diff options
Diffstat (limited to 'board/xilinx/common/xipif_v1_23_b.h')
-rw-r--r-- | board/xilinx/common/xipif_v1_23_b.h | 746 |
1 files changed, 0 insertions, 746 deletions
diff --git a/board/xilinx/common/xipif_v1_23_b.h b/board/xilinx/common/xipif_v1_23_b.h deleted file mode 100644 index 3ce1fffba5..0000000000 --- a/board/xilinx/common/xipif_v1_23_b.h +++ /dev/null @@ -1,746 +0,0 @@ -/* $Id: xipif_v1_23_b.h,v 1.1 2002/03/18 23:24:52 linnj Exp $ */ -/****************************************************************************** -* -* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" -* AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND -* SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, -* OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, -* APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION -* THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, -* AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE -* FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY -* WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE -* IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR -* REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF -* INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS -* FOR A PARTICULAR PURPOSE. -* -* (c) Copyright 2002 Xilinx Inc. -* All rights reserved. -* -******************************************************************************/ -/****************************************************************************** -* -* FILENAME: -* -* xipif.h -* -* DESCRIPTION: -* -* The XIpIf component encapsulates the IPIF, which is the standard interface -* that IP must adhere to when connecting to a bus. The purpose of this -* component is to encapsulate the IPIF processing such that maintainability -* is increased. This component does not provide a lot of abstraction from -* from the details of the IPIF as it is considered a building block for -* device drivers. A device driver designer must be familiar with the -* details of the IPIF hardware to use this component. -* -* The IPIF hardware provides a building block for all hardware devices such -* that each device does not need to reimplement these building blocks. The -* IPIF contains other building blocks, such as FIFOs and DMA channels, which -* are also common to many devices. These blocks are implemented as separate -* hardware blocks and instantiated within the IPIF. The primary hardware of -* the IPIF which is implemented by this software component is the interrupt -* architecture. Since there are many blocks of a device which may generate -* interrupts, all the interrupt processing is contained in the common part -* of the device, the IPIF. This interrupt processing is for the device level -* only and does not include any processing for the interrupt controller. -* -* A device is a mechanism such as an Ethernet MAC. The device is made -* up of several parts which include an IPIF and the IP. The IPIF contains most -* of the device infrastructure which is common to all devices, such as -* interrupt processing, DMA channels, and FIFOs. The infrastructure may also -* be referred to as IPIF internal blocks since they are part of the IPIF and -* are separate blocks that can be selected based upon the needs of the device. -* The IP of the device is the logic that is unique to the device and interfaces -* to the IPIF of the device. -* -* In general, there are two levels of registers within the IPIF. The first -* level, referred to as the device level, contains registers which are for the -* entire device. The second level, referred to as the IP level, contains -* registers which are specific to the IP of the device. The two levels of -* registers are designed to be hierarchical such that the device level is -* is a more general register set above the more specific registers of the IP. -* The IP level of registers provides functionality which is typically common -* across all devices and allows IP designers to focus on the unique aspects -* of the IP. -* -* Critical Sections -* -* It is the responsibility of the device driver designer to use critical -* sections as necessary when calling functions of the IPIF. This component -* does not use critical sections and it does access registers using -* read-modify-write operations. Calls to IPIF functions from a main thread -* and from an interrupt context could produce unpredictable behavior such that -* the caller must provide the appropriate critical sections. -* -* Mutual Exclusion -* -* The functions of the IPIF are not thread safe such that the caller of all -* functions is responsible for ensuring mutual exclusion for an IPIF. Mutual -* exclusion across multiple IPIF components is not necessary. -* -* NOTES: -* -* None. -* -* MODIFICATION HISTORY: -* -* Ver Who Date Changes -* ----- ---- -------- ----------------------------------------------- -* 1.23b jhl 02/27/01 Repartioned to minimize size -* -******************************************************************************/ - -#ifndef XIPIF_H /* prevent circular inclusions */ -#define XIPIF_H /* by using protection macros */ - -/***************************** Include Files *********************************/ -#include "xbasic_types.h" -#include "xstatus.h" -#include "xversion.h" - -/************************** Constant Definitions *****************************/ - -/* the following constants define the register offsets for the registers of the - * IPIF, there are some holes in the memory map for reserved addresses to allow - * other registers to be added and still match the memory map of the interrupt - * controller registers - */ -#define XIIF_V123B_DISR_OFFSET 0UL /* device interrupt status register */ -#define XIIF_V123B_DIPR_OFFSET 4UL /* device interrupt pending register */ -#define XIIF_V123B_DIER_OFFSET 8UL /* device interrupt enable register */ -#define XIIF_V123B_DIIR_OFFSET 24UL /* device interrupt ID register */ -#define XIIF_V123B_DGIER_OFFSET 28UL /* device global interrupt enable reg */ -#define XIIF_V123B_IISR_OFFSET 32UL /* IP interrupt status register */ -#define XIIF_V123B_IIER_OFFSET 40UL /* IP interrupt enable register */ -#define XIIF_V123B_RESETR_OFFSET 64UL /* reset register */ - -#define XIIF_V123B_RESET_MASK 0xAUL - -/* the following constant is used for the device global interrupt enable - * register, to enable all interrupts for the device, this is the only bit - * in the register - */ -#define XIIF_V123B_GINTR_ENABLE_MASK 0x80000000UL - -/* the following constants contain the masks to identify each internal IPIF - * condition in the device registers of the IPIF, interrupts are assigned - * in the register from LSB to the MSB - */ -#define XIIF_V123B_ERROR_MASK 1UL /* LSB of the register */ - -/* The following constants contain interrupt IDs which identify each internal - * IPIF condition, this value must correlate with the mask constant for the - * error - */ -#define XIIF_V123B_ERROR_INTERRUPT_ID 0 /* interrupt bit #, (LSB = 0) */ -#define XIIF_V123B_NO_INTERRUPT_ID 128 /* no interrupts are pending */ - -/**************************** Type Definitions *******************************/ - -/***************** Macros (Inline Functions) Definitions *********************/ - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_RESET -* -* DESCRIPTION: -* -* Reset the IPIF component and hardware. This is a destructive operation that -* could cause the loss of data since resetting the IPIF of a device also -* resets the device using the IPIF and any blocks, such as FIFOs or DMA -* channels, within the IPIF. All registers of the IPIF will contain their -* reset value when this function returns. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* RETURN VALUE: -* -* None. -* -* NOTES: -* -* None. -* -******************************************************************************/ - -/* the following constant is used in the reset register to cause the IPIF to - * reset - */ -#define XIIF_V123B_RESET(RegBaseAddress) \ - XIo_Out32(RegBaseAddress + XIIF_V123B_RESETR_OFFSET, XIIF_V123B_RESET_MASK) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_WRITE_DISR -* -* DESCRIPTION: -* -* This function sets the device interrupt status register to the value. -* This register indicates the status of interrupt sources for a device -* which contains the IPIF. The status is independent of whether interrupts -* are enabled and could be used for polling a device at a higher level rather -* than a more detailed level. -* -* Each bit of the register correlates to a specific interrupt source within the -* device which contains the IPIF. With the exception of some internal IPIF -* conditions, the contents of this register are not latched but indicate -* the live status of the interrupt sources within the device. Writing any of -* the non-latched bits of the register will have no effect on the register. -* -* For the latched bits of this register only, setting a bit which is zero -* within this register causes an interrupt to generated. The device global -* interrupt enable register and the device interrupt enable register must be set -* appropriately to allow an interrupt to be passed out of the device. The -* interrupt is cleared by writing to this register with the bits to be -* cleared set to a one and all others to zero. This register implements a -* toggle on write functionality meaning any bits which are set in the value -* written cause the bits in the register to change to the opposite state. -* -* This function writes the specified value to the register such that -* some bits may be set and others cleared. It is the caller's responsibility -* to get the value of the register prior to setting the value to prevent a -* destructive behavior. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* Status contains the value to be written to the interrupt status register of -* the device. The only bits which can be written are the latched bits which -* contain the internal IPIF conditions. The following values may be used to -* set the status register or clear an interrupt condition. -* -* XIIF_V123B_ERROR_MASK Indicates a device error in the IPIF -* -* RETURN VALUE: -* -* None. -* -* NOTES: -* -* None. -* -******************************************************************************/ -#define XIIF_V123B_WRITE_DISR(RegBaseAddress, Status) \ - XIo_Out32((RegBaseAddress) + XIIF_V123B_DISR_OFFSET, (Status)) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_READ_DISR -* -* DESCRIPTION: -* -* This function gets the device interrupt status register contents. -* This register indicates the status of interrupt sources for a device -* which contains the IPIF. The status is independent of whether interrupts -* are enabled and could be used for polling a device at a higher level. -* -* Each bit of the register correlates to a specific interrupt source within the -* device which contains the IPIF. With the exception of some internal IPIF -* conditions, the contents of this register are not latched but indicate -* the live status of the interrupt sources within the device. -* -* For only the latched bits of this register, the interrupt may be cleared by -* writing to these bits in the status register. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* RETURN VALUE: -* -* A status which contains the value read from the interrupt status register of -* the device. The bit definitions are specific to the device with -* the exception of the latched internal IPIF condition bits. The following -* values may be used to detect internal IPIF conditions in the status. -* -* XIIF_V123B_ERROR_MASK Indicates a device error in the IPIF -* -* NOTES: -* -* None. -* -******************************************************************************/ -#define XIIF_V123B_READ_DISR(RegBaseAddress) \ - XIo_In32((RegBaseAddress) + XIIF_V123B_DISR_OFFSET) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_WRITE_DIER -* -* DESCRIPTION: -* -* This function sets the device interrupt enable register contents. -* This register controls which interrupt sources of the device are allowed to -* generate an interrupt. The device global interrupt enable register must also -* be set appropriately for an interrupt to be passed out of the device. -* -* Each bit of the register correlates to a specific interrupt source within the -* device which contains the IPIF. Setting a bit in this register enables that -* interrupt source to generate an interrupt. Clearing a bit in this register -* disables interrupt generation for that interrupt source. -* -* This function writes only the specified value to the register such that -* some interrupts source may be enabled and others disabled. It is the -* caller's responsibility to get the value of the interrupt enable register -* prior to setting the value to prevent an destructive behavior. -* -* An interrupt source may not be enabled to generate an interrupt, but can -* still be polled in the interrupt status register. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* Enable contains the value to be written to the interrupt enable register -* of the device. The bit definitions are specific to the device with -* the exception of the internal IPIF conditions. The following -* values may be used to enable the internal IPIF conditions interrupts. -* -* XIIF_V123B_ERROR_MASK Indicates a device error in the IPIF -* -* RETURN VALUE: -* -* None. -* -* NOTES: -* -* Signature: u32 XIIF_V123B_WRITE_DIER(u32 RegBaseAddress, -* u32 Enable) -* -******************************************************************************/ -#define XIIF_V123B_WRITE_DIER(RegBaseAddress, Enable) \ - XIo_Out32((RegBaseAddress) + XIIF_V123B_DIER_OFFSET, (Enable)) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_READ_DIER -* -* DESCRIPTION: -* -* This function gets the device interrupt enable register contents. -* This register controls which interrupt sources of the device -* are allowed to generate an interrupt. The device global interrupt enable -* register and the device interrupt enable register must also be set -* appropriately for an interrupt to be passed out of the device. -* -* Each bit of the register correlates to a specific interrupt source within the -* device which contains the IPIF. Setting a bit in this register enables that -* interrupt source to generate an interrupt if the global enable is set -* appropriately. Clearing a bit in this register disables interrupt generation -* for that interrupt source regardless of the global interrupt enable. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* RETURN VALUE: -* -* The value read from the interrupt enable register of the device. The bit -* definitions are specific to the device with the exception of the internal -* IPIF conditions. The following values may be used to determine from the -* value if the internal IPIF conditions interrupts are enabled. -* -* XIIF_V123B_ERROR_MASK Indicates a device error in the IPIF -* -* NOTES: -* -* None. -* -******************************************************************************/ -#define XIIF_V123B_READ_DIER(RegBaseAddress) \ - XIo_In32((RegBaseAddress) + XIIF_V123B_DIER_OFFSET) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_READ_DIPR -* -* DESCRIPTION: -* -* This function gets the device interrupt pending register contents. -* This register indicates the pending interrupt sources, those that are waiting -* to be serviced by the software, for a device which contains the IPIF. -* An interrupt must be enabled in the interrupt enable register of the IPIF to -* be pending. -* -* Each bit of the register correlates to a specific interrupt source within the -* the device which contains the IPIF. With the exception of some internal IPIF -* conditions, the contents of this register are not latched since the condition -* is latched in the IP interrupt status register, by an internal block of the -* IPIF such as a FIFO or DMA channel, or by the IP of the device. This register -* is read only and is not latched, but it is necessary to acknowledge (clear) -* the interrupt condition by performing the appropriate processing for the IP -* or block within the IPIF. -* -* This register can be thought of as the contents of the interrupt status -* register ANDed with the contents of the interrupt enable register. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* RETURN VALUE: -* -* The value read from the interrupt pending register of the device. The bit -* definitions are specific to the device with the exception of the latched -* internal IPIF condition bits. The following values may be used to detect -* internal IPIF conditions in the value. -* -* XIIF_V123B_ERROR_MASK Indicates a device error in the IPIF -* -* NOTES: -* -* None. -* -******************************************************************************/ -#define XIIF_V123B_READ_DIPR(RegBaseAddress) \ - XIo_In32((RegBaseAddress) + XIIF_V123B_DIPR_OFFSET) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_READ_DIIR -* -* DESCRIPTION: -* -* This function gets the device interrupt ID for the highest priority interrupt -* which is pending from the interrupt ID register. This function provides -* priority resolution such that faster interrupt processing is possible. -* Without priority resolution, it is necessary for the software to read the -* interrupt pending register and then check each interrupt source to determine -* if an interrupt is pending. Priority resolution becomes more important as the -* number of interrupt sources becomes larger. -* -* Interrupt priorities are based upon the bit position of the interrupt in the -* interrupt pending register with bit 0 being the highest priority. The -* interrupt ID is the priority of the interrupt, 0 - 31, with 0 being the -* highest priority. The interrupt ID register is live rather than latched such -* that multiple calls to this function may not yield the same results. A -* special value, outside of the interrupt priority range of 0 - 31, is -* contained in the register which indicates that no interrupt is pending. This -* may be useful for allowing software to continue processing interrupts in a -* loop until there are no longer any interrupts pending. -* -* The interrupt ID is designed to allow a function pointer table to be used -* in the software such that the interrupt ID is used as an index into that -* table. The function pointer table could contain an instance pointer, such -* as to DMA channel, and a function pointer to the function which handles -* that interrupt. This design requires the interrupt processing of the device -* driver to be partitioned into smaller more granular pieces based upon -* hardware used by the device, such as DMA channels and FIFOs. -* -* It is not mandatory that this function be used by the device driver software. -* It may choose to read the pending register and resolve the pending interrupt -* priorities on it's own. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* RETURN VALUE: -* -* An interrupt ID, 0 - 31, which identifies the highest priority interrupt -* which is pending. A value of XIIF_NO_INTERRUPT_ID indicates that there is -* no interrupt pending. The following values may be used to identify the -* interrupt ID for the internal IPIF interrupts. -* -* XIIF_V123B_ERROR_INTERRUPT_ID Indicates a device error in the IPIF -* -* NOTES: -* -* None. -* -******************************************************************************/ -#define XIIF_V123B_READ_DIIR(RegBaseAddress) \ - XIo_In32((RegBaseAddress) + XIIF_V123B_DIIR_OFFSET) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_GLOBAL_INTR_DISABLE -* -* DESCRIPTION: -* -* This function disables all interrupts for the device by writing to the global -* interrupt enable register. This register provides the ability to disable -* interrupts without any modifications to the interrupt enable register such -* that it is minimal effort to restore the interrupts to the previous enabled -* state. The corresponding function, XIpIf_GlobalIntrEnable, is provided to -* restore the interrupts to the previous enabled state. This function is -* designed to be used in critical sections of device drivers such that it is -* not necessary to disable other device interrupts. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* RETURN VALUE: -* -* None. -* -* NOTES: -* -* None. -* -******************************************************************************/ -#define XIIF_V123B_GINTR_DISABLE(RegBaseAddress) \ - XIo_Out32((RegBaseAddress) + XIIF_V123B_DGIER_OFFSET, 0) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_GINTR_ENABLE -* -* DESCRIPTION: -* -* This function writes to the global interrupt enable register to enable -* interrupts from the device. This register provides the ability to enable -* interrupts without any modifications to the interrupt enable register such -* that it is minimal effort to restore the interrupts to the previous enabled -* state. This function does not enable individual interrupts as the interrupt -* enable register must be set appropriately. This function is designed to be -* used in critical sections of device drivers such that it is not necessary to -* disable other device interrupts. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* RETURN VALUE: -* -* None. -* -* NOTES: -* -* None. -* -******************************************************************************/ -#define XIIF_V123B_GINTR_ENABLE(RegBaseAddress) \ - XIo_Out32((RegBaseAddress) + XIIF_V123B_DGIER_OFFSET, \ - XIIF_V123B_GINTR_ENABLE_MASK) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_IS_GINTR_ENABLED -* -* DESCRIPTION: -* -* This function determines if interrupts are enabled at the global level by -* reading the gloabl interrupt register. This register provides the ability to -* disable interrupts without any modifications to the interrupt enable register -* such that it is minimal effort to restore the interrupts to the previous -* enabled state. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* RETURN VALUE: -* -* XTRUE if interrupts are enabled for the IPIF, XFALSE otherwise. -* -* NOTES: -* -* None. -* -******************************************************************************/ -#define XIIF_V123B_IS_GINTR_ENABLED(RegBaseAddress) \ - (XIo_In32((RegBaseAddress) + XIIF_V123B_DGIER_OFFSET) == \ - XIIF_V123B_GINTR_ENABLE_MASK) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_WRITE_IISR -* -* DESCRIPTION: -* -* This function sets the IP interrupt status register to the specified value. -* This register indicates the status of interrupt sources for the IP of the -* device. The IP is defined as the part of the device that connects to the -* IPIF. The status is independent of whether interrupts are enabled such that -* the status register may also be polled when interrupts are not enabled. -* -* Each bit of the register correlates to a specific interrupt source within the -* IP. All bits of this register are latched. Setting a bit which is zero -* within this register causes an interrupt to be generated. The device global -* interrupt enable register and the device interrupt enable register must be set -* appropriately to allow an interrupt to be passed out of the device. The -* interrupt is cleared by writing to this register with the bits to be -* cleared set to a one and all others to zero. This register implements a -* toggle on write functionality meaning any bits which are set in the value -* written cause the bits in the register to change to the opposite state. -* -* This function writes only the specified value to the register such that -* some status bits may be set and others cleared. It is the caller's -* responsibility to get the value of the register prior to setting the value -* to prevent an destructive behavior. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* Status contains the value to be written to the IP interrupt status -* register. The bit definitions are specific to the device IP. -* -* RETURN VALUE: -* -* None. -* -* NOTES: -* -* None. -* -******************************************************************************/ -#define XIIF_V123B_WRITE_IISR(RegBaseAddress, Status) \ - XIo_Out32((RegBaseAddress) + XIIF_V123B_IISR_OFFSET, (Status)) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_READ_IISR -* -* DESCRIPTION: -* -* This function gets the contents of the IP interrupt status register. -* This register indicates the status of interrupt sources for the IP of the -* device. The IP is defined as the part of the device that connects to the -* IPIF. The status is independent of whether interrupts are enabled such -* that the status register may also be polled when interrupts are not enabled. -* -* Each bit of the register correlates to a specific interrupt source within the -* device. All bits of this register are latched. Writing a 1 to a bit within -* this register causes an interrupt to be generated if enabled in the interrupt -* enable register and the global interrupt enable is set. Since the status is -* latched, each status bit must be acknowledged in order for the bit in the -* status register to be updated. Each bit can be acknowledged by writing a -* 0 to the bit in the status register. - -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* RETURN VALUE: -* -* A status which contains the value read from the IP interrupt status register. -* The bit definitions are specific to the device IP. -* -* NOTES: -* -* None. -* -******************************************************************************/ -#define XIIF_V123B_READ_IISR(RegBaseAddress) \ - XIo_In32((RegBaseAddress) + XIIF_V123B_IISR_OFFSET) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_WRITE_IIER -* -* DESCRIPTION: -* -* This function sets the IP interrupt enable register contents. This register -* controls which interrupt sources of the IP are allowed to generate an -* interrupt. The global interrupt enable register and the device interrupt -* enable register must also be set appropriately for an interrupt to be -* passed out of the device containing the IPIF and the IP. -* -* Each bit of the register correlates to a specific interrupt source within the -* IP. Setting a bit in this register enables the interrupt source to generate -* an interrupt. Clearing a bit in this register disables interrupt generation -* for that interrupt source. -* -* This function writes only the specified value to the register such that -* some interrupt sources may be enabled and others disabled. It is the -* caller's responsibility to get the value of the interrupt enable register -* prior to setting the value to prevent an destructive behavior. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* Enable contains the value to be written to the IP interrupt enable register. -* The bit definitions are specific to the device IP. -* -* RETURN VALUE: -* -* None. -* -* NOTES: -* -* None. -* -******************************************************************************/ -#define XIIF_V123B_WRITE_IIER(RegBaseAddress, Enable) \ - XIo_Out32((RegBaseAddress) + XIIF_V123B_IIER_OFFSET, (Enable)) - -/****************************************************************************** -* -* MACRO: -* -* XIIF_V123B_READ_IIER -* -* DESCRIPTION: -* -* -* This function gets the IP interrupt enable register contents. This register -* controls which interrupt sources of the IP are allowed to generate an -* interrupt. The global interrupt enable register and the device interrupt -* enable register must also be set appropriately for an interrupt to be -* passed out of the device containing the IPIF and the IP. -* -* Each bit of the register correlates to a specific interrupt source within the -* IP. Setting a bit in this register enables the interrupt source to generate -* an interrupt. Clearing a bit in this register disables interrupt generation -* for that interrupt source. -* -* ARGUMENTS: -* -* RegBaseAddress contains the base address of the IPIF registers. -* -* RETURN VALUE: -* -* The contents read from the IP interrupt enable register. The bit definitions -* are specific to the device IP. -* -* NOTES: -* -* Signature: u32 XIIF_V123B_READ_IIER(u32 RegBaseAddress) -* -******************************************************************************/ -#define XIIF_V123B_READ_IIER(RegBaseAddress) \ - XIo_In32((RegBaseAddress) + XIIF_V123B_IIER_OFFSET) - -/************************** Function Prototypes ******************************/ - -/* - * Initialization Functions - */ -XStatus XIpIfV123b_SelfTest(u32 RegBaseAddress, u8 IpRegistersWidth); - -#endif /* end of protection macro */ |