diff options
author | Patrick Delaunay <patrick.delaunay@st.com> | 2019-04-10 14:09:29 +0200 |
---|---|---|
committer | Patrice Chotard <patrice.chotard@st.com> | 2019-05-23 11:38:11 +0200 |
commit | 187c41d783371dc3b7ecae45f450b330f5e1bb25 (patch) | |
tree | ab46ee937319ba9bd1743644bde3ca03358a9d6c /drivers/ram/stm32mp1 | |
parent | 0d447524425ed29cf80987fb058e3bc5e941ba87 (diff) |
stm32mp1: ram: add tuning in DDR interactive mode
Add command tuning for DDR interactive mode, used during
board bring-up or with CubeMX DDR tools to execute software
tuning for the DDR configuration:
- software read DQS Gating (replace the built-in one)
- Bit de-skew
- Eye Training or DQS training
Signed-off-by: Patrick Delaunay <patrick.delaunay@st.com>
Diffstat (limited to 'drivers/ram/stm32mp1')
-rw-r--r-- | drivers/ram/stm32mp1/Kconfig | 10 | ||||
-rw-r--r-- | drivers/ram/stm32mp1/Makefile | 1 | ||||
-rw-r--r-- | drivers/ram/stm32mp1/stm32mp1_ddr_regs.h | 1 | ||||
-rw-r--r-- | drivers/ram/stm32mp1/stm32mp1_interactive.c | 20 | ||||
-rw-r--r-- | drivers/ram/stm32mp1/stm32mp1_tests.h | 3 | ||||
-rw-r--r-- | drivers/ram/stm32mp1/stm32mp1_tuning.c | 1380 |
6 files changed, 1414 insertions, 1 deletions
diff --git a/drivers/ram/stm32mp1/Kconfig b/drivers/ram/stm32mp1/Kconfig index 4e682b4edf..2fd8c7b7e3 100644 --- a/drivers/ram/stm32mp1/Kconfig +++ b/drivers/ram/stm32mp1/Kconfig @@ -37,3 +37,13 @@ config STM32MP1_DDR_TESTS help activate test support for interactive support in STM32MP1 DDR controller driver: command test + +config STM32MP1_DDR_TUNING + bool "STM32MP1 DDR driver : support of tuning" + depends on STM32MP1_DDR_INTERACTIVE + default y + help + activate tuning command in STM32MP1 DDR interactive mode + used for DDR tuning tools + - DQ Deskew algorithm + - DQS Trimming diff --git a/drivers/ram/stm32mp1/Makefile b/drivers/ram/stm32mp1/Makefile index 71ded6bed4..e1e9135603 100644 --- a/drivers/ram/stm32mp1/Makefile +++ b/drivers/ram/stm32mp1/Makefile @@ -8,6 +8,7 @@ obj-y += stm32mp1_ddr.o obj-$(CONFIG_STM32MP1_DDR_INTERACTIVE) += stm32mp1_interactive.o obj-$(CONFIG_STM32MP1_DDR_TESTS) += stm32mp1_tests.o +obj-$(CONFIG_STM32MP1_DDR_TUNING) += stm32mp1_tuning.o ifneq ($(DDR_INTERACTIVE),) CFLAGS_stm32mp1_interactive.o += -DCONFIG_STM32MP1_DDR_INTERACTIVE_FORCE=y diff --git a/drivers/ram/stm32mp1/stm32mp1_ddr_regs.h b/drivers/ram/stm32mp1/stm32mp1_ddr_regs.h index 97f268e66d..9d33186b3a 100644 --- a/drivers/ram/stm32mp1/stm32mp1_ddr_regs.h +++ b/drivers/ram/stm32mp1/stm32mp1_ddr_regs.h @@ -332,6 +332,7 @@ struct stm32mp1_ddrphy { #define DDRPHYC_DXNGCR_DXEN BIT(0) +#define DDRPHYC_DXNDLLCR_DLLSRST BIT(30) #define DDRPHYC_DXNDLLCR_DLLDIS BIT(31) #define DDRPHYC_DXNDLLCR_SDPHASE_MASK GENMASK(17, 14) #define DDRPHYC_DXNDLLCR_SDPHASE_SHIFT 14 diff --git a/drivers/ram/stm32mp1/stm32mp1_interactive.c b/drivers/ram/stm32mp1/stm32mp1_interactive.c index 62d61ac869..cc9b2e7c96 100644 --- a/drivers/ram/stm32mp1/stm32mp1_interactive.c +++ b/drivers/ram/stm32mp1/stm32mp1_interactive.c @@ -55,6 +55,9 @@ enum ddr_command stm32mp1_get_command(char *cmd, int argc) #ifdef CONFIG_STM32MP1_DDR_TESTS [DDR_CMD_TEST] = "test", #endif +#ifdef CONFIG_STM32MP1_DDR_TUNING + [DDR_CMD_TUNING] = "tuning", +#endif }; /* min and max number of argument */ const char cmd_arg[DDR_CMD_UNKNOWN][2] = { @@ -71,6 +74,9 @@ enum ddr_command stm32mp1_get_command(char *cmd, int argc) #ifdef CONFIG_STM32MP1_DDR_TESTS [DDR_CMD_TEST] = { 0, 255 }, #endif +#ifdef CONFIG_STM32MP1_DDR_TUNING + [DDR_CMD_TUNING] = { 0, 255 }, +#endif }; int i; @@ -115,6 +121,9 @@ static void stm32mp1_do_usage(void) #ifdef CONFIG_STM32MP1_DDR_TESTS "test [help] | <n> [...] lists (with help) or executes test <n>\n" #endif +#ifdef CONFIG_STM32MP1_DDR_TUNING + "tuning [help] | <n> [...] lists (with help) or execute tuning <n>\n" +#endif "\nwith for [type|reg]:\n" " all registers if absent\n" " <type> = ctl, phy\n" @@ -297,7 +306,7 @@ end: return step; } -#if defined(CONFIG_STM32MP1_DDR_TESTS) +#if defined(CONFIG_STM32MP1_DDR_TESTS) || defined(CONFIG_STM32MP1_DDR_TUNING) static const char * const s_result[] = { [TEST_PASSED] = "Pass", [TEST_FAILED] = "Failed", @@ -457,6 +466,15 @@ bool stm32mp1_ddr_interactive(void *priv, break; #endif +#ifdef CONFIG_STM32MP1_DDR_TUNING + case DDR_CMD_TUNING: + if (!stm32mp1_check_step(step, STEP_DDR_READY)) + continue; + stm32mp1_ddr_subcmd(priv, argc, argv, + tuning, tuning_nb); + break; +#endif + default: break; } diff --git a/drivers/ram/stm32mp1/stm32mp1_tests.h b/drivers/ram/stm32mp1/stm32mp1_tests.h index 8436780790..55f5d6d93b 100644 --- a/drivers/ram/stm32mp1/stm32mp1_tests.h +++ b/drivers/ram/stm32mp1/stm32mp1_tests.h @@ -28,4 +28,7 @@ struct test_desc { extern const struct test_desc test[]; extern const int test_nb; +extern const struct test_desc tuning[]; +extern const int tuning_nb; + #endif diff --git a/drivers/ram/stm32mp1/stm32mp1_tuning.c b/drivers/ram/stm32mp1/stm32mp1_tuning.c new file mode 100644 index 0000000000..4e1c1fab54 --- /dev/null +++ b/drivers/ram/stm32mp1/stm32mp1_tuning.c @@ -0,0 +1,1380 @@ +// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause +/* + * Copyright (C) 2019, STMicroelectronics - All Rights Reserved + */ +#include <common.h> +#include <console.h> +#include <clk.h> +#include <ram.h> +#include <reset.h> +#include <asm/io.h> + +#include "stm32mp1_ddr_regs.h" +#include "stm32mp1_ddr.h" +#include "stm32mp1_tests.h" + +#define MAX_DQS_PHASE_IDX _144deg +#define MAX_DQS_UNIT_IDX 7 +#define MAX_GSL_IDX 5 +#define MAX_GPS_IDX 3 + +/* Number of bytes used in this SW. ( min 1--> max 4). */ +#define NUM_BYTES 4 + +enum dqs_phase_enum { + _36deg = 0, + _54deg = 1, + _72deg = 2, + _90deg = 3, + _108deg = 4, + _126deg = 5, + _144deg = 6 +}; + +/* BIST Result struct */ +struct BIST_result { + /* Overall test result: + * 0 Fail (any bit failed) , + * 1 Success (All bits success) + */ + bool test_result; + /* 1: true, all fail / 0: False, not all bits fail */ + bool all_bits_fail; + bool bit_i_test_result[8]; /* 0 fail / 1 success */ +}; + +/* a struct that defines tuning parameters of a byte. */ +struct tuning_position { + u8 phase; /* DQS phase */ + u8 unit; /* DQS unit delay */ + u32 bits_delay; /* Bits deskew in this byte */ +}; + +/* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */ +const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12}; + +static u8 BIST_error_max = 1; +static u32 BIST_seed = 0x1234ABCD; + +static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl) +{ + u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK; + u8 nb_bytes = NUM_BYTES; + + switch (data_bus) { + case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF: + nb_bytes /= 2; + break; + case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER: + nb_bytes /= 4; + break; + default: + break; + } + + return nb_bytes; +} + +static void itm_soft_reset(struct stm32mp1_ddrphy *phy) +{ + stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST); +} + +/* Read DQ unit delay register and provides the retrieved value for DQS + * We are assuming that we have the same delay when clocking + * by DQS and when clocking by DQSN + */ +static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit) +{ + u32 index; + u32 addr = DXNDQTR(phy, byte); + + /* We are assuming that we have the same delay when clocking by DQS + * and when clocking by DQSN : use only the low bits + */ + index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit)) + & DDRPHYC_DXNDQTR_DQDLY_LOW_MASK; + + pr_debug("%s: [%x]: %x => DQ unit index = %x\n", + __func__, addr, readl(addr), index); + + return index; +} + +/* Sets the DQS phase delay for a byte lane. + *phase delay is specified by giving the index of the desired delay + * in the dx_dll_phase array. + */ +static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx) +{ + u8 sdphase_val = 0; + + /* Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */ + sdphase_val = dx_dll_phase[phase_idx]; + clrsetbits_le32(DXNDLLCR(phy, byte), + DDRPHYC_DXNDLLCR_SDPHASE_MASK, + sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT); +} + +/* Sets the DQS unit delay for a byte lane. + * unit delay is specified by giving the index of the desired delay + * for dgsdly and dqsndly (same value). + */ +static void DQS_unit_delay(struct stm32mp1_ddrphy *phy, + u8 byte, u8 unit_dly_idx) +{ + /* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */ + clrsetbits_le32(DXNDQSTR(phy, byte), + DDRPHYC_DXNDQSTR_DQSDLY_MASK | + DDRPHYC_DXNDQSTR_DQSNDLY_MASK, + (unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) | + (unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT)); + + /* After changing this value, an ITM soft reset (PIR.ITMSRST=1, + * plus PIR.INIT=1) must be issued. + */ + stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST); +} + +/* Sets the DQ unit delay for a bit line in particular byte lane. + * unit delay is specified by giving the desired delay + */ +static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy, + u8 byte, u8 bit, + u8 dq_delay_index) +{ + u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2); + + /* same value on delay for clock DQ an DQS_b */ + clrsetbits_le32(DXNDQTR(phy, byte), + DDRPHYC_DXNDQTR_DQDLY_MASK + << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit), + dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit)); +} + +static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy, + u8 byte, u8 r0dgsl_idx) +{ + clrsetbits_le32(DXNDQSTR(phy, byte), + DDRPHYC_DXNDQSTR_R0DGSL_MASK, + r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT); +} + +static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy, + u8 byte, u8 r0dgps_idx) +{ + clrsetbits_le32(DXNDQSTR(phy, byte), + DDRPHYC_DXNDQSTR_R0DGPS_MASK, + r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT); +} + +/* Basic BIST configuration for data lane tests. */ +static void config_BIST(struct stm32mp1_ddrphy *phy) +{ + /* Selects the SDRAM bank address to be used during BIST. */ + u32 bbank = 0; + /* Selects the SDRAM row address to be used during BIST. */ + u32 brow = 0; + /* Selects the SDRAM column address to be used during BIST. */ + u32 bcol = 0; + /* Selects the value by which the SDRAM address is incremented + * for each write/read access. + */ + u32 bainc = 0x00000008; + /* Specifies the maximum SDRAM rank to be used during BIST. + * The default value is set to maximum ranks minus 1. + * must be 0 with single rank + */ + u32 bmrank = 0; + /* Selects the SDRAM rank to be used during BIST. + * must be 0 with single rank + */ + u32 brank = 0; + /* Specifies the maximum SDRAM bank address to be used during + * BIST before the address & increments to the next rank. + */ + u32 bmbank = 1; + /* Specifies the maximum SDRAM row address to be used during + * BIST before the address & increments to the next bank. + */ + u32 bmrow = 0x7FFF; /* To check */ + /* Specifies the maximum SDRAM column address to be used during + * BIST before the address & increments to the next row. + */ + u32 bmcol = 0x3FF; /* To check */ + u32 bmode_conf = 0x00000001; /* DRam mode */ + u32 bdxen_conf = 0x00000001; /* BIST on Data byte */ + u32 bdpat_conf = 0x00000002; /* Select LFSR pattern */ + + /*Setup BIST for DRAM mode, and LFSR-random data pattern.*/ + /*Write BISTRR.BMODE = 1?b1;*/ + /*Write BISTRR.BDXEN = 1?b1;*/ + /*Write BISTRR.BDPAT = 2?b10;*/ + + /* reset BIST */ + writel(0x3, &phy->bistrr); + + writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17), + &phy->bistrr); + + /*Setup BIST Word Count*/ + /*Write BISTWCR.BWCNT = 16?b0008;*/ + writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */ + + writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0); + writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1); + + /* To check this line : */ + writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2); +} + +/* Select the Byte lane to be tested by BIST. */ +static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8) +{ + clrsetbits_le32(&phy->bistrr, + DDRPHYC_BISTRR_BDXSEL_MASK, + datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT); + + /*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/ + /* Write BISTRR.BDXSEL = datx8; */ +} + +/* Perform BIST Write_Read test on a byte lane and return test result. */ +static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte, + struct BIST_result *bist) +{ + bool result = true; /* BIST_SUCCESS */ + u32 cnt = 0; + u32 error = 0; + + bist->test_result = true; + +run: + itm_soft_reset(phy); + + /*Perform BIST Reset*/ + /* Write BISTRR.BINST = 3?b011; */ + clrsetbits_le32(&phy->bistrr, + 0x00000007, + 0x00000003); + + /*Re-seed LFSR*/ + /* Write BISTLSR.SEED = 32'h1234ABCD; */ + if (BIST_seed) + writel(BIST_seed, &phy->bistlsr); + else + writel(rand(), &phy->bistlsr); + + /* some delay to reset BIST */ + mdelay(1); + + /*Perform BIST Run*/ + clrsetbits_le32(&phy->bistrr, + 0x00000007, + 0x00000001); + /* Write BISTRR.BINST = 3?b001; */ + + /* Wait for a number of CTL clocks before reading BIST register*/ + /* Wait 300 ctl_clk cycles; ... IS it really needed?? */ + /* Perform BIST Instruction Stop*/ + /* Write BISTRR.BINST = 3?b010;*/ + + /* poll on BISTGSR.BDONE. If 0, wait. ++TODO Add timeout */ + while (!(readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDDONE)) + ; + + /*Check if received correct number of words*/ + /* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */ + if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT) == + readl(&phy->bistwcr)) { + /*Determine if there is a data comparison error*/ + /* if (Read BISTGSR.BDXERR = 1?b0) */ + if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR) + result = false; /* BIST_FAIL; */ + else + result = true; /* BIST_SUCCESS; */ + } else { + result = false; /* BIST_FAIL; */ + } + + /* loop while success */ + cnt++; + if (result && cnt != 1000) + goto run; + + if (!result) + error++; + + if (error < BIST_error_max) { + if (cnt != 1000) + goto run; + bist->test_result = true; + } else { + bist->test_result = false; + } +} + +/* After running the deskew algo, this function applies the new DQ delays + * by reading them from the array "deskew_delay"and writing in PHY registers. + * The bits that are not deskewed parfectly (too much skew on them, + * or data eye very wide) are marked in the array deskew_non_converge. + */ +static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte, + u8 deskew_delay[NUM_BYTES][8], + u8 deskew_non_converge[NUM_BYTES][8]) +{ + u8 bit_i; + u8 index; + + for (bit_i = 0; bit_i < 8; bit_i++) { + set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]); + index = DQ_unit_index(phy, byte, bit_i); + pr_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]", + byte, bit_i, deskew_delay[byte][bit_i], + index, index - 3); + printf("Byte %d, bit %d, DQ delay = %d", + byte, bit_i, deskew_delay[byte][bit_i]); + if (deskew_non_converge[byte][bit_i] == 1) + pr_debug(" - not converged : still more skew"); + printf("\n"); + } +} + +/* DQ Bit de-skew algorithm. + * Deskews data lines as much as possible. + * 1. Add delay to DQS line until finding the failure + * (normally a hold time violation) + * 2. Reduce DQS line by small steps until finding the very first time + * we go back to "Pass" condition. + * 3. For each DQ line, Reduce DQ delay until finding the very first failure + * (normally a hold time fail) + * 4. When all bits are at their first failure delay, we can consider them + * aligned. + * Handle conrer situation (Can't find Pass-fail, or fail-pass transitions + * at any step) + * TODO Provide a return Status. Improve doc + */ +static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl, + struct stm32mp1_ddrphy *phy, char *string) +{ + /* New DQ delay value (index), set during Deskew algo */ + u8 deskew_delay[NUM_BYTES][8]; + /*If there is still skew on a bit, mark this bit. */ + u8 deskew_non_converge[NUM_BYTES][8]; + struct BIST_result result; + s8 dqs_unit_delay_index = 0; + u8 datx8 = 0; + u8 bit_i = 0; + s8 phase_idx = 0; + s8 bit_i_delay_index = 0; + u8 success = 0; + struct tuning_position last_right_ok; + u8 force_stop = 0; + u8 fail_found; + u8 error = 0; + u8 nb_bytes = get_nb_bytes(ctl); + /* u8 last_pass_dqs_unit = 0; */ + + memset(deskew_delay, 0, sizeof(deskew_delay)); + memset(deskew_non_converge, 0, sizeof(deskew_non_converge)); + + /*Disable DQS Drift Compensation*/ + clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); + /*Disable all bytes*/ + /* Disable automatic power down of DLL and IOs when disabling + * a byte (To avoid having to add programming and delay + * for a DLL re-lock when later re-enabling a disabled Byte Lane) + */ + clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX); + + /* Disable all data bytes */ + clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); + clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); + clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); + clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); + + /* Config the BIST block */ + config_BIST(phy); + pr_debug("BIST Config done.\n"); + + /* Train each byte */ + for (datx8 = 0; datx8 < nb_bytes; datx8++) { + if (ctrlc()) { + sprintf(string, "interrupted at byte %d/%d, error=%d", + datx8 + 1, nb_bytes, error); + return TEST_FAILED; + } + pr_debug("\n======================\n"); + pr_debug("Start deskew byte %d .\n", datx8); + pr_debug("======================\n"); + /* Enable Byte (DXNGCR, bit DXEN) */ + setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN); + + /* Select the byte lane for comparison of read data */ + BIST_datx8_sel(phy, datx8); + + /* Set all DQDLYn to maximum value. All bits within the byte + * will be delayed with DQSTR = 2 instead of max = 3 + * to avoid inter bits fail influence + */ + writel(0xAAAAAAAA, DXNDQTR(phy, datx8)); + + /* Set the DQS phase delay to 90 DEG (default). + * What is defined here is the index of the desired config + * in the PHASE array. + */ + phase_idx = _90deg; + + /* Set DQS unit delay to the max value. */ + dqs_unit_delay_index = MAX_DQS_UNIT_IDX; + DQS_unit_delay(phy, datx8, dqs_unit_delay_index); + DQS_phase_delay(phy, datx8, phase_idx); + + /* Issue a DLL soft reset */ + clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST); + setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST); + + /* Test this typical init condition */ + BIST_test(phy, datx8, &result); + success = result.test_result; + + /* If the test pass in this typical condition, + * start the algo with it. + * Else, look for Pass init condition + */ + if (!success) { + pr_debug("Fail at init condtion. Let's look for a good init condition.\n"); + success = 0; /* init */ + /* Make sure we start with a PASS condition before + * looking for a fail condition. + * Find the first PASS PHASE condition + */ + + /* escape if we find a PASS */ + pr_debug("increase Phase idx\n"); + while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) { + DQS_phase_delay(phy, datx8, phase_idx); + BIST_test(phy, datx8, &result); + success = result.test_result; + phase_idx++; + } + /* if ended with success + * ==>> Restore the fist success condition + */ + if (success) + phase_idx--; /* because it ended with ++ */ + } + if (ctrlc()) { + sprintf(string, "interrupted at byte %d/%d, error=%d", + datx8 + 1, nb_bytes, error); + return TEST_FAILED; + } + /* We couldn't find a successful condition, its seems + * we have hold violation, lets try reduce DQS_unit Delay + */ + if (!success) { + /* We couldn't find a successful condition, its seems + * we have hold violation, lets try reduce DQS_unit + * Delay + */ + pr_debug("Still fail. Try decrease DQS Unit delay\n"); + + phase_idx = 0; + dqs_unit_delay_index = 0; + DQS_phase_delay(phy, datx8, phase_idx); + + /* escape if we find a PASS */ + while (!success && + (dqs_unit_delay_index <= + MAX_DQS_UNIT_IDX)) { + DQS_unit_delay(phy, datx8, + dqs_unit_delay_index); + BIST_test(phy, datx8, &result); + success = result.test_result; + dqs_unit_delay_index++; + } + if (success) { + /* Restore the first success condition*/ + dqs_unit_delay_index--; + /* last_pass_dqs_unit = dqs_unit_delay_index;*/ + DQS_unit_delay(phy, datx8, + dqs_unit_delay_index); + } else { + /* No need to continue, + * there is no pass region. + */ + force_stop = 1; + } + } + + /* There is an initial PASS condition + * Look for the first failing condition by PHASE stepping. + * This part of the algo can finish without converging. + */ + if (force_stop) { + printf("Result: Failed "); + printf("[Cannot Deskew lines, "); + printf("there is no PASS region]\n"); + error++; + continue; + } + if (ctrlc()) { + sprintf(string, "interrupted at byte %d/%d, error=%d", + datx8 + 1, nb_bytes, error); + return TEST_FAILED; + } + + pr_debug("there is a pass region for phase idx %d\n", + phase_idx); + pr_debug("Step1: Find the first failing condition\n"); + /* Look for the first failing condition by PHASE stepping. + * This part of the algo can finish without converging. + */ + + /* escape if we find a fail (hold time violation) + * condition at any bit or if out of delay range. + */ + while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) { + DQS_phase_delay(phy, datx8, phase_idx); + BIST_test(phy, datx8, &result); + success = result.test_result; + phase_idx++; + } + if (ctrlc()) { + sprintf(string, "interrupted at byte %d/%d, error=%d", + datx8 + 1, nb_bytes, error); + return TEST_FAILED; + } + + /* if the loop ended with a failing condition at any bit, + * lets look for the first previous success condition by unit + * stepping (minimal delay) + */ + if (!success) { + pr_debug("Fail region (PHASE) found phase idx %d\n", + phase_idx); + pr_debug("Let's look for first success by DQS Unit steps\n"); + /* This part, the algo always converge */ + phase_idx--; + + /* escape if we find a success condition + * or if out of delay range. + */ + while (!success && dqs_unit_delay_index >= 0) { + DQS_unit_delay(phy, datx8, + dqs_unit_delay_index); + BIST_test(phy, datx8, &result); + success = result.test_result; + dqs_unit_delay_index--; + } + /* if the loop ended with a success condition, + * the last delay Right OK (before hold violation) + * condition is then defined as following: + */ + if (success) { + /* Hold the dely parameters of the the last + * delay Right OK condition. + * -1 to get back to current condition + */ + last_right_ok.phase = phase_idx; + /*+1 to get back to current condition */ + last_right_ok.unit = dqs_unit_delay_index + 1; + last_right_ok.bits_delay = 0xFFFFFFFF; + pr_debug("Found %d\n", dqs_unit_delay_index); + } else { + /* the last OK condition is then with the + * previous phase_idx. + * -2 instead of -1 because at the last + * iteration of the while(), + * we incremented phase_idx + */ + last_right_ok.phase = phase_idx - 1; + /* Nominal+1. Because we want the previous + * delay after reducing the phase delay. + */ + last_right_ok.unit = 1; + last_right_ok.bits_delay = 0xFFFFFFFF; + pr_debug("Not Found : try previous phase %d\n", + phase_idx - 1); + + DQS_phase_delay(phy, datx8, phase_idx - 1); + dqs_unit_delay_index = 0; + success = true; + while (success && + (dqs_unit_delay_index < + MAX_DQS_UNIT_IDX)) { + DQS_unit_delay(phy, datx8, + dqs_unit_delay_index); + BIST_test(phy, datx8, &result); + success = result.test_result; + dqs_unit_delay_index++; + pr_debug("dqs_unit_delay_index = %d, result = %d\n", + dqs_unit_delay_index, success); + } + + if (!success) { + last_right_ok.unit = + dqs_unit_delay_index - 1; + } else { + last_right_ok.unit = 0; + pr_debug("ERROR: failed region not FOUND"); + } + } + } else { + /* we can't find a failing condition at all bits + * ==> Just hold the last test condition + * (the max DQS delay) + * which is the most likely, + * the closest to a hold violation + * If we can't find a Fail condition after + * the Pass region, stick at this position + * In order to have max chances to find a fail + * when reducing DQ delays. + */ + last_right_ok.phase = MAX_DQS_PHASE_IDX; + last_right_ok.unit = MAX_DQS_UNIT_IDX; + last_right_ok.bits_delay = 0xFFFFFFFF; + pr_debug("Can't find the a fail condition\n"); + } + + /* step 2: + * if we arrive at this stage, it means that we found the last + * Right OK condition (by tweeking the DQS delay). Or we simply + * pushed DQS delay to the max + * This means that by reducing the delay on some DQ bits, + * we should find a failing condition. + */ + printf("Byte %d, DQS unit = %d, phase = %d\n", + datx8, last_right_ok.unit, last_right_ok.phase); + pr_debug("Step2, unit = %d, phase = %d, bits delay=%x\n", + last_right_ok.unit, last_right_ok.phase, + last_right_ok.bits_delay); + + /* Restore the last_right_ok condtion. */ + DQS_unit_delay(phy, datx8, last_right_ok.unit); + DQS_phase_delay(phy, datx8, last_right_ok.phase); + writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8)); + + /* train each bit + * reduce delay on each bit, and perform a write/read test + * and stop at the very first time it fails. + * the goal is the find the first failing condition + * for each bit. + * When we achieve this condition< for all the bits, + * we are sure they are aligned (+/- step resolution) + */ + fail_found = 0; + for (bit_i = 0; bit_i < 8; bit_i++) { + if (ctrlc()) { + sprintf(string, + "interrupted at byte %d/%d, error=%d", + datx8 + 1, nb_bytes, error); + return error; + } + pr_debug("deskewing bit %d:\n", bit_i); + success = 1; /* init */ + /* Set all DQDLYn to maximum value. + * Only bit_i will be down-delayed + * ==> if we have a fail, it will be definitely + * from bit_i + */ + writel(0xFFFFFFFF, DXNDQTR(phy, datx8)); + /* Arriving at this stage, + * we have a success condition with delay = 3; + */ + bit_i_delay_index = 3; + + /* escape if bit delay is out of range or + * if a fatil occurs + */ + while ((bit_i_delay_index >= 0) && success) { + set_DQ_unit_delay(phy, datx8, + bit_i, + bit_i_delay_index); + BIST_test(phy, datx8, &result); + success = result.test_result; + bit_i_delay_index--; + } + + /* if escape with a fail condition + * ==> save this position for bit_i + */ + if (!success) { + /* save the delay position. + * Add 1 because the while loop ended with a --, + * and that we need to hold the last success + * delay + */ + deskew_delay[datx8][bit_i] = + bit_i_delay_index + 2; + if (deskew_delay[datx8][bit_i] > 3) + deskew_delay[datx8][bit_i] = 3; + + /* A flag that states we found at least a fail + * at one bit. + */ + fail_found = 1; + pr_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n", + bit_i, bit_i_delay_index + 1, + datx8, bit_i, + deskew_delay[datx8][bit_i]); + } else { + /* if we can find a success condition by + * back-delaying this bit, just set the delay + * to 0 (the best deskew + * possible) and mark the bit. + */ + deskew_delay[datx8][bit_i] = 0; + /* set a flag that will be used later + * in the report. + */ + deskew_non_converge[datx8][bit_i] = 1; + pr_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n", + bit_i, datx8, bit_i, + deskew_delay[datx8][bit_i]); + } + } + pr_debug("**********byte %d tuning complete************\n", + datx8); + /* If we can't find any failure by back delaying DQ lines, + * hold the default values + */ + if (!fail_found) { + for (bit_i = 0; bit_i < 8; bit_i++) + deskew_delay[datx8][bit_i] = 0; + pr_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n"); + } + + apply_deskew_results(phy, datx8, deskew_delay, + deskew_non_converge); + /* Restore nominal value for DQS delay */ + DQS_phase_delay(phy, datx8, 3); + DQS_unit_delay(phy, datx8, 3); + /* disable byte after byte bits deskew */ + clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN); + } /* end of byte deskew */ + + /* re-enable all data bytes */ + setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); + setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); + setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); + setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); + + if (error) { + sprintf(string, "error = %d", error); + return TEST_FAILED; + } + + return TEST_PASSED; +} /* end function */ + +/* Trim DQS timings and set it in the centre of data eye. + * Look for a PPPPF region, then look for a FPPP region and finally select + * the mid of the FPPPPPF region + */ +static enum test_result eye_training(struct stm32mp1_ddrctl *ctl, + struct stm32mp1_ddrphy *phy, char *string) +{ + /*Stores the DQS trim values (PHASE index, unit index) */ + u8 eye_training_val[NUM_BYTES][2]; + u8 byte = 0; + struct BIST_result result; + s8 dqs_unit_delay_index = 0; + s8 phase_idx = 0; + s8 dqs_unit_delay_index_pass = 0; + s8 phase_idx_pass = 0; + u8 success = 0; + u8 left_phase_bound_found, right_phase_bound_found; + u8 left_unit_bound_found, right_unit_bound_found; + u8 left_bound_found, right_bound_found; + struct tuning_position left_bound, right_bound; + u8 error = 0; + u8 nb_bytes = get_nb_bytes(ctl); + + /*Disable DQS Drift Compensation*/ + clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); + /*Disable all bytes*/ + /* Disable automatic power down of DLL and IOs when disabling a byte + * (To avoid having to add programming and delay + * for a DLL re-lock when later re-enabling a disabled Byte Lane) + */ + clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX); + + /*Disable all data bytes */ + clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); + clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); + clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); + clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); + + /* Config the BIST block */ + config_BIST(phy); + + for (byte = 0; byte < nb_bytes; byte++) { + if (ctrlc()) { + sprintf(string, "interrupted at byte %d/%d, error=%d", + byte + 1, nb_bytes, error); + return TEST_FAILED; + } + right_bound.phase = 0; + right_bound.unit = 0; + + left_bound.phase = 0; + left_bound.unit = 0; + + left_phase_bound_found = 0; + right_phase_bound_found = 0; + + left_unit_bound_found = 0; + right_unit_bound_found = 0; + + left_bound_found = 0; + right_bound_found = 0; + + /* Enable Byte (DXNGCR, bit DXEN) */ + setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN); + + /* Select the byte lane for comparison of read data */ + BIST_datx8_sel(phy, byte); + + /* Set DQS phase delay to the nominal value. */ + phase_idx = _90deg; + phase_idx_pass = phase_idx; + + /* Set DQS unit delay to the nominal value. */ + dqs_unit_delay_index = 3; + dqs_unit_delay_index_pass = dqs_unit_delay_index; + success = 0; + + pr_debug("STEP0: Find Init delay\n"); + /* STEP0: Find Init delay: a delay that put the system + * in a "Pass" condition then (TODO) update + * dqs_unit_delay_index_pass & phase_idx_pass + */ + DQS_unit_delay(phy, byte, dqs_unit_delay_index); + DQS_phase_delay(phy, byte, phase_idx); + BIST_test(phy, byte, &result); + success = result.test_result; + /* If we have a fail in the nominal condition */ + if (!success) { + /* Look at the left */ + while (phase_idx >= 0 && !success) { + phase_idx--; + DQS_phase_delay(phy, byte, phase_idx); + BIST_test(phy, byte, &result); + success = result.test_result; + } + } + if (!success) { + /* if we can't find pass condition, + * then look at the right + */ + phase_idx = _90deg; + while (phase_idx <= MAX_DQS_PHASE_IDX && + !success) { + phase_idx++; + DQS_phase_delay(phy, byte, + phase_idx); + BIST_test(phy, byte, &result); + success = result.test_result; + } + } + /* save the pass condition */ + if (success) { + phase_idx_pass = phase_idx; + } else { + printf("Result: Failed "); + printf("[Cannot DQS timings, "); + printf("there is no PASS region]\n"); + error++; + continue; + } + + if (ctrlc()) { + sprintf(string, "interrupted at byte %d/%d, error=%d", + byte + 1, nb_bytes, error); + return TEST_FAILED; + } + pr_debug("STEP1: Find LEFT PHASE DQS Bound\n"); + /* STEP1: Find LEFT PHASE DQS Bound */ + while ((phase_idx >= 0) && + (phase_idx <= MAX_DQS_PHASE_IDX) && + !left_phase_bound_found) { + DQS_unit_delay(phy, byte, + dqs_unit_delay_index); + DQS_phase_delay(phy, byte, + phase_idx); + BIST_test(phy, byte, &result); + success = result.test_result; + + /*TODO: Manage the case were at the beginning + * there is already a fail + */ + if (!success) { + /* the last pass condition */ + left_bound.phase = ++phase_idx; + left_phase_bound_found = 1; + } else if (success) { + phase_idx--; + } + } + if (!left_phase_bound_found) { + left_bound.phase = 0; + phase_idx = 0; + } + /* If not found, lets take 0 */ + + if (ctrlc()) { + sprintf(string, "interrupted at byte %d/%d, error=%d", + byte + 1, nb_bytes, error); + return TEST_FAILED; + } + pr_debug("STEP2: Find UNIT left bound\n"); + /* STEP2: Find UNIT left bound */ + while ((dqs_unit_delay_index >= 0) && + !left_unit_bound_found) { + DQS_unit_delay(phy, byte, + dqs_unit_delay_index); + DQS_phase_delay(phy, byte, phase_idx); + BIST_test(phy, byte, &result); + success = result.test_result; + if (!success) { + left_bound.unit = + ++dqs_unit_delay_index; + left_unit_bound_found = 1; + left_bound_found = 1; + } else if (success) { + dqs_unit_delay_index--; + } + } + + /* If not found, lets take 0 */ + if (!left_unit_bound_found) + left_bound.unit = 0; + + if (ctrlc()) { + sprintf(string, "interrupted at byte %d/%d, error=%d", + byte + 1, nb_bytes, error); + return TEST_FAILED; + } + pr_debug("STEP3: Find PHase right bound\n"); + /* STEP3: Find PHase right bound, start with "pass" + * condition + */ + + /* Set DQS phase delay to the pass value. */ + phase_idx = phase_idx_pass; + + /* Set DQS unit delay to the pass value. */ + dqs_unit_delay_index = dqs_unit_delay_index_pass; + + while ((phase_idx <= MAX_DQS_PHASE_IDX) && + !right_phase_bound_found) { + DQS_unit_delay(phy, byte, + dqs_unit_delay_index); + DQS_phase_delay(phy, byte, phase_idx); + BIST_test(phy, byte, &result); + success = result.test_result; + if (!success) { + /* the last pass condition */ + right_bound.phase = --phase_idx; + right_phase_bound_found = 1; + } else if (success) { + phase_idx++; + } + } + + /* If not found, lets take the max value */ + if (!right_phase_bound_found) { + right_bound.phase = MAX_DQS_PHASE_IDX; + phase_idx = MAX_DQS_PHASE_IDX; + } + + if (ctrlc()) { + sprintf(string, "interrupted at byte %d/%d, error=%d", + byte + 1, nb_bytes, error); + return TEST_FAILED; + } + pr_debug("STEP4: Find UNIT right bound\n"); + /* STEP4: Find UNIT right bound */ + while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) && + !right_unit_bound_found) { + DQS_unit_delay(phy, byte, + dqs_unit_delay_index); + DQS_phase_delay(phy, byte, phase_idx); + BIST_test(phy, byte, &result); + success = result.test_result; + if (!success) { + right_bound.unit = + --dqs_unit_delay_index; + right_unit_bound_found = 1; + right_bound_found = 1; + } else if (success) { + dqs_unit_delay_index++; + } + } + /* If not found, lets take the max value */ + if (!right_unit_bound_found) + right_bound.unit = MAX_DQS_UNIT_IDX; + + /* If we found a regular FAil Pass FAil pattern + * FFPPPPPPFF + * OR PPPPPFF Or FFPPPPP + */ + + if (left_bound_found || right_bound_found) { + eye_training_val[byte][0] = (right_bound.phase + + left_bound.phase) / 2; + eye_training_val[byte][1] = (right_bound.unit + + left_bound.unit) / 2; + + /* If we already lost 1/2PHASE Tuning, + * let's try to recover by ++ on unit + */ + if (((right_bound.phase + left_bound.phase) % 2 == 1) && + eye_training_val[byte][1] != MAX_DQS_UNIT_IDX) + eye_training_val[byte][1]++; + pr_debug("** found phase : %d - %d & unit %d - %d\n", + right_bound.phase, left_bound.phase, + right_bound.unit, left_bound.unit); + pr_debug("** calculating mid region: phase: %d unit: %d (nominal is 3)\n", + eye_training_val[byte][0], + eye_training_val[byte][1]); + } else { + /* PPPPPPPPPP, we're already good. + * Set nominal values. + */ + eye_training_val[byte][0] = 3; + eye_training_val[byte][1] = 3; + } + DQS_phase_delay(phy, byte, eye_training_val[byte][0]); + DQS_unit_delay(phy, byte, eye_training_val[byte][1]); + + printf("Byte %d, DQS unit = %d, phase = %d\n", + byte, + eye_training_val[byte][1], + eye_training_val[byte][0]); + } + + if (error) { + sprintf(string, "error = %d", error); + return TEST_FAILED; + } + + return TEST_PASSED; +} + +static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte) +{ + u8 i = 0; + + printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n ", + byte); + + for (i = 0; i < 8; i++) + printf("%d ", DQ_unit_index(phy, byte, i)); + printf("\n"); + + printf("dxndllcr: [%08x] val:%08x\n", + DXNDLLCR(phy, byte), + readl(DXNDLLCR(phy, byte))); + printf("dxnqdstr: [%08x] val:%08x\n", + DXNDQSTR(phy, byte), + readl(DXNDQSTR(phy, byte))); + printf("dxndqtr: [%08x] val:%08x\n", + DXNDQTR(phy, byte), + readl(DXNDQTR(phy, byte))); +} + +/* analyse the dgs gating log table, and determine the midpoint.*/ +static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte, + u8 dqs_gating[NUM_BYTES] + [MAX_GSL_IDX + 1] + [MAX_GPS_IDX + 1]) +{ + /* stores the dqs gate values (gsl index, gps index) */ + u8 dqs_gate_values[NUM_BYTES][2]; + u8 gsl_idx, gps_idx = 0; + u8 left_bound_idx[2] = {0, 0}; + u8 right_bound_idx[2] = {0, 0}; + u8 left_bound_found = 0; + u8 right_bound_found = 0; + u8 intermittent = 0; + u8 value; + + for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) { + for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) { + value = dqs_gating[byte][gsl_idx][gps_idx]; + if (value == 1 && left_bound_found == 0) { + left_bound_idx[0] = gsl_idx; + left_bound_idx[1] = gps_idx; + left_bound_found = 1; + } else if (value == 0 && + left_bound_found == 1 && + !right_bound_found) { + if (gps_idx == 0) { + right_bound_idx[0] = gsl_idx - 1; + right_bound_idx[1] = MAX_GPS_IDX; + } else { + right_bound_idx[0] = gsl_idx; + right_bound_idx[1] = gps_idx - 1; + } + right_bound_found = 1; + } else if (value == 1 && + right_bound_found == 1) { + intermittent = 1; + } + } + } + + /* if only ppppppp is found, there is no mid region. */ + if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 && + right_bound_idx[0] == 0 && right_bound_idx[1] == 0) + intermittent = 1; + + /*if we found a regular fail pass fail pattern ffppppppff + * or pppppff or ffppppp + */ + if (!intermittent) { + /*if we found a regular fail pass fail pattern ffppppppff + * or pppppff or ffppppp + */ + if (left_bound_found || right_bound_found) { + pr_debug("idx0(%d): %d %d idx1(%d) : %d %d\n", + left_bound_found, + right_bound_idx[0], left_bound_idx[0], + right_bound_found, + right_bound_idx[1], left_bound_idx[1]); + dqs_gate_values[byte][0] = + (right_bound_idx[0] + left_bound_idx[0]) / 2; + dqs_gate_values[byte][1] = + (right_bound_idx[1] + left_bound_idx[1]) / 2; + /* if we already lost 1/2gsl tuning, + * let's try to recover by ++ on gps + */ + if (((right_bound_idx[0] + + left_bound_idx[0]) % 2 == 1) && + dqs_gate_values[byte][1] != MAX_GPS_IDX) + dqs_gate_values[byte][1]++; + /* if we already lost 1/2gsl tuning and gps is on max*/ + else if (((right_bound_idx[0] + + left_bound_idx[0]) % 2 == 1) && + dqs_gate_values[byte][1] == MAX_GPS_IDX) { + dqs_gate_values[byte][1] = 0; + dqs_gate_values[byte][0]++; + } + /* if we have gsl left and write limit too close + * (difference=1) + */ + if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) { + dqs_gate_values[byte][1] = (left_bound_idx[1] + + right_bound_idx[1] + + 4) / 2; + if (dqs_gate_values[byte][1] >= 4) { + dqs_gate_values[byte][0] = + right_bound_idx[0]; + dqs_gate_values[byte][1] -= 4; + } else { + dqs_gate_values[byte][0] = + left_bound_idx[0]; + } + } + pr_debug("*******calculating mid region: system latency: %d phase: %d********\n", + dqs_gate_values[byte][0], + dqs_gate_values[byte][1]); + pr_debug("*******the nominal values were system latency: 0 phase: 2*******\n"); + set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]); + set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]); + } + } else { + /* if intermitant, restore defaut values */ + pr_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n"); + set_r0dgsl_delay(phy, byte, 0); + set_r0dgps_delay(phy, byte, 2); + } + + /* return 0 if intermittent or if both left_bound + * and right_bound are not found + */ + return !(intermittent || (left_bound_found && right_bound_found)); +} + +static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl, + struct stm32mp1_ddrphy *phy, + char *string) +{ + /* stores the log of pass/fail */ + u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1]; + u8 byte, gsl_idx, gps_idx = 0; + struct BIST_result result; + u8 success = 0; + u8 nb_bytes = get_nb_bytes(ctl); + + memset(dqs_gating, 0x0, sizeof(dqs_gating)); + + /*disable dqs drift compensation*/ + clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); + /*disable all bytes*/ + /* disable automatic power down of dll and ios when disabling a byte + * (to avoid having to add programming and delay + * for a dll re-lock when later re-enabling a disabled byte lane) + */ + clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX); + + /* disable all data bytes */ + clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); + clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); + clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); + clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); + + /* config the bist block */ + config_BIST(phy); + + for (byte = 0; byte < nb_bytes; byte++) { + if (ctrlc()) { + sprintf(string, "interrupted at byte %d/%d", + byte + 1, nb_bytes); + return TEST_FAILED; + } + /* enable byte x (dxngcr, bit dxen) */ + setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN); + + /* select the byte lane for comparison of read data */ + BIST_datx8_sel(phy, byte); + for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) { + for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) { + if (ctrlc()) { + sprintf(string, + "interrupted at byte %d/%d", + byte + 1, nb_bytes); + return TEST_FAILED; + } + /* write cfg to dxndqstr */ + set_r0dgsl_delay(phy, byte, gsl_idx); + set_r0dgps_delay(phy, byte, gps_idx); + + BIST_test(phy, byte, &result); + success = result.test_result; + if (success) + dqs_gating[byte][gsl_idx][gps_idx] = 1; + itm_soft_reset(phy); + } + } + set_midpoint_read_dqs_gating(phy, byte, dqs_gating); + /* dummy reads */ + readl(0xc0000000); + readl(0xc0000000); + } + + /* re-enable drift compensation */ + /* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */ + return TEST_PASSED; +} + +/**************************************************************** + * TEST + **************************************************************** + */ +static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl, + struct stm32mp1_ddrphy *phy, + char *string, int argc, + char *argv[]) +{ + u32 rfshctl3 = readl(&ctl->rfshctl3); + u32 pwrctl = readl(&ctl->pwrctl); + enum test_result res; + + stm32mp1_refresh_disable(ctl); + res = read_dqs_gating(ctl, phy, string); + stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl); + + return res; +} + +static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl, + struct stm32mp1_ddrphy *phy, + char *string, int argc, char *argv[]) +{ + u32 rfshctl3 = readl(&ctl->rfshctl3); + u32 pwrctl = readl(&ctl->pwrctl); + enum test_result res; + + stm32mp1_refresh_disable(ctl); + res = bit_deskew(ctl, phy, string); + stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl); + + return res; +} + +static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl, + struct stm32mp1_ddrphy *phy, + char *string, int argc, char *argv[]) +{ + u32 rfshctl3 = readl(&ctl->rfshctl3); + u32 pwrctl = readl(&ctl->pwrctl); + enum test_result res; + + stm32mp1_refresh_disable(ctl); + res = eye_training(ctl, phy, string); + stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl); + + return res; +} + +static enum test_result do_display(struct stm32mp1_ddrctl *ctl, + struct stm32mp1_ddrphy *phy, + char *string, int argc, char *argv[]) +{ + int byte; + u8 nb_bytes = get_nb_bytes(ctl); + + for (byte = 0; byte < nb_bytes; byte++) + display_reg_results(phy, byte); + + return TEST_PASSED; +} + +static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl, + struct stm32mp1_ddrphy *phy, + char *string, int argc, char *argv[]) +{ + unsigned long value; + + if (argc > 0) { + if (strict_strtoul(argv[0], 0, &value) < 0) { + sprintf(string, "invalid nbErr %s", argv[0]); + return TEST_FAILED; + } + BIST_error_max = value; + } + if (argc > 1) { + if (strict_strtoul(argv[1], 0, &value) < 0) { + sprintf(string, "invalid Seed %s", argv[1]); + return TEST_FAILED; + } + BIST_seed = value; + } + printf("Bist.nbErr = %d\n", BIST_error_max); + if (BIST_seed) + printf("Bist.Seed = 0x%x\n", BIST_seed); + else + printf("Bist.Seed = random\n"); + + return TEST_PASSED; +} + +/**************************************************************** + * TEST Description + **************************************************************** + */ + +const struct test_desc tuning[] = { + {do_read_dqs_gating, "Read DQS gating", + "software read DQS Gating", "", 0 }, + {do_bit_deskew, "Bit de-skew", "", "", 0 }, + {do_eye_training, "Eye Training", "or DQS training", "", 0 }, + {do_display, "Display registers", "", "", 0 }, + {do_bist_config, "Bist config", "[nbErr] [seed]", + "configure Bist test", 2}, +}; + +const int tuning_nb = ARRAY_SIZE(tuning); |