summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--drivers/mtd/nand/raw/Kconfig11
-rw-r--r--drivers/mtd/nand/raw/Makefile1
-rw-r--r--drivers/mtd/nand/raw/stm32_fmc2_nand.c1092
3 files changed, 1104 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 7f76e5ecef..dc087ab641 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -256,6 +256,17 @@ config NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS
This flag prevent U-boot reconfigure NAND flash controller and reuse
the NAND timing from 1st stage bootloader.
+config NAND_STM32_FMC2
+ bool "Support for NAND controller on STM32MP SoCs"
+ depends on ARCH_STM32MP
+ select SYS_NAND_SELF_INIT
+ imply CMD_NAND
+ help
+ Enables support for NAND Flash chips on SoCs containing the FMC2
+ NAND controller. This controller is found on STM32MP SoCs.
+ The controller supports a maximum 8k page size and supports
+ a maximum 8-bit correction error per sector of 512 bytes.
+
comment "Generic NAND options"
config SYS_NAND_BLOCK_SIZE
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index c61e3f3839..b10e718d15 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -65,6 +65,7 @@ obj-$(CONFIG_NAND_OMAP_ELM) += omap_elm.o
obj-$(CONFIG_NAND_PLAT) += nand_plat.o
obj-$(CONFIG_NAND_SUNXI) += sunxi_nand.o
obj-$(CONFIG_NAND_ZYNQ) += zynq_nand.o
+obj-$(CONFIG_NAND_STM32_FMC2) += stm32_fmc2_nand.o
else # minimal SPL drivers
diff --git a/drivers/mtd/nand/raw/stm32_fmc2_nand.c b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
new file mode 100644
index 0000000000..2bb749d7f7
--- /dev/null
+++ b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
@@ -0,0 +1,1092 @@
+// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
+/*
+ * Copyright (C) STMicroelectronics 2019
+ * Author: Christophe Kerello <christophe.kerello@st.com>
+ */
+
+#include <common.h>
+#include <clk.h>
+#include <dm.h>
+#include <nand.h>
+#include <reset.h>
+#include <linux/iopoll.h>
+#include <linux/ioport.h>
+
+/* Bad block marker length */
+#define FMC2_BBM_LEN 2
+
+/* ECC step size */
+#define FMC2_ECC_STEP_SIZE 512
+
+/* Command delay */
+#define FMC2_RB_DELAY_US 30
+
+/* Max chip enable */
+#define FMC2_MAX_CE 2
+
+/* Timings */
+#define FMC2_THIZ 1
+#define FMC2_TIO 8000
+#define FMC2_TSYNC 3000
+#define FMC2_PCR_TIMING_MASK 0xf
+#define FMC2_PMEM_PATT_TIMING_MASK 0xff
+
+/* FMC2 Controller Registers */
+#define FMC2_BCR1 0x0
+#define FMC2_PCR 0x80
+#define FMC2_SR 0x84
+#define FMC2_PMEM 0x88
+#define FMC2_PATT 0x8c
+#define FMC2_HECCR 0x94
+#define FMC2_BCHISR 0x254
+#define FMC2_BCHICR 0x258
+#define FMC2_BCHPBR1 0x260
+#define FMC2_BCHPBR2 0x264
+#define FMC2_BCHPBR3 0x268
+#define FMC2_BCHPBR4 0x26c
+#define FMC2_BCHDSR0 0x27c
+#define FMC2_BCHDSR1 0x280
+#define FMC2_BCHDSR2 0x284
+#define FMC2_BCHDSR3 0x288
+#define FMC2_BCHDSR4 0x28c
+
+/* Register: FMC2_BCR1 */
+#define FMC2_BCR1_FMC2EN BIT(31)
+
+/* Register: FMC2_PCR */
+#define FMC2_PCR_PWAITEN BIT(1)
+#define FMC2_PCR_PBKEN BIT(2)
+#define FMC2_PCR_PWID_MASK GENMASK(5, 4)
+#define FMC2_PCR_PWID(x) (((x) & 0x3) << 4)
+#define FMC2_PCR_PWID_BUSWIDTH_8 0
+#define FMC2_PCR_PWID_BUSWIDTH_16 1
+#define FMC2_PCR_ECCEN BIT(6)
+#define FMC2_PCR_ECCALG BIT(8)
+#define FMC2_PCR_TCLR_MASK GENMASK(12, 9)
+#define FMC2_PCR_TCLR(x) (((x) & 0xf) << 9)
+#define FMC2_PCR_TCLR_DEFAULT 0xf
+#define FMC2_PCR_TAR_MASK GENMASK(16, 13)
+#define FMC2_PCR_TAR(x) (((x) & 0xf) << 13)
+#define FMC2_PCR_TAR_DEFAULT 0xf
+#define FMC2_PCR_ECCSS_MASK GENMASK(19, 17)
+#define FMC2_PCR_ECCSS(x) (((x) & 0x7) << 17)
+#define FMC2_PCR_ECCSS_512 1
+#define FMC2_PCR_ECCSS_2048 3
+#define FMC2_PCR_BCHECC BIT(24)
+#define FMC2_PCR_WEN BIT(25)
+
+/* Register: FMC2_SR */
+#define FMC2_SR_NWRF BIT(6)
+
+/* Register: FMC2_PMEM */
+#define FMC2_PMEM_MEMSET(x) (((x) & 0xff) << 0)
+#define FMC2_PMEM_MEMWAIT(x) (((x) & 0xff) << 8)
+#define FMC2_PMEM_MEMHOLD(x) (((x) & 0xff) << 16)
+#define FMC2_PMEM_MEMHIZ(x) (((x) & 0xff) << 24)
+#define FMC2_PMEM_DEFAULT 0x0a0a0a0a
+
+/* Register: FMC2_PATT */
+#define FMC2_PATT_ATTSET(x) (((x) & 0xff) << 0)
+#define FMC2_PATT_ATTWAIT(x) (((x) & 0xff) << 8)
+#define FMC2_PATT_ATTHOLD(x) (((x) & 0xff) << 16)
+#define FMC2_PATT_ATTHIZ(x) (((x) & 0xff) << 24)
+#define FMC2_PATT_DEFAULT 0x0a0a0a0a
+
+/* Register: FMC2_BCHISR */
+#define FMC2_BCHISR_DERF BIT(1)
+#define FMC2_BCHISR_EPBRF BIT(4)
+
+/* Register: FMC2_BCHICR */
+#define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0)
+
+/* Register: FMC2_BCHDSR0 */
+#define FMC2_BCHDSR0_DUE BIT(0)
+#define FMC2_BCHDSR0_DEF BIT(1)
+#define FMC2_BCHDSR0_DEN_MASK GENMASK(7, 4)
+#define FMC2_BCHDSR0_DEN_SHIFT 4
+
+/* Register: FMC2_BCHDSR1 */
+#define FMC2_BCHDSR1_EBP1_MASK GENMASK(12, 0)
+#define FMC2_BCHDSR1_EBP2_MASK GENMASK(28, 16)
+#define FMC2_BCHDSR1_EBP2_SHIFT 16
+
+/* Register: FMC2_BCHDSR2 */
+#define FMC2_BCHDSR2_EBP3_MASK GENMASK(12, 0)
+#define FMC2_BCHDSR2_EBP4_MASK GENMASK(28, 16)
+#define FMC2_BCHDSR2_EBP4_SHIFT 16
+
+/* Register: FMC2_BCHDSR3 */
+#define FMC2_BCHDSR3_EBP5_MASK GENMASK(12, 0)
+#define FMC2_BCHDSR3_EBP6_MASK GENMASK(28, 16)
+#define FMC2_BCHDSR3_EBP6_SHIFT 16
+
+/* Register: FMC2_BCHDSR4 */
+#define FMC2_BCHDSR4_EBP7_MASK GENMASK(12, 0)
+#define FMC2_BCHDSR4_EBP8_MASK GENMASK(28, 16)
+#define FMC2_BCHDSR4_EBP8_SHIFT 16
+
+#define FMC2_NSEC_PER_SEC 1000000000L
+
+enum stm32_fmc2_ecc {
+ FMC2_ECC_HAM = 1,
+ FMC2_ECC_BCH4 = 4,
+ FMC2_ECC_BCH8 = 8
+};
+
+struct stm32_fmc2_timings {
+ u8 tclr;
+ u8 tar;
+ u8 thiz;
+ u8 twait;
+ u8 thold_mem;
+ u8 tset_mem;
+ u8 thold_att;
+ u8 tset_att;
+};
+
+struct stm32_fmc2_nand {
+ struct nand_chip chip;
+ struct stm32_fmc2_timings timings;
+ int ncs;
+ int cs_used[FMC2_MAX_CE];
+};
+
+static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
+{
+ return container_of(chip, struct stm32_fmc2_nand, chip);
+}
+
+struct stm32_fmc2_nfc {
+ struct nand_hw_control base;
+ struct stm32_fmc2_nand nand;
+ struct nand_ecclayout ecclayout;
+ void __iomem *io_base;
+ void __iomem *data_base[FMC2_MAX_CE];
+ void __iomem *cmd_base[FMC2_MAX_CE];
+ void __iomem *addr_base[FMC2_MAX_CE];
+ struct clk clk;
+
+ u8 cs_assigned;
+ int cs_sel;
+};
+
+static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_hw_control *base)
+{
+ return container_of(base, struct stm32_fmc2_nfc, base);
+}
+
+/* Timings configuration */
+static void stm32_fmc2_timings_init(struct nand_chip *chip)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
+ struct stm32_fmc2_timings *timings = &nand->timings;
+ u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+ u32 pmem, patt;
+
+ /* Set tclr/tar timings */
+ pcr &= ~FMC2_PCR_TCLR_MASK;
+ pcr |= FMC2_PCR_TCLR(timings->tclr);
+ pcr &= ~FMC2_PCR_TAR_MASK;
+ pcr |= FMC2_PCR_TAR(timings->tar);
+
+ /* Set tset/twait/thold/thiz timings in common bank */
+ pmem = FMC2_PMEM_MEMSET(timings->tset_mem);
+ pmem |= FMC2_PMEM_MEMWAIT(timings->twait);
+ pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem);
+ pmem |= FMC2_PMEM_MEMHIZ(timings->thiz);
+
+ /* Set tset/twait/thold/thiz timings in attribut bank */
+ patt = FMC2_PATT_ATTSET(timings->tset_att);
+ patt |= FMC2_PATT_ATTWAIT(timings->twait);
+ patt |= FMC2_PATT_ATTHOLD(timings->thold_att);
+ patt |= FMC2_PATT_ATTHIZ(timings->thiz);
+
+ writel(pcr, fmc2->io_base + FMC2_PCR);
+ writel(pmem, fmc2->io_base + FMC2_PMEM);
+ writel(patt, fmc2->io_base + FMC2_PATT);
+}
+
+/* Controller configuration */
+static void stm32_fmc2_setup(struct nand_chip *chip)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+
+ /* Configure ECC algorithm (default configuration is Hamming) */
+ pcr &= ~FMC2_PCR_ECCALG;
+ pcr &= ~FMC2_PCR_BCHECC;
+ if (chip->ecc.strength == FMC2_ECC_BCH8) {
+ pcr |= FMC2_PCR_ECCALG;
+ pcr |= FMC2_PCR_BCHECC;
+ } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
+ pcr |= FMC2_PCR_ECCALG;
+ }
+
+ /* Set buswidth */
+ pcr &= ~FMC2_PCR_PWID_MASK;
+ if (chip->options & NAND_BUSWIDTH_16)
+ pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
+
+ /* Set ECC sector size */
+ pcr &= ~FMC2_PCR_ECCSS_MASK;
+ pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512);
+
+ writel(pcr, fmc2->io_base + FMC2_PCR);
+}
+
+/* Select target */
+static void stm32_fmc2_select_chip(struct mtd_info *mtd, int chipnr)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
+
+ if (chipnr < 0 || chipnr >= nand->ncs)
+ return;
+
+ if (nand->cs_used[chipnr] == fmc2->cs_sel)
+ return;
+
+ fmc2->cs_sel = nand->cs_used[chipnr];
+ chip->IO_ADDR_R = fmc2->data_base[fmc2->cs_sel];
+ chip->IO_ADDR_W = fmc2->data_base[fmc2->cs_sel];
+
+ /* FMC2 setup routine */
+ stm32_fmc2_setup(chip);
+
+ /* Apply timings */
+ stm32_fmc2_timings_init(chip);
+}
+
+/* Set bus width to 16-bit or 8-bit */
+static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set)
+{
+ u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+
+ pcr &= ~FMC2_PCR_PWID_MASK;
+ if (set)
+ pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
+ writel(pcr, fmc2->io_base + FMC2_PCR);
+}
+
+/* Enable/disable ECC */
+static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable)
+{
+ u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+
+ pcr &= ~FMC2_PCR_ECCEN;
+ if (enable)
+ pcr |= FMC2_PCR_ECCEN;
+ writel(pcr, fmc2->io_base + FMC2_PCR);
+}
+
+/* Clear irq sources in case of bch is used */
+static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2)
+{
+ writel(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR);
+}
+
+/* Send command and address cycles */
+static void stm32_fmc2_cmd_ctrl(struct mtd_info *mtd, int cmd,
+ unsigned int ctrl)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+
+ if (cmd == NAND_CMD_NONE)
+ return;
+
+ if (ctrl & NAND_CLE) {
+ writeb(cmd, fmc2->cmd_base[fmc2->cs_sel]);
+ return;
+ }
+
+ writeb(cmd, fmc2->addr_base[fmc2->cs_sel]);
+}
+
+/*
+ * Enable ECC logic and reset syndrome/parity bits previously calculated
+ * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
+ */
+static void stm32_fmc2_hwctl(struct mtd_info *mtd, int mode)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+
+ stm32_fmc2_set_ecc(fmc2, false);
+
+ if (chip->ecc.strength != FMC2_ECC_HAM) {
+ u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+
+ if (mode == NAND_ECC_WRITE)
+ pcr |= FMC2_PCR_WEN;
+ else
+ pcr &= ~FMC2_PCR_WEN;
+ writel(pcr, fmc2->io_base + FMC2_PCR);
+
+ stm32_fmc2_clear_bch_irq(fmc2);
+ }
+
+ stm32_fmc2_set_ecc(fmc2, true);
+}
+
+/*
+ * ECC Hamming calculation
+ * ECC is 3 bytes for 512 bytes of data (supports error correction up to
+ * max of 1-bit)
+ */
+static int stm32_fmc2_ham_calculate(struct mtd_info *mtd, const u8 *data,
+ u8 *ecc)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ u32 heccr, sr;
+ int ret;
+
+ ret = readl_poll_timeout(fmc2->io_base + FMC2_SR, sr,
+ sr & FMC2_SR_NWRF, 10000);
+ if (ret < 0) {
+ pr_err("Ham timeout\n");
+ return ret;
+ }
+
+ heccr = readl(fmc2->io_base + FMC2_HECCR);
+
+ ecc[0] = heccr;
+ ecc[1] = heccr >> 8;
+ ecc[2] = heccr >> 16;
+
+ /* Disable ecc */
+ stm32_fmc2_set_ecc(fmc2, false);
+
+ return 0;
+}
+
+static int stm32_fmc2_ham_correct(struct mtd_info *mtd, u8 *dat,
+ u8 *read_ecc, u8 *calc_ecc)
+{
+ u8 bit_position = 0, b0, b1, b2;
+ u32 byte_addr = 0, b;
+ u32 i, shifting = 1;
+
+ /* Indicate which bit and byte is faulty (if any) */
+ b0 = read_ecc[0] ^ calc_ecc[0];
+ b1 = read_ecc[1] ^ calc_ecc[1];
+ b2 = read_ecc[2] ^ calc_ecc[2];
+ b = b0 | (b1 << 8) | (b2 << 16);
+
+ /* No errors */
+ if (likely(!b))
+ return 0;
+
+ /* Calculate bit position */
+ for (i = 0; i < 3; i++) {
+ switch (b % 4) {
+ case 2:
+ bit_position += shifting;
+ case 1:
+ break;
+ default:
+ return -EBADMSG;
+ }
+ shifting <<= 1;
+ b >>= 2;
+ }
+
+ /* Calculate byte position */
+ shifting = 1;
+ for (i = 0; i < 9; i++) {
+ switch (b % 4) {
+ case 2:
+ byte_addr += shifting;
+ case 1:
+ break;
+ default:
+ return -EBADMSG;
+ }
+ shifting <<= 1;
+ b >>= 2;
+ }
+
+ /* Flip the bit */
+ dat[byte_addr] ^= (1 << bit_position);
+
+ return 1;
+}
+
+/*
+ * ECC BCH calculation and correction
+ * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
+ * max of 4-bit/8-bit)
+ */
+
+static int stm32_fmc2_bch_calculate(struct mtd_info *mtd, const u8 *data,
+ u8 *ecc)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ u32 bchpbr, bchisr;
+ int ret;
+
+ /* Wait until the BCH code is ready */
+ ret = readl_poll_timeout(fmc2->io_base + FMC2_BCHISR, bchisr,
+ bchisr & FMC2_BCHISR_EPBRF, 10000);
+ if (ret < 0) {
+ pr_err("Bch timeout\n");
+ return ret;
+ }
+
+ /* Read parity bits */
+ bchpbr = readl(fmc2->io_base + FMC2_BCHPBR1);
+ ecc[0] = bchpbr;
+ ecc[1] = bchpbr >> 8;
+ ecc[2] = bchpbr >> 16;
+ ecc[3] = bchpbr >> 24;
+
+ bchpbr = readl(fmc2->io_base + FMC2_BCHPBR2);
+ ecc[4] = bchpbr;
+ ecc[5] = bchpbr >> 8;
+ ecc[6] = bchpbr >> 16;
+
+ if (chip->ecc.strength == FMC2_ECC_BCH8) {
+ ecc[7] = bchpbr >> 24;
+
+ bchpbr = readl(fmc2->io_base + FMC2_BCHPBR3);
+ ecc[8] = bchpbr;
+ ecc[9] = bchpbr >> 8;
+ ecc[10] = bchpbr >> 16;
+ ecc[11] = bchpbr >> 24;
+
+ bchpbr = readl(fmc2->io_base + FMC2_BCHPBR4);
+ ecc[12] = bchpbr;
+ }
+
+ /* Disable ecc */
+ stm32_fmc2_set_ecc(fmc2, false);
+
+ return 0;
+}
+
+/* BCH algorithm correction */
+static int stm32_fmc2_bch_correct(struct mtd_info *mtd, u8 *dat,
+ u8 *read_ecc, u8 *calc_ecc)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr;
+ u16 pos[8];
+ int i, ret, den, eccsize = chip->ecc.size;
+ unsigned int nb_errs = 0;
+
+ /* Wait until the decoding error is ready */
+ ret = readl_poll_timeout(fmc2->io_base + FMC2_BCHISR, bchisr,
+ bchisr & FMC2_BCHISR_DERF, 10000);
+ if (ret < 0) {
+ pr_err("Bch timeout\n");
+ return ret;
+ }
+
+ bchdsr0 = readl(fmc2->io_base + FMC2_BCHDSR0);
+ bchdsr1 = readl(fmc2->io_base + FMC2_BCHDSR1);
+ bchdsr2 = readl(fmc2->io_base + FMC2_BCHDSR2);
+ bchdsr3 = readl(fmc2->io_base + FMC2_BCHDSR3);
+ bchdsr4 = readl(fmc2->io_base + FMC2_BCHDSR4);
+
+ /* Disable ECC */
+ stm32_fmc2_set_ecc(fmc2, false);
+
+ /* No errors found */
+ if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
+ return 0;
+
+ /* Too many errors detected */
+ if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
+ return -EBADMSG;
+
+ pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK;
+ pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT;
+ pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK;
+ pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT;
+ pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK;
+ pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT;
+ pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK;
+ pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT;
+
+ den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT;
+ for (i = 0; i < den; i++) {
+ if (pos[i] < eccsize * 8) {
+ __change_bit(pos[i], (unsigned long *)dat);
+ nb_errs++;
+ }
+ }
+
+ return nb_errs;
+}
+
+static int stm32_fmc2_read_page(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ int i, s, stat, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ int eccstrength = chip->ecc.strength;
+ u8 *p = buf;
+ u8 *ecc_calc = chip->buffers->ecccalc;
+ u8 *ecc_code = chip->buffers->ecccode;
+ unsigned int max_bitflips = 0;
+
+ for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
+ s++, i += eccbytes, p += eccsize) {
+ chip->ecc.hwctl(mtd, NAND_ECC_READ);
+
+ /* Read the nand page sector (512 bytes) */
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, s * eccsize, -1);
+ chip->read_buf(mtd, p, eccsize);
+
+ /* Read the corresponding ECC bytes */
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i, -1);
+ chip->read_buf(mtd, ecc_code, eccbytes);
+
+ /* Correct the data */
+ stat = chip->ecc.correct(mtd, p, ecc_code, ecc_calc);
+ if (stat == -EBADMSG)
+ /* Check for empty pages with bitflips */
+ stat = nand_check_erased_ecc_chunk(p, eccsize,
+ ecc_code, eccbytes,
+ NULL, 0,
+ eccstrength);
+
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+ }
+
+ /* Read oob */
+ if (oob_required) {
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+ }
+
+ return max_bitflips;
+}
+
+/* Controller initialization */
+static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2)
+{
+ u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+ u32 bcr1 = readl(fmc2->io_base + FMC2_BCR1);
+
+ /* Set CS used to undefined */
+ fmc2->cs_sel = -1;
+
+ /* Enable wait feature and nand flash memory bank */
+ pcr |= FMC2_PCR_PWAITEN;
+ pcr |= FMC2_PCR_PBKEN;
+
+ /* Set buswidth to 8 bits mode for identification */
+ pcr &= ~FMC2_PCR_PWID_MASK;
+
+ /* ECC logic is disabled */
+ pcr &= ~FMC2_PCR_ECCEN;
+
+ /* Default mode */
+ pcr &= ~FMC2_PCR_ECCALG;
+ pcr &= ~FMC2_PCR_BCHECC;
+ pcr &= ~FMC2_PCR_WEN;
+
+ /* Set default ECC sector size */
+ pcr &= ~FMC2_PCR_ECCSS_MASK;
+ pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048);
+
+ /* Set default tclr/tar timings */
+ pcr &= ~FMC2_PCR_TCLR_MASK;
+ pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT);
+ pcr &= ~FMC2_PCR_TAR_MASK;
+ pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT);
+
+ /* Enable FMC2 controller */
+ bcr1 |= FMC2_BCR1_FMC2EN;
+
+ writel(bcr1, fmc2->io_base + FMC2_BCR1);
+ writel(pcr, fmc2->io_base + FMC2_PCR);
+ writel(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM);
+ writel(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT);
+}
+
+/* Controller timings */
+static void stm32_fmc2_calc_timings(struct nand_chip *chip,
+ const struct nand_sdr_timings *sdrt)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
+ struct stm32_fmc2_timings *tims = &nand->timings;
+ unsigned long hclk = clk_get_rate(&fmc2->clk);
+ unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
+ int tar, tclr, thiz, twait, tset_mem, tset_att, thold_mem, thold_att;
+
+ tar = hclkp;
+ if (tar < sdrt->tAR_min)
+ tar = sdrt->tAR_min;
+ tims->tar = DIV_ROUND_UP(tar, hclkp) - 1;
+ if (tims->tar > FMC2_PCR_TIMING_MASK)
+ tims->tar = FMC2_PCR_TIMING_MASK;
+
+ tclr = hclkp;
+ if (tclr < sdrt->tCLR_min)
+ tclr = sdrt->tCLR_min;
+ tims->tclr = DIV_ROUND_UP(tclr, hclkp) - 1;
+ if (tims->tclr > FMC2_PCR_TIMING_MASK)
+ tims->tclr = FMC2_PCR_TIMING_MASK;
+
+ tims->thiz = FMC2_THIZ;
+ thiz = (tims->thiz + 1) * hclkp;
+
+ /*
+ * tWAIT > tRP
+ * tWAIT > tWP
+ * tWAIT > tREA + tIO
+ */
+ twait = hclkp;
+ if (twait < sdrt->tRP_min)
+ twait = sdrt->tRP_min;
+ if (twait < sdrt->tWP_min)
+ twait = sdrt->tWP_min;
+ if (twait < sdrt->tREA_max + FMC2_TIO)
+ twait = sdrt->tREA_max + FMC2_TIO;
+ tims->twait = DIV_ROUND_UP(twait, hclkp);
+ if (tims->twait == 0)
+ tims->twait = 1;
+ else if (tims->twait > FMC2_PMEM_PATT_TIMING_MASK)
+ tims->twait = FMC2_PMEM_PATT_TIMING_MASK;
+
+ /*
+ * tSETUP_MEM > tCS - tWAIT
+ * tSETUP_MEM > tALS - tWAIT
+ * tSETUP_MEM > tDS - (tWAIT - tHIZ)
+ */
+ tset_mem = hclkp;
+ if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
+ tset_mem = sdrt->tCS_min - twait;
+ if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
+ tset_mem = sdrt->tALS_min - twait;
+ if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
+ (tset_mem < sdrt->tDS_min - (twait - thiz)))
+ tset_mem = sdrt->tDS_min - (twait - thiz);
+ tims->tset_mem = DIV_ROUND_UP(tset_mem, hclkp);
+ if (tims->tset_mem == 0)
+ tims->tset_mem = 1;
+ else if (tims->tset_mem > FMC2_PMEM_PATT_TIMING_MASK)
+ tims->tset_mem = FMC2_PMEM_PATT_TIMING_MASK;
+
+ /*
+ * tHOLD_MEM > tCH
+ * tHOLD_MEM > tREH - tSETUP_MEM
+ * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
+ */
+ thold_mem = hclkp;
+ if (thold_mem < sdrt->tCH_min)
+ thold_mem = sdrt->tCH_min;
+ if (sdrt->tREH_min > tset_mem &&
+ (thold_mem < sdrt->tREH_min - tset_mem))
+ thold_mem = sdrt->tREH_min - tset_mem;
+ if ((sdrt->tRC_min > tset_mem + twait) &&
+ (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
+ thold_mem = sdrt->tRC_min - (tset_mem + twait);
+ if ((sdrt->tWC_min > tset_mem + twait) &&
+ (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
+ thold_mem = sdrt->tWC_min - (tset_mem + twait);
+ tims->thold_mem = DIV_ROUND_UP(thold_mem, hclkp);
+ if (tims->thold_mem == 0)
+ tims->thold_mem = 1;
+ else if (tims->thold_mem > FMC2_PMEM_PATT_TIMING_MASK)
+ tims->thold_mem = FMC2_PMEM_PATT_TIMING_MASK;
+
+ /*
+ * tSETUP_ATT > tCS - tWAIT
+ * tSETUP_ATT > tCLS - tWAIT
+ * tSETUP_ATT > tALS - tWAIT
+ * tSETUP_ATT > tRHW - tHOLD_MEM
+ * tSETUP_ATT > tDS - (tWAIT - tHIZ)
+ */
+ tset_att = hclkp;
+ if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
+ tset_att = sdrt->tCS_min - twait;
+ if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
+ tset_att = sdrt->tCLS_min - twait;
+ if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
+ tset_att = sdrt->tALS_min - twait;
+ if (sdrt->tRHW_min > thold_mem &&
+ (tset_att < sdrt->tRHW_min - thold_mem))
+ tset_att = sdrt->tRHW_min - thold_mem;
+ if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
+ (tset_att < sdrt->tDS_min - (twait - thiz)))
+ tset_att = sdrt->tDS_min - (twait - thiz);
+ tims->tset_att = DIV_ROUND_UP(tset_att, hclkp);
+ if (tims->tset_att == 0)
+ tims->tset_att = 1;
+ else if (tims->tset_att > FMC2_PMEM_PATT_TIMING_MASK)
+ tims->tset_att = FMC2_PMEM_PATT_TIMING_MASK;
+
+ /*
+ * tHOLD_ATT > tALH
+ * tHOLD_ATT > tCH
+ * tHOLD_ATT > tCLH
+ * tHOLD_ATT > tCOH
+ * tHOLD_ATT > tDH
+ * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
+ * tHOLD_ATT > tADL - tSETUP_MEM
+ * tHOLD_ATT > tWH - tSETUP_MEM
+ * tHOLD_ATT > tWHR - tSETUP_MEM
+ * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
+ * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
+ */
+ thold_att = hclkp;
+ if (thold_att < sdrt->tALH_min)
+ thold_att = sdrt->tALH_min;
+ if (thold_att < sdrt->tCH_min)
+ thold_att = sdrt->tCH_min;
+ if (thold_att < sdrt->tCLH_min)
+ thold_att = sdrt->tCLH_min;
+ if (thold_att < sdrt->tCOH_min)
+ thold_att = sdrt->tCOH_min;
+ if (thold_att < sdrt->tDH_min)
+ thold_att = sdrt->tDH_min;
+ if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
+ (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
+ thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
+ if (sdrt->tADL_min > tset_mem &&
+ (thold_att < sdrt->tADL_min - tset_mem))
+ thold_att = sdrt->tADL_min - tset_mem;
+ if (sdrt->tWH_min > tset_mem &&
+ (thold_att < sdrt->tWH_min - tset_mem))
+ thold_att = sdrt->tWH_min - tset_mem;
+ if (sdrt->tWHR_min > tset_mem &&
+ (thold_att < sdrt->tWHR_min - tset_mem))
+ thold_att = sdrt->tWHR_min - tset_mem;
+ if ((sdrt->tRC_min > tset_att + twait) &&
+ (thold_att < sdrt->tRC_min - (tset_att + twait)))
+ thold_att = sdrt->tRC_min - (tset_att + twait);
+ if ((sdrt->tWC_min > tset_att + twait) &&
+ (thold_att < sdrt->tWC_min - (tset_att + twait)))
+ thold_att = sdrt->tWC_min - (tset_att + twait);
+ tims->thold_att = DIV_ROUND_UP(thold_att, hclkp);
+ if (tims->thold_att == 0)
+ tims->thold_att = 1;
+ else if (tims->thold_att > FMC2_PMEM_PATT_TIMING_MASK)
+ tims->thold_att = FMC2_PMEM_PATT_TIMING_MASK;
+}
+
+static int stm32_fmc2_setup_interface(struct mtd_info *mtd, int chipnr,
+ const struct nand_data_interface *conf)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ const struct nand_sdr_timings *sdrt;
+
+ sdrt = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdrt))
+ return PTR_ERR(sdrt);
+
+ if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
+ return 0;
+
+ stm32_fmc2_calc_timings(chip, sdrt);
+
+ /* Apply timings */
+ stm32_fmc2_timings_init(chip);
+
+ return 0;
+}
+
+/* NAND callbacks setup */
+static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip)
+{
+ chip->ecc.hwctl = stm32_fmc2_hwctl;
+
+ /*
+ * Specific callbacks to read/write a page depending on
+ * the algo used (Hamming, BCH).
+ */
+ if (chip->ecc.strength == FMC2_ECC_HAM) {
+ /* Hamming is used */
+ chip->ecc.calculate = stm32_fmc2_ham_calculate;
+ chip->ecc.correct = stm32_fmc2_ham_correct;
+ chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
+ chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
+ return;
+ }
+
+ /* BCH is used */
+ chip->ecc.read_page = stm32_fmc2_read_page;
+ chip->ecc.calculate = stm32_fmc2_bch_calculate;
+ chip->ecc.correct = stm32_fmc2_bch_correct;
+
+ if (chip->ecc.strength == FMC2_ECC_BCH8)
+ chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
+ else
+ chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
+}
+
+/* FMC2 caps */
+static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength)
+{
+ /* Hamming */
+ if (strength == FMC2_ECC_HAM)
+ return 4;
+
+ /* BCH8 */
+ if (strength == FMC2_ECC_BCH8)
+ return 14;
+
+ /* BCH4 */
+ return 8;
+}
+
+NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes,
+ FMC2_ECC_STEP_SIZE,
+ FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
+
+/* FMC2 probe */
+static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2,
+ ofnode node)
+{
+ struct stm32_fmc2_nand *nand = &fmc2->nand;
+ u32 cs[FMC2_MAX_CE];
+ int ret, i;
+
+ if (!ofnode_get_property(node, "reg", &nand->ncs))
+ return -EINVAL;
+
+ nand->ncs /= sizeof(u32);
+ if (!nand->ncs) {
+ pr_err("Invalid reg property size\n");
+ return -EINVAL;
+ }
+
+ ret = ofnode_read_u32_array(node, "reg", cs, nand->ncs);
+ if (ret < 0) {
+ pr_err("Could not retrieve reg property\n");
+ return -EINVAL;
+ }
+
+ for (i = 0; i < nand->ncs; i++) {
+ if (cs[i] > FMC2_MAX_CE) {
+ pr_err("Invalid reg value: %d\n",
+ nand->cs_used[i]);
+ return -EINVAL;
+ }
+
+ if (fmc2->cs_assigned & BIT(cs[i])) {
+ pr_err("Cs already assigned: %d\n",
+ nand->cs_used[i]);
+ return -EINVAL;
+ }
+
+ fmc2->cs_assigned |= BIT(cs[i]);
+ nand->cs_used[i] = cs[i];
+ }
+
+ nand->chip.flash_node = ofnode_to_offset(node);
+
+ return 0;
+}
+
+static int stm32_fmc2_parse_dt(struct udevice *dev,
+ struct stm32_fmc2_nfc *fmc2)
+{
+ ofnode child;
+ int ret, nchips = 0;
+
+ dev_for_each_subnode(child, dev)
+ nchips++;
+
+ if (!nchips) {
+ pr_err("NAND chip not defined\n");
+ return -EINVAL;
+ }
+
+ if (nchips > 1) {
+ pr_err("Too many NAND chips defined\n");
+ return -EINVAL;
+ }
+
+ dev_for_each_subnode(child, dev) {
+ ret = stm32_fmc2_parse_child(fmc2, child);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int stm32_fmc2_probe(struct udevice *dev)
+{
+ struct stm32_fmc2_nfc *fmc2 = dev_get_priv(dev);
+ struct stm32_fmc2_nand *nand = &fmc2->nand;
+ struct nand_chip *chip = &nand->chip;
+ struct mtd_info *mtd = &chip->mtd;
+ struct nand_ecclayout *ecclayout;
+ struct resource resource;
+ struct reset_ctl reset;
+ int oob_index, chip_cs, mem_region, ret, i;
+
+ spin_lock_init(&fmc2->controller.lock);
+ init_waitqueue_head(&fmc2->controller.wq);
+
+ ret = stm32_fmc2_parse_dt(dev, fmc2);
+ if (ret)
+ return ret;
+
+ /* Get resources */
+ ret = dev_read_resource(dev, 0, &resource);
+ if (ret) {
+ pr_err("Resource io_base not found");
+ return ret;
+ }
+ fmc2->io_base = (void __iomem *)resource.start;
+
+ for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
+ chip_cs++, mem_region += 3) {
+ if (!(fmc2->cs_assigned & BIT(chip_cs)))
+ continue;
+
+ ret = dev_read_resource(dev, mem_region, &resource);
+ if (ret) {
+ pr_err("Resource data_base not found for cs%d",
+ chip_cs);
+ return ret;
+ }
+ fmc2->data_base[chip_cs] = (void __iomem *)resource.start;
+
+ ret = dev_read_resource(dev, mem_region + 1, &resource);
+ if (ret) {
+ pr_err("Resource cmd_base not found for cs%d",
+ chip_cs);
+ return ret;
+ }
+ fmc2->cmd_base[chip_cs] = (void __iomem *)resource.start;
+
+ ret = dev_read_resource(dev, mem_region + 2, &resource);
+ if (ret) {
+ pr_err("Resource addr_base not found for cs%d",
+ chip_cs);
+ return ret;
+ }
+ fmc2->addr_base[chip_cs] = (void __iomem *)resource.start;
+ }
+
+ /* Enable the clock */
+ ret = clk_get_by_index(dev, 0, &fmc2->clk);
+ if (ret)
+ return ret;
+
+ ret = clk_enable(&fmc2->clk);
+ if (ret)
+ return ret;
+
+ /* Reset */
+ ret = reset_get_by_index(dev, 0, &reset);
+ if (!ret) {
+ reset_assert(&reset);
+ udelay(2);
+ reset_deassert(&reset);
+ }
+
+ /* FMC2 init routine */
+ stm32_fmc2_init(fmc2);
+
+ chip->controller = &fmc2->base;
+ chip->select_chip = stm32_fmc2_select_chip;
+ chip->setup_data_interface = stm32_fmc2_setup_interface;
+ chip->cmd_ctrl = stm32_fmc2_cmd_ctrl;
+ chip->chip_delay = FMC2_RB_DELAY_US;
+ chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
+ NAND_USE_BOUNCE_BUFFER;
+
+ /* Default ECC settings */
+ chip->ecc.mode = NAND_ECC_HW;
+ chip->ecc.size = FMC2_ECC_STEP_SIZE;
+ chip->ecc.strength = FMC2_ECC_BCH8;
+
+ /* Scan to find existence of the device */
+ ret = nand_scan_ident(mtd, nand->ncs, NULL);
+ if (ret)
+ return ret;
+
+ /*
+ * Only NAND_ECC_HW mode is actually supported
+ * Hamming => ecc.strength = 1
+ * BCH4 => ecc.strength = 4
+ * BCH8 => ecc.strength = 8
+ * ECC sector size = 512
+ */
+ if (chip->ecc.mode != NAND_ECC_HW) {
+ pr_err("Nand_ecc_mode is not well defined in the DT\n");
+ return -EINVAL;
+ }
+
+ ret = nand_check_ecc_caps(chip, &stm32_fmc2_ecc_caps,
+ mtd->oobsize - FMC2_BBM_LEN);
+ if (ret) {
+ pr_err("No valid ECC settings set\n");
+ return ret;
+ }
+
+ if (chip->bbt_options & NAND_BBT_USE_FLASH)
+ chip->bbt_options |= NAND_BBT_NO_OOB;
+
+ /* NAND callbacks setup */
+ stm32_fmc2_nand_callbacks_setup(chip);
+
+ /* Define ECC layout */
+ ecclayout = &fmc2->ecclayout;
+ ecclayout->eccbytes = chip->ecc.bytes *
+ (mtd->writesize / chip->ecc.size);
+ oob_index = FMC2_BBM_LEN;
+ for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
+ ecclayout->eccpos[i] = oob_index;
+ ecclayout->oobfree->offset = oob_index;
+ ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
+ chip->ecc.layout = ecclayout;
+
+ /* Configure bus width to 16-bit */
+ if (chip->options & NAND_BUSWIDTH_16)
+ stm32_fmc2_set_buswidth_16(fmc2, true);
+
+ /* Scan the device to fill MTD data-structures */
+ ret = nand_scan_tail(mtd);
+ if (ret)
+ return ret;
+
+ return nand_register(0, mtd);
+}
+
+static const struct udevice_id stm32_fmc2_match[] = {
+ { .compatible = "st,stm32mp15-fmc2" },
+ { /* Sentinel */ }
+};
+
+U_BOOT_DRIVER(stm32_fmc2_nand) = {
+ .name = "stm32_fmc2_nand",
+ .id = UCLASS_MTD,
+ .of_match = stm32_fmc2_match,
+ .probe = stm32_fmc2_probe,
+ .priv_auto_alloc_size = sizeof(struct stm32_fmc2_nfc),
+};
+
+void board_nand_init(void)
+{
+ struct udevice *dev;
+ int ret;
+
+ ret = uclass_get_device_by_driver(UCLASS_MTD,
+ DM_GET_DRIVER(stm32_fmc2_nand),
+ &dev);
+ if (ret && ret != -ENODEV)
+ pr_err("Failed to initialize STM32 FMC2 NAND controller. (error %d)\n",
+ ret);
+}