summaryrefslogtreecommitdiff
path: root/test/lib
diff options
context:
space:
mode:
authorTom Rini <trini@konsulko.com>2019-01-17 17:42:03 -0500
committerTom Rini <trini@konsulko.com>2019-01-17 17:42:03 -0500
commite964df1e2ae7b2c041a9d767f03ad2b72a3f2ac7 (patch)
tree20fc239128010116c5034692afd9a82fb1ba0fa3 /test/lib
parentaac0c29d4b8418c5c78b552070ffeda022b16949 (diff)
parentf8878da5571e5a1170f9c49214be5bafbc1b23a4 (diff)
Merge branch '2019-01-16-master-imports'
- Fixes for CVE-2018-18440 and CVE-2018-18439 - Patch to allow disabling unneeded NAND ECC layouts - Optimize SPI flash env read process
Diffstat (limited to 'test/lib')
-rw-r--r--test/lib/Makefile1
-rw-r--r--test/lib/lmb.c601
2 files changed, 602 insertions, 0 deletions
diff --git a/test/lib/Makefile b/test/lib/Makefile
index ea68fae566..5a636aac74 100644
--- a/test/lib/Makefile
+++ b/test/lib/Makefile
@@ -3,3 +3,4 @@
# (C) Copyright 2018
# Mario Six, Guntermann & Drunck GmbH, mario.six@gdsys.cc
obj-y += hexdump.o
+obj-y += lmb.o
diff --git a/test/lib/lmb.c b/test/lib/lmb.c
new file mode 100644
index 0000000000..058d3c332b
--- /dev/null
+++ b/test/lib/lmb.c
@@ -0,0 +1,601 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2018 Simon Goldschmidt
+ */
+
+#include <common.h>
+#include <lmb.h>
+#include <dm/test.h>
+#include <test/ut.h>
+
+static int check_lmb(struct unit_test_state *uts, struct lmb *lmb,
+ phys_addr_t ram_base, phys_size_t ram_size,
+ unsigned long num_reserved,
+ phys_addr_t base1, phys_size_t size1,
+ phys_addr_t base2, phys_size_t size2,
+ phys_addr_t base3, phys_size_t size3)
+{
+ ut_asserteq(lmb->memory.cnt, 1);
+ ut_asserteq(lmb->memory.region[0].base, ram_base);
+ ut_asserteq(lmb->memory.region[0].size, ram_size);
+
+ ut_asserteq(lmb->reserved.cnt, num_reserved);
+ if (num_reserved > 0) {
+ ut_asserteq(lmb->reserved.region[0].base, base1);
+ ut_asserteq(lmb->reserved.region[0].size, size1);
+ }
+ if (num_reserved > 1) {
+ ut_asserteq(lmb->reserved.region[1].base, base2);
+ ut_asserteq(lmb->reserved.region[1].size, size2);
+ }
+ if (num_reserved > 2) {
+ ut_asserteq(lmb->reserved.region[2].base, base3);
+ ut_asserteq(lmb->reserved.region[2].size, size3);
+ }
+ return 0;
+}
+
+#define ASSERT_LMB(lmb, ram_base, ram_size, num_reserved, base1, size1, \
+ base2, size2, base3, size3) \
+ ut_assert(!check_lmb(uts, lmb, ram_base, ram_size, \
+ num_reserved, base1, size1, base2, size2, base3, \
+ size3))
+
+/*
+ * Test helper function that reserves 64 KiB somewhere in the simulated RAM and
+ * then does some alloc + free tests.
+ */
+static int test_multi_alloc(struct unit_test_state *uts,
+ const phys_addr_t ram, const phys_size_t ram_size,
+ const phys_addr_t alloc_64k_addr)
+{
+ const phys_addr_t ram_end = ram + ram_size;
+ const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000;
+
+ struct lmb lmb;
+ long ret;
+ phys_addr_t a, a2, b, b2, c, d;
+
+ /* check for overflow */
+ ut_assert(ram_end == 0 || ram_end > ram);
+ ut_assert(alloc_64k_end > alloc_64k_addr);
+ /* check input addresses + size */
+ ut_assert(alloc_64k_addr >= ram + 8);
+ ut_assert(alloc_64k_end <= ram_end - 8);
+
+ lmb_init(&lmb);
+
+ ret = lmb_add(&lmb, ram, ram_size);
+ ut_asserteq(ret, 0);
+
+ /* reserve 64KiB somewhere */
+ ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+ 0, 0, 0, 0);
+
+ /* allocate somewhere, should be at the end of RAM */
+ a = lmb_alloc(&lmb, 4, 1);
+ ut_asserteq(a, ram_end - 4);
+ ASSERT_LMB(&lmb, ram, ram_size, 2, alloc_64k_addr, 0x10000,
+ ram_end - 4, 4, 0, 0);
+ /* alloc below end of reserved region -> below reserved region */
+ b = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
+ ut_asserteq(b, alloc_64k_addr - 4);
+ ASSERT_LMB(&lmb, ram, ram_size, 2,
+ alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0);
+
+ /* 2nd time */
+ c = lmb_alloc(&lmb, 4, 1);
+ ut_asserteq(c, ram_end - 8);
+ ASSERT_LMB(&lmb, ram, ram_size, 2,
+ alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0);
+ d = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
+ ut_asserteq(d, alloc_64k_addr - 8);
+ ASSERT_LMB(&lmb, ram, ram_size, 2,
+ alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
+
+ ret = lmb_free(&lmb, a, 4);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 2,
+ alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
+ /* allocate again to ensure we get the same address */
+ a2 = lmb_alloc(&lmb, 4, 1);
+ ut_asserteq(a, a2);
+ ASSERT_LMB(&lmb, ram, ram_size, 2,
+ alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
+ ret = lmb_free(&lmb, a2, 4);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 2,
+ alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
+
+ ret = lmb_free(&lmb, b, 4);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 3,
+ alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
+ ram_end - 8, 4);
+ /* allocate again to ensure we get the same address */
+ b2 = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
+ ut_asserteq(b, b2);
+ ASSERT_LMB(&lmb, ram, ram_size, 2,
+ alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
+ ret = lmb_free(&lmb, b2, 4);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 3,
+ alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
+ ram_end - 8, 4);
+
+ ret = lmb_free(&lmb, c, 4);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 2,
+ alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0);
+ ret = lmb_free(&lmb, d, 4);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+ 0, 0, 0, 0);
+
+ return 0;
+}
+
+static int test_multi_alloc_512mb(struct unit_test_state *uts,
+ const phys_addr_t ram)
+{
+ return test_multi_alloc(uts, ram, 0x20000000, ram + 0x10000000);
+}
+
+/* Create a memory region with one reserved region and allocate */
+static int lib_test_lmb_simple(struct unit_test_state *uts)
+{
+ int ret;
+
+ /* simulate 512 MiB RAM beginning at 1GiB */
+ ret = test_multi_alloc_512mb(uts, 0x40000000);
+ if (ret)
+ return ret;
+
+ /* simulate 512 MiB RAM beginning at 1.5GiB */
+ return test_multi_alloc_512mb(uts, 0xE0000000);
+}
+
+DM_TEST(lib_test_lmb_simple, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+/* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */
+static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram)
+{
+ const phys_size_t ram_size = 0x20000000;
+ const phys_size_t big_block_size = 0x10000000;
+ const phys_addr_t ram_end = ram + ram_size;
+ const phys_addr_t alloc_64k_addr = ram + 0x10000000;
+ struct lmb lmb;
+ long ret;
+ phys_addr_t a, b;
+
+ /* check for overflow */
+ ut_assert(ram_end == 0 || ram_end > ram);
+
+ lmb_init(&lmb);
+
+ ret = lmb_add(&lmb, ram, ram_size);
+ ut_asserteq(ret, 0);
+
+ /* reserve 64KiB in the middle of RAM */
+ ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+ 0, 0, 0, 0);
+
+ /* allocate a big block, should be below reserved */
+ a = lmb_alloc(&lmb, big_block_size, 1);
+ ut_asserteq(a, ram);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, a,
+ big_block_size + 0x10000, 0, 0, 0, 0);
+ /* allocate 2nd big block */
+ /* This should fail, printing an error */
+ b = lmb_alloc(&lmb, big_block_size, 1);
+ ut_asserteq(b, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, a,
+ big_block_size + 0x10000, 0, 0, 0, 0);
+
+ ret = lmb_free(&lmb, a, big_block_size);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+ 0, 0, 0, 0);
+
+ /* allocate too big block */
+ /* This should fail, printing an error */
+ a = lmb_alloc(&lmb, ram_size, 1);
+ ut_asserteq(a, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+ 0, 0, 0, 0);
+
+ return 0;
+}
+
+static int lib_test_lmb_big(struct unit_test_state *uts)
+{
+ int ret;
+
+ /* simulate 512 MiB RAM beginning at 1GiB */
+ ret = test_bigblock(uts, 0x40000000);
+ if (ret)
+ return ret;
+
+ /* simulate 512 MiB RAM beginning at 1.5GiB */
+ return test_bigblock(uts, 0xE0000000);
+}
+
+DM_TEST(lib_test_lmb_big, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+/* Simulate 512 MiB RAM, allocate a block without previous reservation */
+static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram,
+ const phys_addr_t alloc_size, const ulong align)
+{
+ const phys_size_t ram_size = 0x20000000;
+ const phys_addr_t ram_end = ram + ram_size;
+ struct lmb lmb;
+ long ret;
+ phys_addr_t a, b;
+ const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) &
+ ~(align - 1);
+
+ /* check for overflow */
+ ut_assert(ram_end == 0 || ram_end > ram);
+
+ lmb_init(&lmb);
+
+ ret = lmb_add(&lmb, ram, ram_size);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
+
+ /* allocate a block */
+ a = lmb_alloc(&lmb, alloc_size, align);
+ ut_assert(a != 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
+ alloc_size, 0, 0, 0, 0);
+ /* allocate another block */
+ b = lmb_alloc(&lmb, alloc_size, align);
+ ut_assert(b != 0);
+ if (alloc_size == alloc_size_aligned) {
+ ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size -
+ (alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0,
+ 0);
+ } else {
+ ASSERT_LMB(&lmb, ram, ram_size, 2, ram + ram_size -
+ (alloc_size_aligned * 2), alloc_size, ram + ram_size
+ - alloc_size_aligned, alloc_size, 0, 0);
+ }
+ /* and free them */
+ ret = lmb_free(&lmb, b, alloc_size);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
+ alloc_size, 0, 0, 0, 0);
+ ret = lmb_free(&lmb, a, alloc_size);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
+
+ /* allocate a block with base*/
+ b = lmb_alloc_base(&lmb, alloc_size, align, ram_end);
+ ut_assert(a == b);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
+ alloc_size, 0, 0, 0, 0);
+ /* and free it */
+ ret = lmb_free(&lmb, b, alloc_size);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
+
+ return 0;
+}
+
+static int lib_test_lmb_noreserved(struct unit_test_state *uts)
+{
+ int ret;
+
+ /* simulate 512 MiB RAM beginning at 1GiB */
+ ret = test_noreserved(uts, 0x40000000, 4, 1);
+ if (ret)
+ return ret;
+
+ /* simulate 512 MiB RAM beginning at 1.5GiB */
+ return test_noreserved(uts, 0xE0000000, 4, 1);
+}
+
+DM_TEST(lib_test_lmb_noreserved, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+static int lib_test_lmb_unaligned_size(struct unit_test_state *uts)
+{
+ int ret;
+
+ /* simulate 512 MiB RAM beginning at 1GiB */
+ ret = test_noreserved(uts, 0x40000000, 5, 8);
+ if (ret)
+ return ret;
+
+ /* simulate 512 MiB RAM beginning at 1.5GiB */
+ return test_noreserved(uts, 0xE0000000, 5, 8);
+}
+
+DM_TEST(lib_test_lmb_unaligned_size, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+/*
+ * Simulate a RAM that starts at 0 and allocate down to address 0, which must
+ * fail as '0' means failure for the lmb_alloc functions.
+ */
+static int lib_test_lmb_at_0(struct unit_test_state *uts)
+{
+ const phys_addr_t ram = 0;
+ const phys_size_t ram_size = 0x20000000;
+ struct lmb lmb;
+ long ret;
+ phys_addr_t a, b;
+
+ lmb_init(&lmb);
+
+ ret = lmb_add(&lmb, ram, ram_size);
+ ut_asserteq(ret, 0);
+
+ /* allocate nearly everything */
+ a = lmb_alloc(&lmb, ram_size - 4, 1);
+ ut_asserteq(a, ram + 4);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
+ 0, 0, 0, 0);
+ /* allocate the rest */
+ /* This should fail as the allocated address would be 0 */
+ b = lmb_alloc(&lmb, 4, 1);
+ ut_asserteq(b, 0);
+ /* check that this was an error by checking lmb */
+ ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
+ 0, 0, 0, 0);
+ /* check that this was an error by freeing b */
+ ret = lmb_free(&lmb, b, 4);
+ ut_asserteq(ret, -1);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
+ 0, 0, 0, 0);
+
+ ret = lmb_free(&lmb, a, ram_size - 4);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
+
+ return 0;
+}
+
+DM_TEST(lib_test_lmb_at_0, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+/* Check that calling lmb_reserve with overlapping regions fails. */
+static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts)
+{
+ const phys_addr_t ram = 0x40000000;
+ const phys_size_t ram_size = 0x20000000;
+ struct lmb lmb;
+ long ret;
+
+ lmb_init(&lmb);
+
+ ret = lmb_add(&lmb, ram, ram_size);
+ ut_asserteq(ret, 0);
+
+ ret = lmb_reserve(&lmb, 0x40010000, 0x10000);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
+ 0, 0, 0, 0);
+ /* allocate overlapping region should fail */
+ ret = lmb_reserve(&lmb, 0x40011000, 0x10000);
+ ut_asserteq(ret, -1);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
+ 0, 0, 0, 0);
+ /* allocate 3nd region */
+ ret = lmb_reserve(&lmb, 0x40030000, 0x10000);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40010000, 0x10000,
+ 0x40030000, 0x10000, 0, 0);
+ /* allocate 2nd region */
+ ret = lmb_reserve(&lmb, 0x40020000, 0x10000);
+ ut_assert(ret >= 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x30000,
+ 0, 0, 0, 0);
+
+ return 0;
+}
+
+DM_TEST(lib_test_lmb_overlapping_reserve,
+ DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+/*
+ * Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between.
+ * Expect addresses outside the memory range to fail.
+ */
+static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram)
+{
+ const phys_size_t ram_size = 0x20000000;
+ const phys_addr_t ram_end = ram + ram_size;
+ const phys_size_t alloc_addr_a = ram + 0x8000000;
+ const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
+ const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
+ struct lmb lmb;
+ long ret;
+ phys_addr_t a, b, c, d, e;
+
+ /* check for overflow */
+ ut_assert(ram_end == 0 || ram_end > ram);
+
+ lmb_init(&lmb);
+
+ ret = lmb_add(&lmb, ram, ram_size);
+ ut_asserteq(ret, 0);
+
+ /* reserve 3 blocks */
+ ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000);
+ ut_asserteq(ret, 0);
+ ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000);
+ ut_asserteq(ret, 0);
+ ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000,
+ alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
+
+ /* allocate blocks */
+ a = lmb_alloc_addr(&lmb, ram, alloc_addr_a - ram);
+ ut_asserteq(a, ram);
+ ASSERT_LMB(&lmb, ram, ram_size, 3, ram, 0x8010000,
+ alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
+ b = lmb_alloc_addr(&lmb, alloc_addr_a + 0x10000,
+ alloc_addr_b - alloc_addr_a - 0x10000);
+ ut_asserteq(b, alloc_addr_a + 0x10000);
+ ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x10010000,
+ alloc_addr_c, 0x10000, 0, 0);
+ c = lmb_alloc_addr(&lmb, alloc_addr_b + 0x10000,
+ alloc_addr_c - alloc_addr_b - 0x10000);
+ ut_asserteq(c, alloc_addr_b + 0x10000);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
+ 0, 0, 0, 0);
+ d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000,
+ ram_end - alloc_addr_c - 0x10000);
+ ut_asserteq(d, alloc_addr_c + 0x10000);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size,
+ 0, 0, 0, 0);
+
+ /* allocating anything else should fail */
+ e = lmb_alloc(&lmb, 1, 1);
+ ut_asserteq(e, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size,
+ 0, 0, 0, 0);
+
+ ret = lmb_free(&lmb, d, ram_end - alloc_addr_c - 0x10000);
+ ut_asserteq(ret, 0);
+
+ /* allocate at 3 points in free range */
+
+ d = lmb_alloc_addr(&lmb, ram_end - 4, 4);
+ ut_asserteq(d, ram_end - 4);
+ ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000,
+ d, 4, 0, 0);
+ ret = lmb_free(&lmb, d, 4);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
+ 0, 0, 0, 0);
+
+ d = lmb_alloc_addr(&lmb, ram_end - 128, 4);
+ ut_asserteq(d, ram_end - 128);
+ ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000,
+ d, 4, 0, 0);
+ ret = lmb_free(&lmb, d, 4);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
+ 0, 0, 0, 0);
+
+ d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, 4);
+ ut_asserteq(d, alloc_addr_c + 0x10000);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010004,
+ 0, 0, 0, 0);
+ ret = lmb_free(&lmb, d, 4);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
+ 0, 0, 0, 0);
+
+ /* allocate at the bottom */
+ ret = lmb_free(&lmb, a, alloc_addr_a - ram);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 1, ram + 0x8000000, 0x10010000,
+ 0, 0, 0, 0);
+ d = lmb_alloc_addr(&lmb, ram, 4);
+ ut_asserteq(d, ram);
+ ASSERT_LMB(&lmb, ram, ram_size, 2, d, 4,
+ ram + 0x8000000, 0x10010000, 0, 0);
+
+ /* check that allocating outside memory fails */
+ if (ram_end != 0) {
+ ret = lmb_alloc_addr(&lmb, ram_end, 1);
+ ut_asserteq(ret, 0);
+ }
+ if (ram != 0) {
+ ret = lmb_alloc_addr(&lmb, ram - 1, 1);
+ ut_asserteq(ret, 0);
+ }
+
+ return 0;
+}
+
+static int lib_test_lmb_alloc_addr(struct unit_test_state *uts)
+{
+ int ret;
+
+ /* simulate 512 MiB RAM beginning at 1GiB */
+ ret = test_alloc_addr(uts, 0x40000000);
+ if (ret)
+ return ret;
+
+ /* simulate 512 MiB RAM beginning at 1.5GiB */
+ return test_alloc_addr(uts, 0xE0000000);
+}
+
+DM_TEST(lib_test_lmb_alloc_addr, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+/* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */
+static int test_get_unreserved_size(struct unit_test_state *uts,
+ const phys_addr_t ram)
+{
+ const phys_size_t ram_size = 0x20000000;
+ const phys_addr_t ram_end = ram + ram_size;
+ const phys_size_t alloc_addr_a = ram + 0x8000000;
+ const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
+ const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
+ struct lmb lmb;
+ long ret;
+ phys_size_t s;
+
+ /* check for overflow */
+ ut_assert(ram_end == 0 || ram_end > ram);
+
+ lmb_init(&lmb);
+
+ ret = lmb_add(&lmb, ram, ram_size);
+ ut_asserteq(ret, 0);
+
+ /* reserve 3 blocks */
+ ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000);
+ ut_asserteq(ret, 0);
+ ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000);
+ ut_asserteq(ret, 0);
+ ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000);
+ ut_asserteq(ret, 0);
+ ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000,
+ alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
+
+ /* check addresses in between blocks */
+ s = lmb_get_unreserved_size(&lmb, ram);
+ ut_asserteq(s, alloc_addr_a - ram);
+ s = lmb_get_unreserved_size(&lmb, ram + 0x10000);
+ ut_asserteq(s, alloc_addr_a - ram - 0x10000);
+ s = lmb_get_unreserved_size(&lmb, alloc_addr_a - 4);
+ ut_asserteq(s, 4);
+
+ s = lmb_get_unreserved_size(&lmb, alloc_addr_a + 0x10000);
+ ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000);
+ s = lmb_get_unreserved_size(&lmb, alloc_addr_a + 0x20000);
+ ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000);
+ s = lmb_get_unreserved_size(&lmb, alloc_addr_b - 4);
+ ut_asserteq(s, 4);
+
+ s = lmb_get_unreserved_size(&lmb, alloc_addr_c + 0x10000);
+ ut_asserteq(s, ram_end - alloc_addr_c - 0x10000);
+ s = lmb_get_unreserved_size(&lmb, alloc_addr_c + 0x20000);
+ ut_asserteq(s, ram_end - alloc_addr_c - 0x20000);
+ s = lmb_get_unreserved_size(&lmb, ram_end - 4);
+ ut_asserteq(s, 4);
+
+ return 0;
+}
+
+static int lib_test_lmb_get_unreserved_size(struct unit_test_state *uts)
+{
+ int ret;
+
+ /* simulate 512 MiB RAM beginning at 1GiB */
+ ret = test_get_unreserved_size(uts, 0x40000000);
+ if (ret)
+ return ret;
+
+ /* simulate 512 MiB RAM beginning at 1.5GiB */
+ return test_get_unreserved_size(uts, 0xE0000000);
+}
+
+DM_TEST(lib_test_lmb_get_unreserved_size,
+ DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);