summaryrefslogtreecommitdiff
path: root/board/xilinx/xilinx_enet/xemac_intr_dma.c
diff options
context:
space:
mode:
Diffstat (limited to 'board/xilinx/xilinx_enet/xemac_intr_dma.c')
-rw-r--r--board/xilinx/xilinx_enet/xemac_intr_dma.c1344
1 files changed, 0 insertions, 1344 deletions
diff --git a/board/xilinx/xilinx_enet/xemac_intr_dma.c b/board/xilinx/xilinx_enet/xemac_intr_dma.c
deleted file mode 100644
index 567abb42ab..0000000000
--- a/board/xilinx/xilinx_enet/xemac_intr_dma.c
+++ /dev/null
@@ -1,1344 +0,0 @@
-/******************************************************************************
-*
-* Author: Xilinx, Inc.
-*
-*
-* This program is free software; you can redistribute it and/or modify it
-* under the terms of the GNU General Public License as published by the
-* Free Software Foundation; either version 2 of the License, or (at your
-* option) any later version.
-*
-*
-* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A
-* COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
-* ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR STANDARD,
-* XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION IS FREE
-* FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE FOR OBTAINING
-* ANY THIRD PARTY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
-* XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
-* THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY
-* WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM
-* CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND
-* FITNESS FOR A PARTICULAR PURPOSE.
-*
-*
-* Xilinx hardware products are not intended for use in life support
-* appliances, devices, or systems. Use in such applications is
-* expressly prohibited.
-*
-*
-* (c) Copyright 2002-2004 Xilinx Inc.
-* All rights reserved.
-*
-*
-* You should have received a copy of the GNU General Public License along
-* with this program; if not, write to the Free Software Foundation, Inc.,
-* 675 Mass Ave, Cambridge, MA 02139, USA.
-*
-******************************************************************************/
-/*****************************************************************************/
-/**
-*
-* @file xemac_intr_dma.c
-*
-* Contains functions used in interrupt mode when configured with scatter-gather
-* DMA.
-*
-* The interrupt handler, XEmac_IntrHandlerDma(), must be connected by the user
-* to the interrupt controller.
-*
-* <pre>
-* MODIFICATION HISTORY:
-*
-* Ver Who Date Changes
-* ----- ---- -------- ---------------------------------------------------------
-* 1.00a rpm 07/31/01 First release
-* 1.00b rpm 02/20/02 Repartitioned files and functions
-* 1.00c rpm 12/05/02 New version includes support for simple DMA and the delay
-* argument to SgSend
-* 1.00c rpm 02/03/03 The XST_DMA_SG_COUNT_EXCEEDED return code was removed
-* from SetPktThreshold in the internal DMA driver. Also
-* avoided compiler warnings by initializing Result in the
-* interrupt service routines.
-* 1.00c rpm 03/26/03 Fixed a problem in the interrupt service routines where
-* the interrupt status was toggled clear after a call to
-* ErrorHandler, but if ErrorHandler reset the device the
-* toggle actually asserted the interrupt because the
-* reset had cleared it.
-* </pre>
-*
-******************************************************************************/
-
-/***************************** Include Files *********************************/
-
-#include "xbasic_types.h"
-#include "xemac_i.h"
-#include "xio.h"
-#include "xbuf_descriptor.h"
-#include "xdma_channel.h"
-#include "xipif_v1_23_b.h" /* Uses v1.23b of the IPIF */
-
-/************************** Constant Definitions *****************************/
-
-/**************************** Type Definitions *******************************/
-
-/***************** Macros (Inline Functions) Definitions *********************/
-
-/************************** Variable Definitions *****************************/
-
-/************************** Function Prototypes ******************************/
-
-static void HandleDmaRecvIntr(XEmac * InstancePtr);
-static void HandleDmaSendIntr(XEmac * InstancePtr);
-static void HandleEmacDmaIntr(XEmac * InstancePtr);
-
-/*****************************************************************************/
-/**
-*
-* Send an Ethernet frame using scatter-gather DMA. The caller attaches the
-* frame to one or more buffer descriptors, then calls this function once for
-* each descriptor. The caller is responsible for allocating and setting up the
-* descriptor. An entire Ethernet frame may or may not be contained within one
-* descriptor. This function simply inserts the descriptor into the scatter-
-* gather engine's transmit list. The caller is responsible for providing mutual
-* exclusion to guarantee that a frame is contiguous in the transmit list. The
-* buffer attached to the descriptor must be word-aligned.
-*
-* The driver updates the descriptor with the device control register before
-* being inserted into the transmit list. If this is the last descriptor in
-* the frame, the inserts are committed, which means the descriptors for this
-* frame are now available for transmission.
-*
-* It is assumed that the upper layer software supplies a correctly formatted
-* Ethernet frame, including the destination and source addresses, the
-* type/length field, and the data field. It is also assumed that upper layer
-* software does not append FCS at the end of the frame.
-*
-* The buffer attached to the descriptor must be word-aligned on the front end.
-*
-* This call is non-blocking. Notification of error or successful transmission
-* is done asynchronously through the send or error callback function.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-* @param BdPtr is the address of a descriptor to be inserted into the transmit
-* ring.
-* @param Delay indicates whether to start the scatter-gather DMA channel
-* immediately, or whether to wait. This allows the user to build up a
-* list of more than one descriptor before starting the transmission of
-* the packets, which allows the application to keep up with DMA and have
-* a constant stream of frames being transmitted. Use XEM_SGDMA_NODELAY or
-* XEM_SGDMA_DELAY, defined in xemac.h, as the value of this argument. If
-* the user chooses to delay and build a list, the user must call this
-* function with the XEM_SGDMA_NODELAY option or call XEmac_Start() to
-* kick off the tranmissions.
-*
-* @return
-*
-* - XST_SUCCESS if the buffer was successfull sent
-* - XST_DEVICE_IS_STOPPED if the Ethernet MAC has not been started yet
-* - XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
-* - XST_DMA_SG_LIST_FULL if the descriptor list for the DMA channel is full
-* - XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into
-* the list because a locked descriptor exists at the insert point
-* - XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the
-* list, the DMA channel believes there are no new descriptors to commit. If
-* this is ever encountered, there is likely a thread mutual exclusion problem
-* on transmit.
-*
-* @note
-*
-* This function is not thread-safe. The user must provide mutually exclusive
-* access to this function if there are to be multiple threads that can call it.
-*
-* @internal
-*
-* A status that should never be returned from this function, although
-* the code is set up to handle it, is XST_DMA_SG_NO_LIST. Starting the device
-* requires a list to be created, and this function requires the device to be
-* started.
-*
-******************************************************************************/
-XStatus
-XEmac_SgSend(XEmac * InstancePtr, XBufDescriptor * BdPtr, int Delay)
-{
- XStatus Result;
- u32 BdControl;
-
- XASSERT_NONVOID(InstancePtr != NULL);
- XASSERT_NONVOID(BdPtr != NULL);
- XASSERT_NONVOID(InstancePtr->IsReady == XCOMPONENT_IS_READY);
-
- /*
- * Be sure the device is configured for scatter-gather DMA, then be sure
- * it is started.
- */
- if (!XEmac_mIsSgDma(InstancePtr)) {
- return XST_NOT_SGDMA;
- }
-
- /*
- * Set some descriptor control word defaults (source address increment
- * and local destination address) and the destination address
- * (the FIFO). These are the same for every transmit descriptor.
- */
- BdControl = XBufDescriptor_GetControl(BdPtr);
- XBufDescriptor_SetControl(BdPtr, BdControl | XEM_DFT_SEND_BD_MASK);
-
- XBufDescriptor_SetDestAddress(BdPtr,
- InstancePtr->BaseAddress +
- XEM_PFIFO_TXDATA_OFFSET);
-
- /*
- * Put the descriptor in the send list. The DMA component accesses data
- * here that can also be modified in interrupt context, so a critical
- * section is required.
- */
- XIIF_V123B_GINTR_DISABLE(InstancePtr->BaseAddress);
-
- Result = XDmaChannel_PutDescriptor(&InstancePtr->SendChannel, BdPtr);
- if (Result != XST_SUCCESS) {
- XIIF_V123B_GINTR_ENABLE(InstancePtr->BaseAddress);
- return Result;
- }
-
- /*
- * If this is the last buffer in the frame, commit the inserts and start
- * the DMA engine if necessary
- */
- if (XBufDescriptor_IsLastControl(BdPtr)) {
- Result = XDmaChannel_CommitPuts(&InstancePtr->SendChannel);
- if (Result != XST_SUCCESS) {
- XIIF_V123B_GINTR_ENABLE(InstancePtr->BaseAddress);
- return Result;
- }
-
- if (Delay == XEM_SGDMA_NODELAY) {
- /*
- * Start the DMA channel. Ignore the return status since we know the
- * list exists and has at least one entry and we don't care if the
- * channel is already started. The DMA component accesses data here
- * that can be modified at interrupt or task levels, so a critical
- * section is required.
- */
- (void) XDmaChannel_SgStart(&InstancePtr->SendChannel);
- }
- }
-
- XIIF_V123B_GINTR_ENABLE(InstancePtr->BaseAddress);
-
- return XST_SUCCESS;
-}
-
-/*****************************************************************************/
-/**
-*
-* Add a descriptor, with an attached empty buffer, into the receive descriptor
-* list. The buffer attached to the descriptor must be word-aligned. This is
-* used by the upper layer software during initialization when first setting up
-* the receive descriptors, and also during reception of frames to replace
-* filled buffers with empty buffers. This function can be called when the
-* device is started or stopped. Note that it does start the scatter-gather DMA
-* engine. Although this is not necessary during initialization, it is not a
-* problem during initialization because the MAC receiver is not yet started.
-*
-* The buffer attached to the descriptor must be word-aligned on both the front
-* end and the back end.
-*
-* Notification of received frames are done asynchronously through the receive
-* callback function.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-* @param BdPtr is a pointer to the buffer descriptor that will be added to the
-* descriptor list.
-*
-* @return
-*
-* - XST_SUCCESS if a descriptor was successfully returned to the driver
-* - XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
-* - XST_DMA_SG_LIST_FULL if the receive descriptor list is full
-* - XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into
-* the list because a locked descriptor exists at the insert point.
-* - XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the
-* list, the DMA channel believes there are no new descriptors to commit.
-*
-* @internal
-*
-* A status that should never be returned from this function, although
-* the code is set up to handle it, is XST_DMA_SG_NO_LIST. Starting the device
-* requires a list to be created, and this function requires the device to be
-* started.
-*
-******************************************************************************/
-XStatus
-XEmac_SgRecv(XEmac * InstancePtr, XBufDescriptor * BdPtr)
-{
- XStatus Result;
- u32 BdControl;
-
- XASSERT_NONVOID(InstancePtr != NULL);
- XASSERT_NONVOID(BdPtr != NULL);
- XASSERT_NONVOID(InstancePtr->IsReady == XCOMPONENT_IS_READY);
-
- /*
- * Be sure the device is configured for scatter-gather DMA
- */
- if (!XEmac_mIsSgDma(InstancePtr)) {
- return XST_NOT_SGDMA;
- }
-
- /*
- * Set some descriptor control word defaults (destination address increment
- * and local source address) and the source address (the FIFO). These are
- * the same for every receive descriptor.
- */
- BdControl = XBufDescriptor_GetControl(BdPtr);
- XBufDescriptor_SetControl(BdPtr, BdControl | XEM_DFT_RECV_BD_MASK);
- XBufDescriptor_SetSrcAddress(BdPtr,
- InstancePtr->BaseAddress +
- XEM_PFIFO_RXDATA_OFFSET);
-
- /*
- * Put the descriptor into the channel's descriptor list and commit.
- * Although this function is likely called within interrupt context, there
- * is the possibility that the upper layer software queues it to a task.
- * In this case, a critical section is needed here to protect shared data
- * in the DMA component.
- */
- XIIF_V123B_GINTR_DISABLE(InstancePtr->BaseAddress);
-
- Result = XDmaChannel_PutDescriptor(&InstancePtr->RecvChannel, BdPtr);
- if (Result != XST_SUCCESS) {
- XIIF_V123B_GINTR_ENABLE(InstancePtr->BaseAddress);
- return Result;
- }
-
- Result = XDmaChannel_CommitPuts(&InstancePtr->RecvChannel);
- if (Result != XST_SUCCESS) {
- XIIF_V123B_GINTR_ENABLE(InstancePtr->BaseAddress);
- return Result;
- }
-
- /*
- * Start the DMA channel. Ignore the return status since we know the list
- * exists and has at least one entry and we don't care if the channel is
- * already started. The DMA component accesses data here that can be
- * modified at interrupt or task levels, so a critical section is required.
- */
- (void) XDmaChannel_SgStart(&InstancePtr->RecvChannel);
-
- XIIF_V123B_GINTR_ENABLE(InstancePtr->BaseAddress);
-
- return XST_SUCCESS;
-}
-
-/*****************************************************************************/
-/**
-*
-* The interrupt handler for the Ethernet driver when configured with scatter-
-* gather DMA.
-*
-* Get the interrupt status from the IpIf to determine the source of the
-* interrupt. The source can be: MAC, Recv Packet FIFO, Send Packet FIFO, Recv
-* DMA channel, or Send DMA channel. The packet FIFOs only interrupt during
-* "deadlock" conditions.
-*
-* @param InstancePtr is a pointer to the XEmac instance that just interrupted.
-*
-* @return
-*
-* None.
-*
-* @note
-*
-* None.
-*
-******************************************************************************/
-void
-XEmac_IntrHandlerDma(void *InstancePtr)
-{
- u32 IntrStatus;
- XEmac *EmacPtr = (XEmac *) InstancePtr;
-
- EmacPtr->Stats.TotalIntrs++;
-
- /*
- * Get the interrupt status from the IPIF. There is no clearing of
- * interrupts in the IPIF. Interrupts must be cleared at the source.
- */
- IntrStatus = XIIF_V123B_READ_DIPR(EmacPtr->BaseAddress);
-
- /*
- * See which type of interrupt is being requested, and service it
- */
- if (IntrStatus & XEM_IPIF_RECV_DMA_MASK) { /* Receive DMA interrupt */
- EmacPtr->Stats.RecvInterrupts++;
- HandleDmaRecvIntr(EmacPtr);
- }
-
- if (IntrStatus & XEM_IPIF_SEND_DMA_MASK) { /* Send DMA interrupt */
- EmacPtr->Stats.XmitInterrupts++;
- HandleDmaSendIntr(EmacPtr);
- }
-
- if (IntrStatus & XEM_IPIF_EMAC_MASK) { /* MAC interrupt */
- EmacPtr->Stats.EmacInterrupts++;
- HandleEmacDmaIntr(EmacPtr);
- }
-
- if (IntrStatus & XEM_IPIF_RECV_FIFO_MASK) { /* Receive FIFO interrupt */
- EmacPtr->Stats.RecvInterrupts++;
- XEmac_CheckFifoRecvError(EmacPtr);
- }
-
- if (IntrStatus & XEM_IPIF_SEND_FIFO_MASK) { /* Send FIFO interrupt */
- EmacPtr->Stats.XmitInterrupts++;
- XEmac_CheckFifoSendError(EmacPtr);
- }
-
- if (IntrStatus & XIIF_V123B_ERROR_MASK) {
- /*
- * An error occurred internal to the IPIF. This is more of a debug and
- * integration issue rather than a production error. Don't do anything
- * other than clear it, which provides a spot for software to trap
- * on the interrupt and begin debugging.
- */
- XIIF_V123B_WRITE_DISR(EmacPtr->BaseAddress,
- XIIF_V123B_ERROR_MASK);
- }
-}
-
-/*****************************************************************************/
-/**
-*
-* Set the packet count threshold for this device. The device must be stopped
-* before setting the threshold. The packet count threshold is used for interrupt
-* coalescing, which reduces the frequency of interrupts from the device to the
-* processor. In this case, the scatter-gather DMA engine only interrupts when
-* the packet count threshold is reached, instead of interrupting for each packet.
-* A packet is a generic term used by the scatter-gather DMA engine, and is
-* equivalent to an Ethernet frame in our case.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-* @param Direction indicates the channel, send or receive, from which the
-* threshold register is read.
-* @param Threshold is the value of the packet threshold count used during
-* interrupt coalescing. A value of 0 disables the use of packet threshold
-* by the hardware.
-*
-* @return
-*
-* - XST_SUCCESS if the threshold was successfully set
-* - XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
-* - XST_DEVICE_IS_STARTED if the device has not been stopped
-* - XST_INVALID_PARAM if the Direction parameter is invalid. Turning on
-* asserts would also catch this error.
-*
-* @note
-*
-* The packet threshold could be set to larger than the number of descriptors
-* allocated to the DMA channel. In this case, the wait bound will take over
-* and always indicate data arrival. There was a check in this function that
-* returned an error if the treshold was larger than the number of descriptors,
-* but that was removed because users would then have to set the threshold
-* only after they set descriptor space, which is an order dependency that
-* caused confustion.
-*
-******************************************************************************/
-XStatus
-XEmac_SetPktThreshold(XEmac * InstancePtr, u32 Direction, u8 Threshold)
-{
- XASSERT_NONVOID(InstancePtr != NULL);
- XASSERT_NONVOID(Direction == XEM_SEND || Direction == XEM_RECV);
- XASSERT_NONVOID(InstancePtr->IsReady == XCOMPONENT_IS_READY);
-
- /*
- * Be sure device is configured for scatter-gather DMA and has been stopped
- */
- if (!XEmac_mIsSgDma(InstancePtr)) {
- return XST_NOT_SGDMA;
- }
-
- if (InstancePtr->IsStarted == XCOMPONENT_IS_STARTED) {
- return XST_DEVICE_IS_STARTED;
- }
-
- /*
- * Based on the direction, set the packet threshold in the
- * corresponding DMA channel component. Default to the receive
- * channel threshold register (if an invalid Direction is passed).
- */
- switch (Direction) {
- case XEM_SEND:
- return XDmaChannel_SetPktThreshold(&InstancePtr->SendChannel,
- Threshold);
-
- case XEM_RECV:
- return XDmaChannel_SetPktThreshold(&InstancePtr->RecvChannel,
- Threshold);
-
- default:
- return XST_INVALID_PARAM;
- }
-}
-
-/*****************************************************************************/
-/**
-*
-* Get the value of the packet count threshold for this driver/device. The packet
-* count threshold is used for interrupt coalescing, which reduces the frequency
-* of interrupts from the device to the processor. In this case, the
-* scatter-gather DMA engine only interrupts when the packet count threshold is
-* reached, instead of interrupting for each packet. A packet is a generic term
-* used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame
-* in our case.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-* @param Direction indicates the channel, send or receive, from which the
-* threshold register is read.
-* @param ThreshPtr is a pointer to the byte into which the current value of the
-* packet threshold register will be copied. An output parameter. A value
-* of 0 indicates the use of packet threshold by the hardware is disabled.
-*
-* @return
-*
-* - XST_SUCCESS if the packet threshold was retrieved successfully
-* - XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
-* - XST_INVALID_PARAM if the Direction parameter is invalid. Turning on
-* asserts would also catch this error.
-*
-* @note
-*
-* None.
-*
-******************************************************************************/
-XStatus
-XEmac_GetPktThreshold(XEmac * InstancePtr, u32 Direction, u8 * ThreshPtr)
-{
- XASSERT_NONVOID(InstancePtr != NULL);
- XASSERT_NONVOID(Direction == XEM_SEND || Direction == XEM_RECV);
- XASSERT_NONVOID(ThreshPtr != NULL);
- XASSERT_NONVOID(InstancePtr->IsReady == XCOMPONENT_IS_READY);
-
- if (!XEmac_mIsSgDma(InstancePtr)) {
- return XST_NOT_SGDMA;
- }
-
- /*
- * Based on the direction, return the packet threshold set in the
- * corresponding DMA channel component. Default to the value in
- * the receive channel threshold register (if an invalid Direction
- * is passed).
- */
- switch (Direction) {
- case XEM_SEND:
- *ThreshPtr =
- XDmaChannel_GetPktThreshold(&InstancePtr->SendChannel);
- break;
-
- case XEM_RECV:
- *ThreshPtr =
- XDmaChannel_GetPktThreshold(&InstancePtr->RecvChannel);
- break;
-
- default:
- return XST_INVALID_PARAM;
- }
-
- return XST_SUCCESS;
-}
-
-/*****************************************************************************/
-/**
-*
-* Set the packet wait bound timer for this driver/device. The device must be
-* stopped before setting the timer value. The packet wait bound is used during
-* interrupt coalescing to trigger an interrupt when not enough packets have been
-* received to reach the packet count threshold. A packet is a generic term used
-* by the scatter-gather DMA engine, and is equivalent to an Ethernet frame in
-* our case. The timer is in milliseconds.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-* @param Direction indicates the channel, send or receive, from which the
-* threshold register is read.
-* @param TimerValue is the value of the packet wait bound used during interrupt
-* coalescing. It is in milliseconds in the range 0 - 1023. A value of 0
-* disables the packet wait bound timer.
-*
-* @return
-*
-* - XST_SUCCESS if the packet wait bound was set successfully
-* - XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
-* - XST_DEVICE_IS_STARTED if the device has not been stopped
-* - XST_INVALID_PARAM if the Direction parameter is invalid. Turning on
-* asserts would also catch this error.
-*
-* @note
-*
-* None.
-*
-******************************************************************************/
-XStatus
-XEmac_SetPktWaitBound(XEmac * InstancePtr, u32 Direction, u32 TimerValue)
-{
- XASSERT_NONVOID(InstancePtr != NULL);
- XASSERT_NONVOID(Direction == XEM_SEND || Direction == XEM_RECV);
- XASSERT_NONVOID(TimerValue <= XEM_SGDMA_MAX_WAITBOUND);
- XASSERT_NONVOID(InstancePtr->IsReady == XCOMPONENT_IS_READY);
-
- /*
- * Be sure device is configured for scatter-gather DMA and has been stopped
- */
- if (!XEmac_mIsSgDma(InstancePtr)) {
- return XST_NOT_SGDMA;
- }
-
- if (InstancePtr->IsStarted == XCOMPONENT_IS_STARTED) {
- return XST_DEVICE_IS_STARTED;
- }
-
- /*
- * Based on the direction, set the packet wait bound in the
- * corresponding DMA channel component. Default to the receive
- * channel wait bound register (if an invalid Direction is passed).
- */
- switch (Direction) {
- case XEM_SEND:
- XDmaChannel_SetPktWaitBound(&InstancePtr->SendChannel,
- TimerValue);
- break;
-
- case XEM_RECV:
- XDmaChannel_SetPktWaitBound(&InstancePtr->RecvChannel,
- TimerValue);
- break;
-
- default:
- return XST_INVALID_PARAM;
- }
-
- return XST_SUCCESS;
-}
-
-/*****************************************************************************/
-/**
-*
-* Get the packet wait bound timer for this driver/device. The packet wait bound
-* is used during interrupt coalescing to trigger an interrupt when not enough
-* packets have been received to reach the packet count threshold. A packet is a
-* generic term used by the scatter-gather DMA engine, and is equivalent to an
-* Ethernet frame in our case. The timer is in milliseconds.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-* @param Direction indicates the channel, send or receive, from which the
-* threshold register is read.
-* @param WaitPtr is a pointer to the byte into which the current value of the
-* packet wait bound register will be copied. An output parameter. Units
-* are in milliseconds in the range 0 - 1023. A value of 0 indicates the
-* packet wait bound timer is disabled.
-*
-* @return
-*
-* - XST_SUCCESS if the packet wait bound was retrieved successfully
-* - XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
-* - XST_INVALID_PARAM if the Direction parameter is invalid. Turning on
-* asserts would also catch this error.
-*
-* @note
-*
-* None.
-*
-******************************************************************************/
-XStatus
-XEmac_GetPktWaitBound(XEmac * InstancePtr, u32 Direction, u32 * WaitPtr)
-{
- XASSERT_NONVOID(InstancePtr != NULL);
- XASSERT_NONVOID(Direction == XEM_SEND || Direction == XEM_RECV);
- XASSERT_NONVOID(WaitPtr != NULL);
- XASSERT_NONVOID(InstancePtr->IsReady == XCOMPONENT_IS_READY);
-
- if (!XEmac_mIsSgDma(InstancePtr)) {
- return XST_NOT_SGDMA;
- }
-
- /*
- * Based on the direction, return the packet wait bound set in the
- * corresponding DMA channel component. Default to the value in
- * the receive channel wait bound register (if an invalid Direction
- * is passed).
- */
- switch (Direction) {
- case XEM_SEND:
- *WaitPtr =
- XDmaChannel_GetPktWaitBound(&InstancePtr->SendChannel);
- break;
-
- case XEM_RECV:
- *WaitPtr =
- XDmaChannel_GetPktWaitBound(&InstancePtr->RecvChannel);
- break;
-
- default:
- return XST_INVALID_PARAM;
- }
-
- return XST_SUCCESS;
-}
-
-/*****************************************************************************/
-/**
-*
-* Give the driver the memory space to be used for the scatter-gather DMA
-* receive descriptor list. This function should only be called once, during
-* initialization of the Ethernet driver. The memory space must be big enough
-* to hold some number of descriptors, depending on the needs of the system.
-* The xemac.h file defines minimum and default numbers of descriptors
-* which can be used to allocate this memory space.
-*
-* The memory space must be word-aligned. An assert will occur if asserts are
-* turned on and the memory is not word-aligned.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-* @param MemoryPtr is a pointer to the word-aligned memory.
-* @param ByteCount is the length, in bytes, of the memory space.
-*
-* @return
-*
-* - XST_SUCCESS if the space was initialized successfully
-* - XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
-* - XST_DMA_SG_LIST_EXISTS if this list space has already been created
-*
-* @note
-*
-* If the device is configured for scatter-gather DMA, this function must be
-* called AFTER the XEmac_Initialize() function because the DMA channel
-* components must be initialized before the memory space is set.
-*
-******************************************************************************/
-XStatus
-XEmac_SetSgRecvSpace(XEmac * InstancePtr, u32 * MemoryPtr, u32 ByteCount)
-{
- XASSERT_NONVOID(InstancePtr != NULL);
- XASSERT_NONVOID(MemoryPtr != NULL);
- XASSERT_NONVOID(ByteCount != 0);
- XASSERT_NONVOID(InstancePtr->IsReady == XCOMPONENT_IS_READY);
-
- if (!XEmac_mIsSgDma(InstancePtr)) {
- return XST_NOT_SGDMA;
- }
-
- return XDmaChannel_CreateSgList(&InstancePtr->RecvChannel, MemoryPtr,
- ByteCount);
-}
-
-/*****************************************************************************/
-/**
-*
-* Give the driver the memory space to be used for the scatter-gather DMA
-* transmit descriptor list. This function should only be called once, during
-* initialization of the Ethernet driver. The memory space must be big enough
-* to hold some number of descriptors, depending on the needs of the system.
-* The xemac.h file defines minimum and default numbers of descriptors
-* which can be used to allocate this memory space.
-*
-* The memory space must be word-aligned. An assert will occur if asserts are
-* turned on and the memory is not word-aligned.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-* @param MemoryPtr is a pointer to the word-aligned memory.
-* @param ByteCount is the length, in bytes, of the memory space.
-*
-* @return
-*
-* - XST_SUCCESS if the space was initialized successfully
-* - XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
-* - XST_DMA_SG_LIST_EXISTS if this list space has already been created
-*
-* @note
-*
-* If the device is configured for scatter-gather DMA, this function must be
-* called AFTER the XEmac_Initialize() function because the DMA channel
-* components must be initialized before the memory space is set.
-*
-******************************************************************************/
-XStatus
-XEmac_SetSgSendSpace(XEmac * InstancePtr, u32 * MemoryPtr, u32 ByteCount)
-{
- XASSERT_NONVOID(InstancePtr != NULL);
- XASSERT_NONVOID(MemoryPtr != NULL);
- XASSERT_NONVOID(ByteCount != 0);
- XASSERT_NONVOID(InstancePtr->IsReady == XCOMPONENT_IS_READY);
-
- if (!XEmac_mIsSgDma(InstancePtr)) {
- return XST_NOT_SGDMA;
- }
-
- return XDmaChannel_CreateSgList(&InstancePtr->SendChannel, MemoryPtr,
- ByteCount);
-}
-
-/*****************************************************************************/
-/**
-*
-* Set the callback function for handling received frames in scatter-gather DMA
-* mode. The upper layer software should call this function during
-* initialization. The callback is called once per frame received. The head of
-* a descriptor list is passed in along with the number of descriptors in the
-* list. Before leaving the callback, the upper layer software should attach a
-* new buffer to each descriptor in the list.
-*
-* The callback is invoked by the driver within interrupt context, so it needs
-* to do its job quickly. Sending the received frame up the protocol stack
-* should be done at task-level. If there are other potentially slow operations
-* within the callback, these too should be done at task-level.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-* @param CallBackRef is a reference pointer to be passed back to the adapter in
-* the callback. This helps the adapter correlate the callback to a
-* particular driver.
-* @param FuncPtr is the pointer to the callback function.
-*
-* @return
-*
-* None.
-*
-* @note
-*
-* None.
-*
-******************************************************************************/
-void
-XEmac_SetSgRecvHandler(XEmac * InstancePtr, void *CallBackRef,
- XEmac_SgHandler FuncPtr)
-{
- /*
- * Asserted IsDmaSg here instead of run-time check because there is really
- * no ill-effects of setting these when not configured for scatter-gather.
- */
- XASSERT_VOID(InstancePtr != NULL);
- XASSERT_VOID(FuncPtr != NULL);
- XASSERT_VOID(XEmac_mIsSgDma(InstancePtr));
- XASSERT_VOID(InstancePtr->IsReady == XCOMPONENT_IS_READY);
-
- InstancePtr->SgRecvHandler = FuncPtr;
- InstancePtr->SgRecvRef = CallBackRef;
-}
-
-/*****************************************************************************/
-/**
-*
-* Set the callback function for handling confirmation of transmitted frames in
-* scatter-gather DMA mode. The upper layer software should call this function
-* during initialization. The callback is called once per frame sent. The head
-* of a descriptor list is passed in along with the number of descriptors in
-* the list. The callback is responsible for freeing buffers attached to these
-* descriptors.
-*
-* The callback is invoked by the driver within interrupt context, so it needs
-* to do its job quickly. If there are potentially slow operations within the
-* callback, these should be done at task-level.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-* @param CallBackRef is a reference pointer to be passed back to the adapter in
-* the callback. This helps the adapter correlate the callback to a
-* particular driver.
-* @param FuncPtr is the pointer to the callback function.
-*
-* @return
-*
-* None.
-*
-* @note
-*
-* None.
-*
-******************************************************************************/
-void
-XEmac_SetSgSendHandler(XEmac * InstancePtr, void *CallBackRef,
- XEmac_SgHandler FuncPtr)
-{
- /*
- * Asserted IsDmaSg here instead of run-time check because there is really
- * no ill-effects of setting these when not configured for scatter-gather.
- */
- XASSERT_VOID(InstancePtr != NULL);
- XASSERT_VOID(FuncPtr != NULL);
- XASSERT_VOID(XEmac_mIsSgDma(InstancePtr));
- XASSERT_VOID(InstancePtr->IsReady == XCOMPONENT_IS_READY);
-
- InstancePtr->SgSendHandler = FuncPtr;
- InstancePtr->SgSendRef = CallBackRef;
-}
-
-/*****************************************************************************/
-/*
-*
-* Handle an interrupt from the DMA receive channel. DMA interrupts are:
-*
-* - DMA error. DMA encountered a bus error or timeout. This is a fatal error
-* that requires reset of the channel. The driver calls the error handler
-* of the upper layer software with an error code indicating the device should
-* be reset.
-* - Packet count threshold reached. For scatter-gather operations, indicates
-* the threshold for the number of packets not serviced by software has been
-* reached. The driver behaves as follows:
-* - Get the value of the packet counter, which tells us how many packets
-* are ready to be serviced
-* - For each packet
-* - For each descriptor, remove it from the scatter-gather list
-* - Check for the last descriptor in the frame, and if set
-* - Bump frame statistics
-* - Call the scatter-gather receive callback function
-* - Decrement the packet counter by one
-* Note that there are no receive errors reported in the status word of
-* the buffer descriptor. If receive errors occur, the MAC drops the
-* packet, and we only find out about the errors through various error
-* count registers.
-* - Packet wait bound reached. For scatter-gather, indicates the time to wait
-* for the next packet has expired. The driver follows the same logic as when
-* the packet count threshold interrupt is received.
-* - Scatter-gather end acknowledge. Hardware has reached the end of the
-* descriptor list. The driver follows the same logic as when the packet count
-* threshold interrupt is received. In addition, the driver restarts the DMA
-* scatter-gather channel in case there are newly inserted descriptors.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-*
-* @return
-*
-* Although the function returns void, there are asynchronous errors that can
-* be generated (by calling the ErrorHandler) from this function. These are:
-* - XST_DMA_SG_LIST_EMPTY indicates we tried to get a buffer descriptor from the
-* DMA channel, but there was not one ready for software.
-* - XST_DMA_ERROR indicates a DMA bus error or timeout occurred. This is a fatal
-* error that requires reset.
-*
-* @note
-*
-* None.
-*
-******************************************************************************/
-static void
-HandleDmaRecvIntr(XEmac * InstancePtr)
-{
- u32 IntrStatus;
-
- /*
- * Read the interrupt status
- */
- IntrStatus = XDmaChannel_GetIntrStatus(&InstancePtr->RecvChannel);
-
- /*
- * For packet threshold or wait bound interrupts, process desciptors. Also
- * process descriptors on a SG end acknowledgement, which means the end of
- * the descriptor list has been reached by the hardware. For receive, this
- * is potentially trouble since it means the descriptor list is full,
- * unless software can process enough packets quickly enough so the
- * hardware has room to put new packets.
- */
- if (IntrStatus & (XDC_IXR_PKT_THRESHOLD_MASK |
- XDC_IXR_PKT_WAIT_BOUND_MASK | XDC_IXR_SG_END_MASK)) {
- XStatus Result = XST_SUCCESS;
- u32 NumFrames;
- u32 NumProcessed;
- u32 NumBuffers;
- u32 NumBytes;
- u32 IsLast;
- XBufDescriptor *FirstBdPtr;
- XBufDescriptor *BdPtr;
-
- /*
- * Get the number of unserviced packets
- */
- NumFrames = XDmaChannel_GetPktCount(&InstancePtr->RecvChannel);
-
- for (NumProcessed = 0; NumProcessed < NumFrames; NumProcessed++) {
- IsLast = FALSE;
- FirstBdPtr = NULL;
- NumBuffers = 0;
- NumBytes = 0;
-
- /*
- * For each packet, get the descriptor from the list. On the
- * last one in the frame, make the callback to the upper layer.
- */
- while (!IsLast) {
- Result =
- XDmaChannel_GetDescriptor(&InstancePtr->
- RecvChannel,
- &BdPtr);
- if (Result != XST_SUCCESS) {
- /*
- * An error getting a buffer descriptor from the list.
- * This should not happen, but if it does, report it to
- * the error callback and break out of the loops to service
- * other interrupts.
- */
- InstancePtr->ErrorHandler(InstancePtr->
- ErrorRef,
- Result);
- break;
- }
-
- /*
- * Keep a pointer to the first descriptor in the list, as it
- * will be passed to the upper layers in a bit. By the fact
- * that we received this packet means no errors occurred, so
- * no need to check the device status word for errors.
- */
- if (FirstBdPtr == NULL) {
- FirstBdPtr = BdPtr;
- }
-
- NumBytes += XBufDescriptor_GetLength(BdPtr);
-
- /*
- * Check to see if this is the last descriptor in the frame,
- * and if so, set the IsLast flag to get out of the loop.
- */
- if (XBufDescriptor_IsLastStatus(BdPtr)) {
- IsLast = TRUE;
- }
-
- /*
- * Bump the number of buffers in this packet
- */
- NumBuffers++;
-
- } /* end while loop */
-
- /*
- * Check for error that occurred inside the while loop, and break
- * out of the for loop if there was one so other interrupts can
- * be serviced.
- */
- if (Result != XST_SUCCESS) {
- break;
- }
-
- InstancePtr->Stats.RecvFrames++;
- InstancePtr->Stats.RecvBytes += NumBytes;
-
- /*
- * Make the callback to the upper layers, passing it the first
- * descriptor in the packet and the number of descriptors in the
- * packet.
- */
- InstancePtr->SgRecvHandler(InstancePtr->SgRecvRef,
- FirstBdPtr, NumBuffers);
-
- /*
- * Decrement the packet count register to reflect the fact we
- * just processed a packet
- */
- XDmaChannel_DecrementPktCount(&InstancePtr->
- RecvChannel);
-
- } /* end for loop */
-
- /*
- * If the interrupt was an end-ack, check the descriptor list again to
- * see if it is empty. If not, go ahead and restart the scatter-gather
- * channel. This is to fix a possible race condition where, on receive,
- * the driver attempted to start a scatter-gather channel that was
- * already started, which resulted in no action from the XDmaChannel
- * component. But, just after the XDmaChannel component saw that the
- * hardware was already started, the hardware stopped because it
- * reached the end of the list. In that case, this interrupt is
- * generated and we can restart the hardware here.
- */
- if (IntrStatus & XDC_IXR_SG_END_MASK) {
- /*
- * Ignore the return status since we know the list exists and we
- * don't care if the list is empty or the channel is already started.
- */
- (void) XDmaChannel_SgStart(&InstancePtr->RecvChannel);
- }
- }
-
- /*
- * All interrupts are handled (except the error below) so acknowledge
- * (clear) the interrupts by writing the value read above back to the status
- * register. The packet count interrupt must be acknowledged after the
- * decrement, otherwise it will come right back. We clear the interrupts
- * before we handle the error interrupt because the ErrorHandler should
- * result in a reset, which clears the interrupt status register. So we
- * don't want to toggle the interrupt back on by writing the interrupt
- * status register with an old value after a reset.
- */
- XDmaChannel_SetIntrStatus(&InstancePtr->RecvChannel, IntrStatus);
-
- /*
- * Check for DMA errors and call the error callback function if an error
- * occurred (DMA bus or timeout error), which should result in a reset of
- * the device by the upper layer software.
- */
- if (IntrStatus & XDC_IXR_DMA_ERROR_MASK) {
- InstancePtr->Stats.DmaErrors++;
- InstancePtr->ErrorHandler(InstancePtr->ErrorRef, XST_DMA_ERROR);
- }
-}
-
-/*****************************************************************************/
-/*
-*
-* Handle an interrupt from the DMA send channel. DMA interrupts are:
-*
-* - DMA error. DMA encountered a bus error or timeout. This is a fatal error
-* that requires reset of the channel. The driver calls the error handler
-* of the upper layer software with an error code indicating the device should
-* be reset.
-* - Packet count threshold reached. For scatter-gather operations, indicates
-* the threshold for the number of packets not serviced by software has been
-* reached. The driver behaves as follows:
-* - Get the value of the packet counter, which tells us how many packets
-* are ready to be serviced
-* - For each packet
-* - For each descriptor, remove it from the scatter-gather list
-* - Check for the last descriptor in the frame, and if set
-* - Bump frame statistics
-* - Call the scatter-gather receive callback function
-* - Decrement the packet counter by one
-* Note that there are no receive errors reported in the status word of
-* the buffer descriptor. If receive errors occur, the MAC drops the
-* packet, and we only find out about the errors through various error
-* count registers.
-* - Packet wait bound reached. For scatter-gather, indicates the time to wait
-* for the next packet has expired. The driver follows the same logic as when
-* the packet count threshold interrupt is received.
-* - Scatter-gather end acknowledge. Hardware has reached the end of the
-* descriptor list. The driver follows the same logic as when the packet count
-* threshold interrupt is received. In addition, the driver restarts the DMA
-* scatter-gather channel in case there are newly inserted descriptors.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-*
-* @return
-*
-* Although the function returns void, there are asynchronous errors
-* that can be generated from this function. These are:
-* - XST_DMA_SG_LIST_EMPTY indicates we tried to get a buffer descriptor from
-* the DMA channel, but there was not one ready for software.
-* - XST_DMA_ERROR indicates a DMA bus error or timeout occurred. This is a
-* fatal error that requires reset.
-*
-* @note
-*
-* None.
-*
-******************************************************************************/
-static void
-HandleDmaSendIntr(XEmac * InstancePtr)
-{
- u32 IntrStatus;
-
- /*
- * Read the interrupt status
- */
- IntrStatus = XDmaChannel_GetIntrStatus(&InstancePtr->SendChannel);
-
- /*
- * For packet threshold or wait bound interrupt, process descriptors. Also
- * process descriptors on a SG end acknowledgement, which means the end of
- * the descriptor list has been reached by the hardware. For transmit,
- * this is a normal condition during times of light traffic. In fact, the
- * wait bound interrupt may be masked for transmit since the end-ack would
- * always occur before the wait bound expires.
- */
- if (IntrStatus & (XDC_IXR_PKT_THRESHOLD_MASK |
- XDC_IXR_PKT_WAIT_BOUND_MASK | XDC_IXR_SG_END_MASK)) {
- XStatus Result = XST_SUCCESS;
- u32 NumFrames;
- u32 NumProcessed;
- u32 NumBuffers;
- u32 NumBytes;
- u32 IsLast;
- XBufDescriptor *FirstBdPtr;
- XBufDescriptor *BdPtr;
-
- /*
- * Get the number of unserviced packets
- */
- NumFrames = XDmaChannel_GetPktCount(&InstancePtr->SendChannel);
-
- for (NumProcessed = 0; NumProcessed < NumFrames; NumProcessed++) {
- IsLast = FALSE;
- FirstBdPtr = NULL;
- NumBuffers = 0;
- NumBytes = 0;
-
- /*
- * For each frame, traverse the descriptor list and look for
- * errors. On the last one in the frame, make the callback.
- */
- while (!IsLast) {
- Result =
- XDmaChannel_GetDescriptor(&InstancePtr->
- SendChannel,
- &BdPtr);
- if (Result != XST_SUCCESS) {
- /*
- * An error getting a buffer descriptor from the list.
- * This should not happen, but if it does, report it to
- * the error callback and break out of the loops to service
- * other interrupts
- */
- InstancePtr->ErrorHandler(InstancePtr->
- ErrorRef,
- Result);
- break;
- }
-
- /*
- * Keep a pointer to the first descriptor in the list and
- * check the device status for errors. The device status is
- * only available in the first descriptor of a packet.
- */
- if (FirstBdPtr == NULL) {
- u32 XmitStatus;
-
- FirstBdPtr = BdPtr;
-
- XmitStatus =
- XBufDescriptor_GetDeviceStatus
- (BdPtr);
- if (XmitStatus &
- XEM_TSR_EXCESS_DEFERRAL_MASK) {
- InstancePtr->Stats.
- XmitExcessDeferral++;
- }
-
- if (XmitStatus &
- XEM_TSR_LATE_COLLISION_MASK) {
- InstancePtr->Stats.
- XmitLateCollisionErrors++;
- }
- }
-
- NumBytes += XBufDescriptor_GetLength(BdPtr);
-
- /*
- * Check to see if this is the last descriptor in the frame,
- * and if so, set the IsLast flag to get out of the loop. The
- * transmit channel must check the last bit in the control
- * word, not the status word (the DMA engine does not update
- * the last bit in the status word for the transmit direction).
- */
- if (XBufDescriptor_IsLastControl(BdPtr)) {
- IsLast = TRUE;
- }
-
- /*
- * Bump the number of buffers in this packet
- */
- NumBuffers++;
-
- } /* end while loop */
-
- /*
- * Check for error that occurred inside the while loop, and break
- * out of the for loop if there was one so other interrupts can
- * be serviced.
- */
- if (Result != XST_SUCCESS) {
- break;
- }
-
- InstancePtr->Stats.XmitFrames++;
- InstancePtr->Stats.XmitBytes += NumBytes;
-
- /*
- * Make the callback to the upper layers, passing it the first
- * descriptor in the packet and the number of descriptors in the
- * packet.
- */
- InstancePtr->SgSendHandler(InstancePtr->SgSendRef,
- FirstBdPtr, NumBuffers);
-
- /*
- * Decrement the packet count register to reflect the fact we
- * just processed a packet
- */
- XDmaChannel_DecrementPktCount(&InstancePtr->
- SendChannel);
-
- } /* end for loop */
-
- /*
- * If the interrupt was an end-ack, check the descriptor list again to
- * see if it is empty. If not, go ahead and restart the scatter-gather
- * channel. This is to fix a possible race condition where, on transmit,
- * the driver attempted to start a scatter-gather channel that was
- * already started, which resulted in no action from the XDmaChannel
- * component. But, just after the XDmaChannel component saw that the
- * hardware was already started, the hardware stopped because it
- * reached the end of the list. In that case, this interrupt is
- * generated and we can restart the hardware here.
- */
- if (IntrStatus & XDC_IXR_SG_END_MASK) {
- /*
- * Ignore the return status since we know the list exists and we
- * don't care if the list is empty or the channel is already started.
- */
- (void) XDmaChannel_SgStart(&InstancePtr->SendChannel);
- }
- }
-
- /*
- * All interrupts are handled (except the error below) so acknowledge
- * (clear) the interrupts by writing the value read above back to the status
- * register. The packet count interrupt must be acknowledged after the
- * decrement, otherwise it will come right back. We clear the interrupts
- * before we handle the error interrupt because the ErrorHandler should
- * result in a reset, which clears the interrupt status register. So we
- * don't want to toggle the interrupt back on by writing the interrupt
- * status register with an old value after a reset.
- */
- XDmaChannel_SetIntrStatus(&InstancePtr->SendChannel, IntrStatus);
-
- /*
- * Check for DMA errors and call the error callback function if an error
- * occurred (DMA bus or timeout error), which should result in a reset of
- * the device by the upper layer software.
- */
- if (IntrStatus & XDC_IXR_DMA_ERROR_MASK) {
- InstancePtr->Stats.DmaErrors++;
- InstancePtr->ErrorHandler(InstancePtr->ErrorRef, XST_DMA_ERROR);
- }
-}
-
-/*****************************************************************************/
-/*
-*
-* Handle an interrupt from the Ethernet MAC when configured with scatter-gather
-* DMA. The only interrupts handled in this case are errors.
-*
-* @param InstancePtr is a pointer to the XEmac instance to be worked on.
-*
-* @return
-*
-* None.
-*
-* @note
-*
-* None.
-*
-******************************************************************************/
-static void
-HandleEmacDmaIntr(XEmac * InstancePtr)
-{
- u32 IntrStatus;
-
- /*
- * When configured with DMA, the EMAC generates interrupts only when errors
- * occur. We clear the interrupts immediately so that any latched status
- * interrupt bits will reflect the true status of the device, and so any
- * pulsed interrupts (non-status) generated during the Isr will not be lost.
- */
- IntrStatus = XIIF_V123B_READ_IISR(InstancePtr->BaseAddress);
- XIIF_V123B_WRITE_IISR(InstancePtr->BaseAddress, IntrStatus);
-
- /*
- * Check the MAC for errors
- */
- XEmac_CheckEmacError(InstancePtr, IntrStatus);
-}