG0 */ + DFI_INIT_START = BIT(0), + DFI_DATA_BYTE_DISABLE_EN = BIT(2), + + /* PCTL_DFISTCFG1 */ + DFI_DRAM_CLK_SR_EN = BIT(0), + DFI_DRAM_CLK_DPD_EN = BIT(1), + ODT_LEN_BL8_W_SHIFT = 16, + + /* PCTL_DFISTCFG2 */ + DFI_PARITY_INTR_EN = BIT(0), + DFI_PARITY_EN = BIT(1), + + /* PCTL_DFILPCFG0 */ + TLP_RESP_TIME_SHIFT = 16, + LP_SR_EN = BIT(8), + LP_PD_EN = BIT(0), + + /* PCTL_DFIODTCFG */ + RANK0_ODT_WRITE_SEL = BIT(3), + RANK1_ODT_WRITE_SEL = BIT(11), + + /* PCTL_SCFG */ + HW_LOW_POWER_EN = BIT(0), + + /* PCTL_MCMD */ + START_CMD = BIT(31), + MCMD_RANK0 = BIT(20), + MCMD_RANK1 = BIT(21), + DESELECT_CMD = 0, + PREA_CMD, + REF_CMD, + MRS_CMD, + ZQCS_CMD, + ZQCL_CMD, + RSTL_CMD, + MRR_CMD = 8, + DPDE_CMD, + + /* PCTL_POWCTL */ + POWER_UP_START = BIT(0), + + /* PCTL_POWSTAT */ + POWER_UP_DONE = BIT(0), + + /* PCTL_SCTL */ + INIT_STATE = 0, + CFG_STATE, + GO_STATE, + SLEEP_STATE, + WAKEUP_STATE, + + /* PCTL_STAT */ + LP_TRIG_SHIFT = 4, + LP_TRIG_MASK = 7, + PCTL_STAT_MSK = 7, + INIT_MEM = 0, + CONFIG, + CONFIG_REQ, + ACCESS, + ACCESS_REQ, + LOW_POWER, + LOW_POWER_ENTRY_REQ, + LOW_POWER_EXIT_REQ, + + /* PCTL_MCFG */ + DDR2_DDR3_BL_8 = BIT(0), + DDR3_EN = BIT(5), + TFAW_TRRD_MULT4 = (0 << 18), + TFAW_TRRD_MULT5 = (1 << 18), + TFAW_TRRD_MULT6 = (2 << 18), +}; + +#define DDR3_MR0_WR(n) \ + ((n <= 8) ? ((n - 4) << 9) : (((n >> 1) & 0x7) << 9)) +#define DDR3_MR0_CL(n) \ + ((((n - 4) & 0x7) << 4) | (((n - 4) & 0x8) >> 2)) +#define DDR3_MR0_BL8 \ + (0 << 0) +#define DDR3_MR0_DLL_RESET \ + (1 << 8) +#define DDR3_MR1_RTT120OHM \ + ((0 << 9) | (1 << 6) | (0 << 2)) +#define DDR3_MR2_TWL(n) \ + (((n - 5) & 0x7) << 3) + + +#ifdef CONFIG_TPL_BUILD + +static void ddr_set_noc_spr_err_stall(struct rk3368_grf *grf, bool enable) +{ + if (enable) + rk_setreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL); + else + rk_clrreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL); +} + +static void ddr_set_ddr3_mode(struct rk3368_grf *grf, bool ddr3_mode) +{ + if (ddr3_mode) + rk_setreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3); + else + rk_clrreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3); +} + +static void ddrphy_config(struct rk3368_ddrphy *phy, + u32 tcl, u32 tal, u32 tcwl) +{ + int i; + + /* Set to DDR3 mode */ + clrsetbits_le32(&phy->reg[1], 0x3, 0x0); + + /* DDRPHY_REGB: CL, AL */ + clrsetbits_le32(&phy->reg[0xb], 0xff, tcl << 4 | tal); + /* DDRPHY_REGC: CWL */ + clrsetbits_le32(&phy->reg[0xc], 0x0f, tcwl); + + /* Update drive-strength */ + writel(0xcc, &phy->reg[0x11]); + writel(0xaa, &phy->reg[0x16]); + /* + * Update NRCOMP/PRCOMP for all 4 channels (for details of all + * affected registers refer to the documentation of DDRPHY_REG20 + * and DDRPHY_REG21 in the RK3368 TRM. + */ + for (i = 0; i < 4; ++i) { + writel(0xcc, &phy->reg[0x20 + i * 0x10]); + writel(0x44, &phy->reg[0x21 + i * 0x10]); + } + + /* Enable write-leveling calibration bypass */ + setbits_le32(&phy->reg[2], BIT(3)); +} + +static void copy_to_reg(u32 *dest, const u32 *src, u32 n) +{ + int i; + + for (i = 0; i < n / sizeof(u32); i++) + writel(*src++, dest++); +} + +static void send_command(struct rk3368_ddr_pctl *pctl, u32 rank, u32 cmd) +{ + u32 mcmd = START_CMD | cmd | rank; + + debug("%s: writing %x to MCMD\n", __func__, mcmd); + writel(mcmd, &pctl->mcmd); + while (readl(&pctl->mcmd) & START_CMD) + /* spin */; +} + +static void send_mrs(struct rk3368_ddr_pctl *pctl, + u32 rank, u32 mr_num, u32 mr_data) +{ + u32 mcmd = START_CMD | MRS_CMD | rank | (mr_num << 17) | (mr_data << 4); + + debug("%s: writing %x to MCMD\n", __func__, mcmd); + writel(mcmd, &pctl->mcmd); + while (readl(&pctl->mcmd) & START_CMD) + /* spin */; +} + +static int memory_init(struct rk3368_ddr_pctl *pctl, + struct rk3368_sdram_params *params) +{ + u32 mr[4]; + const ulong timeout_ms = 500; + ulong tmp; + + /* + * Power up DRAM by DDR_PCTL_POWCTL[0] register of PCTL and + * wait power up DRAM finish with DDR_PCTL_POWSTAT[0] register + * of PCTL. + */ + writel(POWER_UP_START, &pctl->powctl); + + tmp = get_timer(0); + do { + if (get_timer(tmp) > timeout_ms) { + error("%s: POWER_UP_START did not complete in %ld ms\n", + __func__, timeout_ms); + return -ETIME; + } + } while (!(readl(&pctl->powstat) & POWER_UP_DONE)); + + /* Configure MR0 through MR3 */ + mr[0] = DDR3_MR0_WR(params->pctl_timing.twr) | + DDR3_MR0_CL(params->pctl_timing.tcl) | + DDR3_MR0_DLL_RESET; + mr[1] = DDR3_MR1_RTT120OHM; + mr[2] = DDR3_MR2_TWL(params->pctl_timing.tcwl); + mr[3] = 0; + + /* + * Also see RK3368 Technical Reference Manual: + * "16.6.2 Initialization (DDR3 Initialization Sequence)" + */ + send_command(pctl, MCMD_RANK0 | MCMD_RANK1, DESELECT_CMD); + udelay(1); + send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD); + send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 2, mr[2]); + send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 3, mr[3]); + send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 1, mr[1]); + send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 0, mr[0]); + send_command(pctl, MCMD_RANK0 | MCMD_RANK1, ZQCL_CMD); + + return 0; +} + +static void move_to_config_state(struct rk3368_ddr_pctl *pctl) +{ + /* + * Also see RK3368 Technical Reference Manual: + * "16.6.1 State transition of PCTL (Moving to Config State)" + */ + u32 state = readl(&pctl->stat) & PCTL_STAT_MSK; + + switch (state) { + case LOW_POWER: + writel(WAKEUP_STATE, &pctl->sctl); + while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS) + /* spin */; + + /* fall-through */ + case ACCESS: + case INIT_MEM: + writel(CFG_STATE, &pctl->sctl); + while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG) + /* spin */; + break; + + case CONFIG: + return; + + default: + break; + } +} + +static void move_to_access_state(struct rk3368_ddr_pctl *pctl) +{ + /* + * Also see RK3368 Technical Reference Manual: + * "16.6.1 State transition of PCTL (Moving to Access State)" + */ + u32 state = readl(&pctl->stat) & PCTL_STAT_MSK; + + switch (state) { + case LOW_POWER: + if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) & + LP_TRIG_MASK) == 1) + return; + + writel(WAKEUP_STATE, &pctl->sctl); + while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS) + /* spin */; + + /* fall-through */ + case INIT_MEM: + writel(CFG_STATE, &pctl->sctl); + while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG) + /* spin */; + + /* fall-through */ + case CONFIG: + writel(GO_STATE, &pctl->sctl); + while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG) + /* spin */; + break; + + case ACCESS: + return; + + default: + break; + } +} + +static void ddrctl_reset(struct rk3368_cru *cru) +{ + const u32 ctl_reset = BIT(3) | BIT(2); + const u32 phy_reset = BIT(1) | BIT(0); + + /* + * The PHY reset should be released before the PCTL reset. + * + * Note that the following sequence (including the number of + * us to delay between releasing the PHY and PCTL reset) has + * been adapted per feedback received from Rockchips, so do + * not try to optimise. + */ + rk_setreg(&cru->softrst_con[10], ctl_reset | phy_reset); + udelay(1); + rk_clrreg(&cru->softrst_con[10], phy_reset); + udelay(5); + rk_clrreg(&cru->softrst_con[10], ctl_reset); +} + +static void ddrphy_reset(struct rk3368_ddrphy *ddrphy) +{ + /* + * The analog part of the PHY should be release at least 1000 + * DRAM cycles before the digital part of the PHY (waiting for + * 5us will ensure this for a DRAM clock as low as 200MHz). + */ + clrbits_le32(&ddrphy->reg[0], BIT(3) | BIT(2)); + udelay(1); + setbits_le32(&ddrphy->reg[0], BIT(2)); + udelay(5); + setbits_le32(&ddrphy->reg[0], BIT(3)); +} + +static void ddrphy_config_delays(struct rk3368_ddrphy *ddrphy, u32 freq) +{ + u32 dqs_dll_delay; + + setbits_le32(&ddrphy->reg[0x13], BIT(4)); + clrbits_le32(&ddrphy->reg[0x14], BIT(3)); + + setbits_le32(&ddrphy->reg[0x26], BIT(4)); + clrbits_le32(&ddrphy->reg[0x27], BIT(3)); + + setbits_le32(&ddrphy->reg[0x36], BIT(4)); + clrbits_le32(&ddrphy->reg[0x37], BIT(3)); + + setbits_le32(&ddrphy->reg[0x46], BIT(4)); + clrbits_le32(&ddrphy->reg[0x47], BIT(3)); + + setbits_le32(&ddrphy->reg[0x56], BIT(4)); + clrbits_le32(&ddrphy->reg[0x57], BIT(3)); + + if (freq <= 400000000) + setbits_le32(&ddrphy->reg[0xa4], 0x1f); + else + clrbits_le32(&ddrphy->reg[0xa4], 0x1f); + + if (freq < 681000000) + dqs_dll_delay = 3; /* 67.5 degree delay */ + else + dqs_dll_delay = 2; /* 45 degree delay */ + + writel(dqs_dll_delay, &ddrphy->reg[0x28]); + writel(dqs_dll_delay, &ddrphy->reg[0x38]); + writel(dqs_dll_delay, &ddrphy->reg[0x48]); + writel(dqs_dll_delay, &ddrphy->reg[0x58]); +} + +static int dfi_cfg(struct rk3368_ddr_pctl *pctl) +{ + const ulong timeout_ms = 200; + ulong tmp; + + writel(DFI_DATA_BYTE_DISABLE_EN, &pctl->dfistcfg0); + + writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN, + &pctl->dfistcfg1); + writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2); + writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN, + &pctl->dfilpcfg0); + + writel(1, &pctl->dfitphyupdtype0); + + writel(0x1f, &pctl->dfitphyrdlat); + writel(0, &pctl->dfitphywrdata); + writel(0, &pctl->dfiupdcfg); /* phyupd and ctrlupd disabled */ + + setbits_le32(&pctl->dfistcfg0, DFI_INIT_START); + + tmp = get_timer(0); + do { + if (get_timer(tmp) > timeout_ms) { + error("%s: DFI init did not complete within %ld ms\n", + __func__, timeout_ms); + return -ETIME; + } + } while ((readl(&pctl->dfiststat0) & 1) == 0); + + return 0; +} + +static inline u32 ps_to_tCK(const u32 ps, const ulong freq) +{ + const ulong MHz = 1000000; + return DIV_ROUND_UP(ps * freq, 1000000 * MHz); +} + +static inline u32 ns_to_tCK(const u32 ns, const ulong freq) +{ + return ps_to_tCK(ns * 1000, freq); +} + +static inline u32 tCK_to_ps(const ulong tCK, const ulong freq) +{ + const ulong MHz = 1000000; + return DIV_ROUND_UP(tCK * 1000000 * MHz, freq); +} + +static int pctl_calc_timings(struct rk3368_sdram_params *params, + ulong freq) +{ + struct rk3288_sdram_pctl_timing *pctl_timing = ¶ms->pctl_timing; + const ulong MHz = 1000000; + u32 tccd; + u32 tfaw_as_ps; + + if (params->ddr_speed_bin != DDR3_1600K) { + error("%s: unimplemented DDR3 speed bin %d\n", + __func__, params->ddr_speed_bin); + return -1; + } + + /* PCTL is clocked at 1/2 the DRAM clock; err on the side of caution */ + pctl_timing->togcnt1u = DIV_ROUND_UP(freq, 2 * MHz); + pctl_timing->togcnt100n = DIV_ROUND_UP(freq / 10, 2 * MHz); + + pctl_timing->tinit = 200; /* 200 usec */ + pctl_timing->trsth = 500; /* 500 usec */ + pctl_timing->trefi = 78; /* 7.8usec = 78 * 100ns */ + params->trefi_mem_ddr3 = ns_to_tCK(pctl_timing->trefi * 100, freq); + + if (freq <= (400 * MHz)) { + pctl_timing->tcl = 6; + pctl_timing->tcwl = 10; + } else if (freq <= (533 * MHz)) { + pctl_timing->tcl = 8; + pctl_timing->tcwl = 6; + } else if (freq <= (666 * MHz)) { + pctl_timing->tcl = 10; + pctl_timing->tcwl = 7; + } else { + pctl_timing->tcl = 11; + pctl_timing->tcwl = 8; + } + + pctl_timing->tmrd = 4; /* 4 tCK (all speed bins) */ + pctl_timing->trfc = ns_to_tCK(350, freq); /* tRFC: 350 (max) @ 8GBit */ + pctl_timing->trp = max(4u, ps_to_tCK(13750, freq)); + /* + * JESD-79: + * READ to WRITE Command Delay = RL + tCCD / 2 + 2tCK - WL + */ + tccd = 4; + pctl_timing->trtw = pctl_timing->tcl + tccd/2 + 2 - pctl_timing->tcwl; + pctl_timing->tal = 0; + pctl_timing->tras = ps_to_tCK(35000, freq); + pctl_timing->trc = ps_to_tCK(48750, freq); + pctl_timing->trcd = ps_to_tCK(13750, freq); + pctl_timing->trrd = max(4u, ps_to_tCK(7500, freq)); + pctl_timing->trtp = max(4u, ps_to_tCK(7500, freq)); + pctl_timing->twr = ps_to_tCK(15000, freq); + /* The DDR3 mode-register does only support even values for tWR > 8. */ + if (pctl_timing->twr > 8) + pctl_timing->twr = (pctl_timing->twr + 1) & ~1; + pctl_timing->twtr = max(4u, ps_to_tCK(7500, freq)); + pctl_timing->texsr = 512; /* tEXSR(max) is tDLLLK */ + pctl_timing->txp = max(3u, ps_to_tCK(6000, freq)); + pctl_timing->txpdll = max(10u, ps_to_tCK(24000, freq)); + pctl_timing->tzqcs = max(64u, ps_to_tCK(80000, freq)); + pctl_timing->tzqcsi = 10000; /* as used by Rockchip */ + pctl_timing->tdqs = 1; /* fixed for DDR3 */ + pctl_timing->tcksre = max(5u, ps_to_tCK(10000, freq)); + pctl_timing->tcksrx = max(5u, ps_to_tCK(10000, freq)); + pctl_timing->tcke = max(3u, ps_to_tCK(5000, freq)); + pctl_timing->tmod = max(12u, ps_to_tCK(15000, freq)); + pctl_timing->trstl = ns_to_tCK(100, freq); + pctl_timing->tzqcl = max(256u, ps_to_tCK(320000, freq)); /* tZQoper */ + pctl_timing->tmrr = 0; + pctl_timing->tckesr = pctl_timing->tcke + 1; /* JESD-79: tCKE + 1tCK */ + pctl_timing->tdpd = 0; /* RK3368 TRM: "allowed values for DDR3: 0" */ + + + /* + * The controller can represent tFAW as 4x, 5x or 6x tRRD only. + * We want to use the smallest multiplier that satisfies the tFAW + * requirements of the given speed-bin. If necessary, we stretch out + * tRRD to allow us to operate on a 6x multiplier for tFAW. + */ + tfaw_as_ps = 40000; /* 40ns: tFAW for DDR3-1600K, 2KB page-size */ + if (tCK_to_ps(pctl_timing->trrd * 6, freq) < tfaw_as_ps) { + /* If tFAW is > 6 x tRRD, we need to stretch tRRD */ + pctl_timing->trrd = ps_to_tCK(DIV_ROUND_UP(40000, 6), freq); + params->tfaw_mult = TFAW_TRRD_MULT6; + } else if (tCK_to_ps(pctl_timing->trrd * 5, freq) < tfaw_as_ps) { + params->tfaw_mult = TFAW_TRRD_MULT6; + } else if (tCK_to_ps(pctl_timing->trrd * 4, freq) < tfaw_as_ps) { + params->tfaw_mult = TFAW_TRRD_MULT5; + } else { + params->tfaw_mult = TFAW_TRRD_MULT4; + } + + return 0; +} + +static void pctl_cfg(struct rk3368_ddr_pctl *pctl, + struct rk3368_sdram_params *params, + struct rk3368_grf *grf) +{ + /* Configure PCTL timing registers */ + params->pctl_timing.trefi |= BIT(31); /* see PCTL_TREFI */ + copy_to_reg(&pctl->togcnt1u, ¶ms->pctl_timing.togcnt1u, + sizeof(params->pctl_timing)); + writel(params->trefi_mem_ddr3, &pctl->trefi_mem_ddr3); + + /* Set up ODT write selector and ODT write length */ + writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL), &pctl->dfiodtcfg); + writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1); + + /* Set up the CL/CWL-dependent timings of DFI */ + writel((params->pctl_timing.tcl - 1) / 2 - 1, &pctl->dfitrddataen); + writel((params->pctl_timing.tcwl - 1) / 2 - 1, &pctl->dfitphywrlat); + + /* DDR3 */ + writel(params->tfaw_mult | DDR3_EN | DDR2_DDR3_BL_8, &pctl->mcfg); + writel(0x001c0004, &grf->ddrc0_con0); + + setbits_le32(&pctl->scfg, HW_LOW_POWER_EN); +} + +static int ddrphy_data_training(struct rk3368_ddr_pctl *pctl, + struct rk3368_ddrphy *ddrphy) +{ + const u32 trefi = readl(&pctl->trefi); + const ulong timeout_ms = 500; + ulong tmp; + + /* disable auto-refresh */ + writel(0 | BIT(31), &pctl->trefi); + + clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20); + clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x21); + + tmp = get_timer(0); + do { + if (get_timer(tmp) > timeout_ms) { + error("%s: did not complete within %ld ms\n", + __func__, timeout_ms); + return -ETIME; + } + } while ((readl(&ddrphy->reg[0xff]) & 0xf) != 0xf); + + send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD); + clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20); + /* resume auto-refresh */ + writel(trefi | BIT(31), &pctl->trefi); + + return 0; +} + +static int sdram_col_row_detect(struct udevice *dev) +{ + struct dram_info *priv = dev_get_priv(dev); + struct rk3368_sdram_params *params = dev_get_platdata(dev); + struct rk3368_ddr_pctl *pctl = priv->pctl; + struct rk3368_msch *msch = priv->msch; + const u32 test_pattern = 0x5aa5f00f; + int row, col; + uintptr_t addr; + + move_to_config_state(pctl); + writel(6, &msch->ddrconf); + move_to_access_state(pctl); + + /* Detect col */ + for (col = 11; col >= 9; col--) { + writel(0, CONFIG_SYS_SDRAM_BASE); + addr = CONFIG_SYS_SDRAM_BASE + + (1 << (col + params->chan.bw - 1)); + writel(test_pattern, addr); + if ((readl(addr) == test_pattern) && + (readl(CONFIG_SYS_SDRAM_BASE) == 0)) + break; + } + + if (col == 8) { + error("%s: col detect error\n", __func__); + return -EINVAL; + } + + move_to_config_state(pctl); + writel(15, &msch->ddrconf); + move_to_access_state(pctl); + + /* Detect row*/ + for (row = 16; row >= 12; row--) { + writel(0, CONFIG_SYS_SDRAM_BASE); + addr = CONFIG_SYS_SDRAM_BASE + (1 << (row + 15 - 1)); + writel(test_pattern, addr); + if ((readl(addr) == test_pattern) && + (readl(CONFIG_SYS_SDRAM_BASE) == 0)) + break; + } + + if (row == 11) { + error("%s: row detect error\n", __func__); + return -EINVAL; + } + + /* Record results */ + debug("%s: col %d, row %d\n", __func__, col, row); + params->chan.col = col; + params->chan.cs0_row = row; + params->chan.cs1_row = row; + params->chan.row_3_4 = 0; + + return 0; +} + +static int msch_niu_config(struct rk3368_msch *msch, + struct rk3368_sdram_params *params) +{ + int i; + const u8 cols = params->chan.col - ((params->chan.bw == 2) ? 0 : 1); + const u8 rows = params->chan.cs0_row; + + /* + * The DDR address-translation table always assumes a 32bit + * bus and the comparison below takes care of adjusting for + * a 16bit bus (i.e. one column-address is consumed). + */ + const struct { + u8 rows; + u8 columns; + u8 type; + } ddrconf_table[] = { + /* + * C-B-R-D patterns are first. For these we require an + * exact match for the columns and rows (as there's + * one entry per possible configuration). + */ + [0] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CBRD }, + [1] = { .rows = 14, .columns = 10, .type = DMC_MSCH_CBRD }, + [2] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CBRD }, + [3] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBRD }, + [4] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CBRD }, + [5] = { .rows = 15, .columns = 11, .type = DMC_MSCH_CBRD }, + [6] = { .rows = 16, .columns = 11, .type = DMC_MSCH_CBRD }, + [7] = { .rows = 13, .columns = 9, .type = DMC_MSCH_CBRD }, + [8] = { .rows = 14, .columns = 9, .type = DMC_MSCH_CBRD }, + [9] = { .rows = 15, .columns = 9, .type = DMC_MSCH_CBRD }, + [10] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBRD }, + /* + * 11 through 13 are C-R-B-D patterns. These are + * matched for an exact number of columns and to + * ensure that the hardware uses at least as many rows + * as the pattern requires (i.e. we make sure that + * there's no gaps up until we hit the device/chip-select; + * however, these patterns can accept up to 16 rows, + * as the row-address continues right after the CS + * switching) + */ + [11] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CRBD }, + [12] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CRBD }, + [13] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CRBD }, + /* + * 14 and 15 are catch-all variants using a C-B-D-R + * scheme (i.e. alternating the chip-select every time + * C-B overflows) and stuffing the remaining C-bits + * into the top. Matching needs to make sure that the + * number of columns is either an exact match (i.e. we + * can use less the the maximum number of rows) -or- + * that the columns exceed what is given in this table + * and the rows are an exact match (in which case the + * remaining C-bits will be stuffed onto the top after + * the device/chip-select switches). + */ + [14] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBDR }, + [15] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBDR }, + }; + + /* + * For C-B-R-D, we need an exact match (i.e. both for the number of + * columns and rows), while for C-B-D-R, only the the number of + * columns needs to match. + */ + for (i = 0; i < ARRAY_SIZE(ddrconf_table); i++) { + bool match = false; + + /* If this entry if for a different matcher, then skip it */ + if (ddrconf_table[i].type != params->memory_schedule) + continue; + + /* + * Match according to the rules (exact/inexact/at-least) + * documented in the ddrconf_table above. + */ + switch (params->memory_schedule) { + case DMC_MSCH_CBRD: + match = (ddrconf_table[i].columns == cols) && + (ddrconf_table[i].rows == rows); + break; + + case DMC_MSCH_CRBD: + match = (ddrconf_table[i].columns == cols) && + (ddrconf_table[i].rows <= rows); + break; + + case DMC_MSCH_CBDR: + match = (ddrconf_table[i].columns == cols) || + ((ddrconf_table[i].columns <= cols) && + (ddrconf_table[i].rows == rows)); + break; + + default: + break; + } + + if (match) { + debug("%s: setting ddrconf 0x%x\n", __func__, i); + writel(i, &msch->ddrconf); + return 0; + } + } + + error("%s: ddrconf (NIU config) not found\n", __func__); + return -EINVAL; +} + +static void dram_all_config(struct udevice *dev) +{ + struct dram_info *priv = dev_get_priv(dev); + struct rk3368_pmu_grf *pmugrf = priv->pmugrf; + struct rk3368_sdram_params *params = dev_get_platdata(dev); + const struct rk3288_sdram_channel *info = ¶ms->chan; + u32 sys_reg = 0; + const int chan = 0; + + sys_reg |= DDR3 << SYS_REG_DDRTYPE_SHIFT; + sys_reg |= 0 << SYS_REG_NUM_CH_SHIFT; + + sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan); + sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan); + sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan); + sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan); + sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan); + sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan); + sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan); + sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan); + sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan); + + writel(sys_reg, &pmugrf->os_reg[2]); +} + +static int setup_sdram(struct udevice *dev) +{ + struct dram_info *priv = dev_get_priv(dev); + struct rk3368_sdram_params *params = dev_get_platdata(dev); + + struct rk3368_ddr_pctl *pctl = priv->pctl; + struct rk3368_ddrphy *ddrphy = priv->phy; + struct rk3368_cru *cru = priv->cru; + struct rk3368_grf *grf = priv->grf; + struct rk3368_msch *msch = priv->msch; + + int ret; + + /* The input clock (i.e. DPLL) needs to be 2x the DRAM frequency */ + ret = clk_set_rate(&priv->ddr_clk, 2 * params->ddr_freq); + if (ret < 0) { + debug("%s: could not set DDR clock: %d\n", __func__, ret); + return ret; + } + + /* Update the read-latency for the RK3368 */ + writel(0x32, &msch->readlatency); + + /* Initialise the DDR PCTL and DDR PHY */ + ddrctl_reset(cru); + ddrphy_reset(ddrphy); + ddrphy_config_delays(ddrphy, params->ddr_freq); + dfi_cfg(pctl); + /* Configure relative system information of grf_ddrc0_con0 register */ + ddr_set_ddr3_mode(grf, true); + ddr_set_noc_spr_err_stall(grf, true); + /* Calculate timings */ + pctl_calc_timings(params, params->ddr_freq); + /* Initialise the device timings in protocol controller */ + pctl_cfg(pctl, params, grf); + /* Configure AL, CL ... information of PHY registers */ + ddrphy_config(ddrphy, + params->pctl_timing.tcl, + params->pctl_timing.tal, + params->pctl_timing.tcwl); + + /* Initialize DRAM and configure with mode-register values */ + ret = memory_init(pctl, params); + if (ret) + goto error; + + move_to_config_state(pctl); + /* Perform data-training */ + ddrphy_data_training(pctl, ddrphy); + move_to_access_state(pctl); + + /* TODO(prt): could detect rank in training... */ + params->chan.rank = 2; + /* TODO(prt): bus width is not auto-detected (yet)... */ + params->chan.bw = 2; /* 32bit wide bus */ + params->chan.dbw = params->chan.dbw; /* 32bit wide bus */ + + /* DDR3 is always 8 bank */ + params->chan.bk = 3; + /* Detect col and row number */ + ret = sdram_col_row_detect(dev); + if (ret) + goto error; + + /* Configure NIU DDR configuration */ + ret = msch_niu_config(msch, params); + if (ret) + goto error; + + /* set up OS_REG to communicate w/ next stage and OS */ + dram_all_config(dev); + + return 0; + +error: + printf("DRAM init failed!\n"); + hang(); +} +#endif + +static int rk3368_dmc_ofdata_to_platdata(struct udevice *dev) +{ + int ret = 0; + +#if !CONFIG_IS_ENABLED(OF_PLATDATA) + struct rk3368_sdram_params *plat = dev_get_platdata(dev); + + ret = regmap_init_mem(dev, &plat->map); + if (ret) + return ret; +#endif + + return ret; +} + +#if CONFIG_IS_ENABLED(OF_PLATDATA) +static int conv_of_platdata(struct udevice *dev) +{ + struct rk3368_sdram_params *plat = dev_get_platdata(dev); + struct dtd_rockchip_rk3368_dmc *of_plat = &plat->of_plat; + int ret; + + plat->ddr_freq = of_plat->rockchip_ddr_frequency; + plat->ddr_speed_bin = of_plat->rockchip_ddr_speed_bin; + plat->memory_schedule = of_plat->rockchip_memory_schedule; + + ret = regmap_init_mem_platdata(dev, of_plat->reg, + ARRAY_SIZE(of_plat->reg) / 2, + &plat->map); + if (ret) + return ret; + + return 0; +} +#endif + +static int rk3368_dmc_probe(struct udevice *dev) +{ +#ifdef CONFIG_TPL_BUILD + struct rk3368_sdram_params *plat = dev_get_platdata(dev); + struct rk3368_ddr_pctl *pctl; + struct rk3368_ddrphy *ddrphy; + struct rk3368_cru *cru; + struct rk3368_grf *grf; + struct rk3368_msch *msch; + int ret; + struct udevice *dev_clk; +#endif + struct dram_info *priv = dev_get_priv(dev); + +#if CONFIG_IS_ENABLED(OF_PLATDATA) + ret = conv_of_platdata(dev); + if (ret) + return ret; +#endif + + priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF); + debug("%s: pmugrf=%p\n", __func__, priv->pmugrf); + +#ifdef CONFIG_TPL_BUILD + pctl = regmap_get_range(plat->map, 0); + ddrphy = regmap_get_range(plat->map, 1); + msch = syscon_get_first_range(ROCKCHIP_SYSCON_MSCH); + grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF); + + priv->pctl = pctl; + priv->phy = ddrphy; + priv->msch = msch; + priv->grf = grf; + + ret = rockchip_get_clk(&dev_clk); + if (ret) + return ret; + priv->ddr_clk.id = CLK_DDR; + ret = clk_request(dev_clk, &priv->ddr_clk); + if (ret) + return ret; + + cru = rockchip_get_cru(); + priv->cru = cru; + if (IS_ERR(priv->cru)) + return PTR_ERR(priv->cru); + + ret = setup_sdram(dev); + if (ret) + return ret; +#endif + + priv->info.base = 0; + priv->info.size = + rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]); + + /* + * we use the 0x00000000~0xfdffffff space since 0xff000000~0xffffffff + * is SoC register space (i.e. reserved), and 0xfe000000~0xfeffffff is + * inaccessible for some IP controller. + */ + priv->info.size = min(priv->info.size, (size_t)0xfe000000); + + return 0; +} + +static int rk3368_dmc_get_info(struct udevice *dev, struct ram_info *info) +{ + struct dram_info *priv = dev_get_priv(dev); + + *info = priv->info; + return 0; +} + +static struct ram_ops rk3368_dmc_ops = { + .get_info = rk3368_dmc_get_info, +}; + + +static const struct udevice_id rk3368_dmc_ids[] = { + { .compatible = "rockchip,rk3368-dmc" }, + { } +}; + +U_BOOT_DRIVER(dmc_rk3368) = { + .name = "rockchip_rk3368_dmc", + .id = UCLASS_RAM, + .of_match = rk3368_dmc_ids, + .ops = &rk3368_dmc_ops, + .probe = rk3368_dmc_probe, + .priv_auto_alloc_size = sizeof(struct dram_info), + .ofdata_to_platdata = rk3368_dmc_ofdata_to_platdata, + .probe = rk3368_dmc_probe, + .priv_auto_alloc_size = sizeof(struct dram_info), + .platdata_auto_alloc_size = sizeof(struct rk3368_sdram_params), +}; |