diff options
author | Tom Rini <trini@konsulko.com> | 2019-01-17 17:42:03 -0500 |
---|---|---|
committer | Tom Rini <trini@konsulko.com> | 2019-01-17 17:42:03 -0500 |
commit | e964df1e2ae7b2c041a9d767f03ad2b72a3f2ac7 (patch) | |
tree | 20fc239128010116c5034692afd9a82fb1ba0fa3 /test/lib | |
parent | aac0c29d4b8418c5c78b552070ffeda022b16949 (diff) | |
parent | f8878da5571e5a1170f9c49214be5bafbc1b23a4 (diff) |
Merge branch '2019-01-16-master-imports'
- Fixes for CVE-2018-18440 and CVE-2018-18439
- Patch to allow disabling unneeded NAND ECC layouts
- Optimize SPI flash env read process
Diffstat (limited to 'test/lib')
-rw-r--r-- | test/lib/Makefile | 1 | ||||
-rw-r--r-- | test/lib/lmb.c | 601 |
2 files changed, 602 insertions, 0 deletions
diff --git a/test/lib/Makefile b/test/lib/Makefile index ea68fae566..5a636aac74 100644 --- a/test/lib/Makefile +++ b/test/lib/Makefile @@ -3,3 +3,4 @@ # (C) Copyright 2018 # Mario Six, Guntermann & Drunck GmbH, mario.six@gdsys.cc obj-y += hexdump.o +obj-y += lmb.o diff --git a/test/lib/lmb.c b/test/lib/lmb.c new file mode 100644 index 0000000000..058d3c332b --- /dev/null +++ b/test/lib/lmb.c @@ -0,0 +1,601 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * (C) Copyright 2018 Simon Goldschmidt + */ + +#include <common.h> +#include <lmb.h> +#include <dm/test.h> +#include <test/ut.h> + +static int check_lmb(struct unit_test_state *uts, struct lmb *lmb, + phys_addr_t ram_base, phys_size_t ram_size, + unsigned long num_reserved, + phys_addr_t base1, phys_size_t size1, + phys_addr_t base2, phys_size_t size2, + phys_addr_t base3, phys_size_t size3) +{ + ut_asserteq(lmb->memory.cnt, 1); + ut_asserteq(lmb->memory.region[0].base, ram_base); + ut_asserteq(lmb->memory.region[0].size, ram_size); + + ut_asserteq(lmb->reserved.cnt, num_reserved); + if (num_reserved > 0) { + ut_asserteq(lmb->reserved.region[0].base, base1); + ut_asserteq(lmb->reserved.region[0].size, size1); + } + if (num_reserved > 1) { + ut_asserteq(lmb->reserved.region[1].base, base2); + ut_asserteq(lmb->reserved.region[1].size, size2); + } + if (num_reserved > 2) { + ut_asserteq(lmb->reserved.region[2].base, base3); + ut_asserteq(lmb->reserved.region[2].size, size3); + } + return 0; +} + +#define ASSERT_LMB(lmb, ram_base, ram_size, num_reserved, base1, size1, \ + base2, size2, base3, size3) \ + ut_assert(!check_lmb(uts, lmb, ram_base, ram_size, \ + num_reserved, base1, size1, base2, size2, base3, \ + size3)) + +/* + * Test helper function that reserves 64 KiB somewhere in the simulated RAM and + * then does some alloc + free tests. + */ +static int test_multi_alloc(struct unit_test_state *uts, + const phys_addr_t ram, const phys_size_t ram_size, + const phys_addr_t alloc_64k_addr) +{ + const phys_addr_t ram_end = ram + ram_size; + const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000; + + struct lmb lmb; + long ret; + phys_addr_t a, a2, b, b2, c, d; + + /* check for overflow */ + ut_assert(ram_end == 0 || ram_end > ram); + ut_assert(alloc_64k_end > alloc_64k_addr); + /* check input addresses + size */ + ut_assert(alloc_64k_addr >= ram + 8); + ut_assert(alloc_64k_end <= ram_end - 8); + + lmb_init(&lmb); + + ret = lmb_add(&lmb, ram, ram_size); + ut_asserteq(ret, 0); + + /* reserve 64KiB somewhere */ + ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, + 0, 0, 0, 0); + + /* allocate somewhere, should be at the end of RAM */ + a = lmb_alloc(&lmb, 4, 1); + ut_asserteq(a, ram_end - 4); + ASSERT_LMB(&lmb, ram, ram_size, 2, alloc_64k_addr, 0x10000, + ram_end - 4, 4, 0, 0); + /* alloc below end of reserved region -> below reserved region */ + b = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end); + ut_asserteq(b, alloc_64k_addr - 4); + ASSERT_LMB(&lmb, ram, ram_size, 2, + alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0); + + /* 2nd time */ + c = lmb_alloc(&lmb, 4, 1); + ut_asserteq(c, ram_end - 8); + ASSERT_LMB(&lmb, ram, ram_size, 2, + alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0); + d = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end); + ut_asserteq(d, alloc_64k_addr - 8); + ASSERT_LMB(&lmb, ram, ram_size, 2, + alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0); + + ret = lmb_free(&lmb, a, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 2, + alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); + /* allocate again to ensure we get the same address */ + a2 = lmb_alloc(&lmb, 4, 1); + ut_asserteq(a, a2); + ASSERT_LMB(&lmb, ram, ram_size, 2, + alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0); + ret = lmb_free(&lmb, a2, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 2, + alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); + + ret = lmb_free(&lmb, b, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 3, + alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, + ram_end - 8, 4); + /* allocate again to ensure we get the same address */ + b2 = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end); + ut_asserteq(b, b2); + ASSERT_LMB(&lmb, ram, ram_size, 2, + alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); + ret = lmb_free(&lmb, b2, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 3, + alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, + ram_end - 8, 4); + + ret = lmb_free(&lmb, c, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 2, + alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0); + ret = lmb_free(&lmb, d, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, + 0, 0, 0, 0); + + return 0; +} + +static int test_multi_alloc_512mb(struct unit_test_state *uts, + const phys_addr_t ram) +{ + return test_multi_alloc(uts, ram, 0x20000000, ram + 0x10000000); +} + +/* Create a memory region with one reserved region and allocate */ +static int lib_test_lmb_simple(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 1GiB */ + ret = test_multi_alloc_512mb(uts, 0x40000000); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 1.5GiB */ + return test_multi_alloc_512mb(uts, 0xE0000000); +} + +DM_TEST(lib_test_lmb_simple, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); + +/* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */ +static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram) +{ + const phys_size_t ram_size = 0x20000000; + const phys_size_t big_block_size = 0x10000000; + const phys_addr_t ram_end = ram + ram_size; + const phys_addr_t alloc_64k_addr = ram + 0x10000000; + struct lmb lmb; + long ret; + phys_addr_t a, b; + + /* check for overflow */ + ut_assert(ram_end == 0 || ram_end > ram); + + lmb_init(&lmb); + + ret = lmb_add(&lmb, ram, ram_size); + ut_asserteq(ret, 0); + + /* reserve 64KiB in the middle of RAM */ + ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, + 0, 0, 0, 0); + + /* allocate a big block, should be below reserved */ + a = lmb_alloc(&lmb, big_block_size, 1); + ut_asserteq(a, ram); + ASSERT_LMB(&lmb, ram, ram_size, 1, a, + big_block_size + 0x10000, 0, 0, 0, 0); + /* allocate 2nd big block */ + /* This should fail, printing an error */ + b = lmb_alloc(&lmb, big_block_size, 1); + ut_asserteq(b, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, a, + big_block_size + 0x10000, 0, 0, 0, 0); + + ret = lmb_free(&lmb, a, big_block_size); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, + 0, 0, 0, 0); + + /* allocate too big block */ + /* This should fail, printing an error */ + a = lmb_alloc(&lmb, ram_size, 1); + ut_asserteq(a, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, + 0, 0, 0, 0); + + return 0; +} + +static int lib_test_lmb_big(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 1GiB */ + ret = test_bigblock(uts, 0x40000000); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 1.5GiB */ + return test_bigblock(uts, 0xE0000000); +} + +DM_TEST(lib_test_lmb_big, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); + +/* Simulate 512 MiB RAM, allocate a block without previous reservation */ +static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram, + const phys_addr_t alloc_size, const ulong align) +{ + const phys_size_t ram_size = 0x20000000; + const phys_addr_t ram_end = ram + ram_size; + struct lmb lmb; + long ret; + phys_addr_t a, b; + const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) & + ~(align - 1); + + /* check for overflow */ + ut_assert(ram_end == 0 || ram_end > ram); + + lmb_init(&lmb); + + ret = lmb_add(&lmb, ram, ram_size); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); + + /* allocate a block */ + a = lmb_alloc(&lmb, alloc_size, align); + ut_assert(a != 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, + alloc_size, 0, 0, 0, 0); + /* allocate another block */ + b = lmb_alloc(&lmb, alloc_size, align); + ut_assert(b != 0); + if (alloc_size == alloc_size_aligned) { + ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - + (alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0, + 0); + } else { + ASSERT_LMB(&lmb, ram, ram_size, 2, ram + ram_size - + (alloc_size_aligned * 2), alloc_size, ram + ram_size + - alloc_size_aligned, alloc_size, 0, 0); + } + /* and free them */ + ret = lmb_free(&lmb, b, alloc_size); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, + alloc_size, 0, 0, 0, 0); + ret = lmb_free(&lmb, a, alloc_size); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); + + /* allocate a block with base*/ + b = lmb_alloc_base(&lmb, alloc_size, align, ram_end); + ut_assert(a == b); + ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, + alloc_size, 0, 0, 0, 0); + /* and free it */ + ret = lmb_free(&lmb, b, alloc_size); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); + + return 0; +} + +static int lib_test_lmb_noreserved(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 1GiB */ + ret = test_noreserved(uts, 0x40000000, 4, 1); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 1.5GiB */ + return test_noreserved(uts, 0xE0000000, 4, 1); +} + +DM_TEST(lib_test_lmb_noreserved, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); + +static int lib_test_lmb_unaligned_size(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 1GiB */ + ret = test_noreserved(uts, 0x40000000, 5, 8); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 1.5GiB */ + return test_noreserved(uts, 0xE0000000, 5, 8); +} + +DM_TEST(lib_test_lmb_unaligned_size, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); +/* + * Simulate a RAM that starts at 0 and allocate down to address 0, which must + * fail as '0' means failure for the lmb_alloc functions. + */ +static int lib_test_lmb_at_0(struct unit_test_state *uts) +{ + const phys_addr_t ram = 0; + const phys_size_t ram_size = 0x20000000; + struct lmb lmb; + long ret; + phys_addr_t a, b; + + lmb_init(&lmb); + + ret = lmb_add(&lmb, ram, ram_size); + ut_asserteq(ret, 0); + + /* allocate nearly everything */ + a = lmb_alloc(&lmb, ram_size - 4, 1); + ut_asserteq(a, ram + 4); + ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4, + 0, 0, 0, 0); + /* allocate the rest */ + /* This should fail as the allocated address would be 0 */ + b = lmb_alloc(&lmb, 4, 1); + ut_asserteq(b, 0); + /* check that this was an error by checking lmb */ + ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4, + 0, 0, 0, 0); + /* check that this was an error by freeing b */ + ret = lmb_free(&lmb, b, 4); + ut_asserteq(ret, -1); + ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4, + 0, 0, 0, 0); + + ret = lmb_free(&lmb, a, ram_size - 4); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); + + return 0; +} + +DM_TEST(lib_test_lmb_at_0, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); + +/* Check that calling lmb_reserve with overlapping regions fails. */ +static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts) +{ + const phys_addr_t ram = 0x40000000; + const phys_size_t ram_size = 0x20000000; + struct lmb lmb; + long ret; + + lmb_init(&lmb); + + ret = lmb_add(&lmb, ram, ram_size); + ut_asserteq(ret, 0); + + ret = lmb_reserve(&lmb, 0x40010000, 0x10000); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, + 0, 0, 0, 0); + /* allocate overlapping region should fail */ + ret = lmb_reserve(&lmb, 0x40011000, 0x10000); + ut_asserteq(ret, -1); + ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, + 0, 0, 0, 0); + /* allocate 3nd region */ + ret = lmb_reserve(&lmb, 0x40030000, 0x10000); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40010000, 0x10000, + 0x40030000, 0x10000, 0, 0); + /* allocate 2nd region */ + ret = lmb_reserve(&lmb, 0x40020000, 0x10000); + ut_assert(ret >= 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x30000, + 0, 0, 0, 0); + + return 0; +} + +DM_TEST(lib_test_lmb_overlapping_reserve, + DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); + +/* + * Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between. + * Expect addresses outside the memory range to fail. + */ +static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram) +{ + const phys_size_t ram_size = 0x20000000; + const phys_addr_t ram_end = ram + ram_size; + const phys_size_t alloc_addr_a = ram + 0x8000000; + const phys_size_t alloc_addr_b = ram + 0x8000000 * 2; + const phys_size_t alloc_addr_c = ram + 0x8000000 * 3; + struct lmb lmb; + long ret; + phys_addr_t a, b, c, d, e; + + /* check for overflow */ + ut_assert(ram_end == 0 || ram_end > ram); + + lmb_init(&lmb); + + ret = lmb_add(&lmb, ram, ram_size); + ut_asserteq(ret, 0); + + /* reserve 3 blocks */ + ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000); + ut_asserteq(ret, 0); + ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000); + ut_asserteq(ret, 0); + ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000, + alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); + + /* allocate blocks */ + a = lmb_alloc_addr(&lmb, ram, alloc_addr_a - ram); + ut_asserteq(a, ram); + ASSERT_LMB(&lmb, ram, ram_size, 3, ram, 0x8010000, + alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); + b = lmb_alloc_addr(&lmb, alloc_addr_a + 0x10000, + alloc_addr_b - alloc_addr_a - 0x10000); + ut_asserteq(b, alloc_addr_a + 0x10000); + ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x10010000, + alloc_addr_c, 0x10000, 0, 0); + c = lmb_alloc_addr(&lmb, alloc_addr_b + 0x10000, + alloc_addr_c - alloc_addr_b - 0x10000); + ut_asserteq(c, alloc_addr_b + 0x10000); + ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, + 0, 0, 0, 0); + d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, + ram_end - alloc_addr_c - 0x10000); + ut_asserteq(d, alloc_addr_c + 0x10000); + ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size, + 0, 0, 0, 0); + + /* allocating anything else should fail */ + e = lmb_alloc(&lmb, 1, 1); + ut_asserteq(e, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size, + 0, 0, 0, 0); + + ret = lmb_free(&lmb, d, ram_end - alloc_addr_c - 0x10000); + ut_asserteq(ret, 0); + + /* allocate at 3 points in free range */ + + d = lmb_alloc_addr(&lmb, ram_end - 4, 4); + ut_asserteq(d, ram_end - 4); + ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000, + d, 4, 0, 0); + ret = lmb_free(&lmb, d, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, + 0, 0, 0, 0); + + d = lmb_alloc_addr(&lmb, ram_end - 128, 4); + ut_asserteq(d, ram_end - 128); + ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000, + d, 4, 0, 0); + ret = lmb_free(&lmb, d, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, + 0, 0, 0, 0); + + d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, 4); + ut_asserteq(d, alloc_addr_c + 0x10000); + ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010004, + 0, 0, 0, 0); + ret = lmb_free(&lmb, d, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, + 0, 0, 0, 0); + + /* allocate at the bottom */ + ret = lmb_free(&lmb, a, alloc_addr_a - ram); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 1, ram + 0x8000000, 0x10010000, + 0, 0, 0, 0); + d = lmb_alloc_addr(&lmb, ram, 4); + ut_asserteq(d, ram); + ASSERT_LMB(&lmb, ram, ram_size, 2, d, 4, + ram + 0x8000000, 0x10010000, 0, 0); + + /* check that allocating outside memory fails */ + if (ram_end != 0) { + ret = lmb_alloc_addr(&lmb, ram_end, 1); + ut_asserteq(ret, 0); + } + if (ram != 0) { + ret = lmb_alloc_addr(&lmb, ram - 1, 1); + ut_asserteq(ret, 0); + } + + return 0; +} + +static int lib_test_lmb_alloc_addr(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 1GiB */ + ret = test_alloc_addr(uts, 0x40000000); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 1.5GiB */ + return test_alloc_addr(uts, 0xE0000000); +} + +DM_TEST(lib_test_lmb_alloc_addr, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); + +/* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */ +static int test_get_unreserved_size(struct unit_test_state *uts, + const phys_addr_t ram) +{ + const phys_size_t ram_size = 0x20000000; + const phys_addr_t ram_end = ram + ram_size; + const phys_size_t alloc_addr_a = ram + 0x8000000; + const phys_size_t alloc_addr_b = ram + 0x8000000 * 2; + const phys_size_t alloc_addr_c = ram + 0x8000000 * 3; + struct lmb lmb; + long ret; + phys_size_t s; + + /* check for overflow */ + ut_assert(ram_end == 0 || ram_end > ram); + + lmb_init(&lmb); + + ret = lmb_add(&lmb, ram, ram_size); + ut_asserteq(ret, 0); + + /* reserve 3 blocks */ + ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000); + ut_asserteq(ret, 0); + ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000); + ut_asserteq(ret, 0); + ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000); + ut_asserteq(ret, 0); + ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000, + alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); + + /* check addresses in between blocks */ + s = lmb_get_unreserved_size(&lmb, ram); + ut_asserteq(s, alloc_addr_a - ram); + s = lmb_get_unreserved_size(&lmb, ram + 0x10000); + ut_asserteq(s, alloc_addr_a - ram - 0x10000); + s = lmb_get_unreserved_size(&lmb, alloc_addr_a - 4); + ut_asserteq(s, 4); + + s = lmb_get_unreserved_size(&lmb, alloc_addr_a + 0x10000); + ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000); + s = lmb_get_unreserved_size(&lmb, alloc_addr_a + 0x20000); + ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000); + s = lmb_get_unreserved_size(&lmb, alloc_addr_b - 4); + ut_asserteq(s, 4); + + s = lmb_get_unreserved_size(&lmb, alloc_addr_c + 0x10000); + ut_asserteq(s, ram_end - alloc_addr_c - 0x10000); + s = lmb_get_unreserved_size(&lmb, alloc_addr_c + 0x20000); + ut_asserteq(s, ram_end - alloc_addr_c - 0x20000); + s = lmb_get_unreserved_size(&lmb, ram_end - 4); + ut_asserteq(s, 4); + + return 0; +} + +static int lib_test_lmb_get_unreserved_size(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 1GiB */ + ret = test_get_unreserved_size(uts, 0x40000000); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 1.5GiB */ + return test_get_unreserved_size(uts, 0xE0000000); +} + +DM_TEST(lib_test_lmb_get_unreserved_size, + DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); |