summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/mtd/nand/lpc32xx_nand_slc.c413
1 files changed, 409 insertions, 4 deletions
diff --git a/drivers/mtd/nand/lpc32xx_nand_slc.c b/drivers/mtd/nand/lpc32xx_nand_slc.c
index 719a74d2f6..dbb95d9326 100644
--- a/drivers/mtd/nand/lpc32xx_nand_slc.c
+++ b/drivers/mtd/nand/lpc32xx_nand_slc.c
@@ -3,15 +3,29 @@
*
* (C) Copyright 2015 Vladimir Zapolskiy <vz@mleia.com>
*
+ * Hardware ECC support original source code
+ * Copyright (C) 2008 by NXP Semiconductors
+ * Author: Kevin Wells
+ *
+ * Copyright (c) 2015 Tyco Fire Protection Products.
+ *
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <nand.h>
+#include <linux/mtd/nand_ecc.h>
#include <asm/errno.h>
#include <asm/io.h>
+#include <asm/arch/config.h>
#include <asm/arch/clk.h>
#include <asm/arch/sys_proto.h>
+#include <asm/arch/dma.h>
+#include <asm/arch/cpu.h>
+
+#if defined(CONFIG_DMA_LPC32XX) && defined(CONFIG_SPL_BUILD)
+#warning "DMA support in SPL image is not tested"
+#endif
struct lpc32xx_nand_slc_regs {
u32 data;
@@ -33,11 +47,18 @@ struct lpc32xx_nand_slc_regs {
/* CFG register */
#define CFG_CE_LOW (1 << 5)
+#define CFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
+#define CFG_ECC_EN (1 << 3) /* ECC enable bit */
+#define CFG_DMA_BURST (1 << 2) /* DMA burst bit */
+#define CFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
/* CTRL register */
#define CTRL_SW_RESET (1 << 2)
+#define CTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
+#define CTRL_DMA_START (1 << 0) /* Start DMA channel bit */
/* STAT register */
+#define STAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
#define STAT_NAND_READY (1 << 0)
/* INT_STAT register */
@@ -54,6 +75,30 @@ struct lpc32xx_nand_slc_regs {
#define TAC_R_HOLD(n) (max_t(uint32_t, (n), 0xF) << 4)
#define TAC_R_SETUP(n) (max_t(uint32_t, (n), 0xF) << 0)
+#if defined(CONFIG_DMA_LPC32XX)
+#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / CONFIG_SYS_NAND_ECCSIZE)
+
+/*
+ * DMA Descriptors
+ * For Large Block: 17 descriptors = ((16 Data and ECC Read) + 1 Spare Area)
+ * For Small Block: 5 descriptors = ((4 Data and ECC Read) + 1 Spare Area)
+ */
+static struct lpc32xx_dmac_ll dmalist[ECCSTEPS * 2 + 1];
+static u32 ecc_buffer[8]; /* MAX ECC size */
+static unsigned int dmachan = (unsigned int)-1; /* Invalid channel */
+
+/*
+ * Helper macro for the DMA client (i.e. NAND SLC):
+ * - to write the next DMA linked list item address
+ * (see arch/include/asm/arch-lpc32xx/dma.h).
+ * - to assign the DMA data register to DMA source or destination address.
+ * - to assign the ECC register to DMA source or destination address.
+ */
+#define lpc32xx_dmac_next_lli(x) ((u32)x)
+#define lpc32xx_dmac_set_dma_data() ((u32)&lpc32xx_nand_slc_regs->dma_data)
+#define lpc32xx_dmac_set_ecc() ((u32)&lpc32xx_nand_slc_regs->ecc)
+#endif
+
static struct lpc32xx_nand_slc_regs __iomem *lpc32xx_nand_slc_regs
= (struct lpc32xx_nand_slc_regs __iomem *)SLC_NAND_BASE;
@@ -108,28 +153,353 @@ static int lpc32xx_nand_dev_ready(struct mtd_info *mtd)
return readl(&lpc32xx_nand_slc_regs->stat) & STAT_NAND_READY;
}
+#if defined(CONFIG_DMA_LPC32XX)
+/*
+ * Prepares DMA descriptors for NAND RD/WR operations
+ * If the size is < 256 Bytes then it is assumed to be
+ * an OOB transfer
+ */
+static void lpc32xx_nand_dma_configure(struct nand_chip *chip,
+ const u8 *buffer, int size,
+ int read)
+{
+ u32 i, dmasrc, ctrl, ecc_ctrl, oob_ctrl, dmadst;
+ struct lpc32xx_dmac_ll *dmalist_cur;
+ struct lpc32xx_dmac_ll *dmalist_cur_ecc;
+
+ /*
+ * CTRL descriptor entry for reading ECC
+ * Copy Multiple times to sync DMA with Flash Controller
+ */
+ ecc_ctrl = 0x5 |
+ DMAC_CHAN_SRC_BURST_1 |
+ DMAC_CHAN_DEST_BURST_1 |
+ DMAC_CHAN_SRC_WIDTH_32 |
+ DMAC_CHAN_DEST_WIDTH_32 |
+ DMAC_CHAN_DEST_AHB1;
+
+ /* CTRL descriptor entry for reading/writing Data */
+ ctrl = (CONFIG_SYS_NAND_ECCSIZE / 4) |
+ DMAC_CHAN_SRC_BURST_4 |
+ DMAC_CHAN_DEST_BURST_4 |
+ DMAC_CHAN_SRC_WIDTH_32 |
+ DMAC_CHAN_DEST_WIDTH_32 |
+ DMAC_CHAN_DEST_AHB1;
+
+ /* CTRL descriptor entry for reading/writing Spare Area */
+ oob_ctrl = (CONFIG_SYS_NAND_OOBSIZE / 4) |
+ DMAC_CHAN_SRC_BURST_4 |
+ DMAC_CHAN_DEST_BURST_4 |
+ DMAC_CHAN_SRC_WIDTH_32 |
+ DMAC_CHAN_DEST_WIDTH_32 |
+ DMAC_CHAN_DEST_AHB1;
+
+ if (read) {
+ dmasrc = lpc32xx_dmac_set_dma_data();
+ dmadst = (u32)buffer;
+ ctrl |= DMAC_CHAN_DEST_AUTOINC;
+ } else {
+ dmadst = lpc32xx_dmac_set_dma_data();
+ dmasrc = (u32)buffer;
+ ctrl |= DMAC_CHAN_SRC_AUTOINC;
+ }
+
+ /*
+ * Write Operation Sequence for Small Block NAND
+ * ----------------------------------------------------------
+ * 1. X'fer 256 bytes of data from Memory to Flash.
+ * 2. Copy generated ECC data from Register to Spare Area
+ * 3. X'fer next 256 bytes of data from Memory to Flash.
+ * 4. Copy generated ECC data from Register to Spare Area.
+ * 5. X'fer 16 byets of Spare area from Memory to Flash.
+ * Read Operation Sequence for Small Block NAND
+ * ----------------------------------------------------------
+ * 1. X'fer 256 bytes of data from Flash to Memory.
+ * 2. Copy generated ECC data from Register to ECC calc Buffer.
+ * 3. X'fer next 256 bytes of data from Flash to Memory.
+ * 4. Copy generated ECC data from Register to ECC calc Buffer.
+ * 5. X'fer 16 bytes of Spare area from Flash to Memory.
+ * Write Operation Sequence for Large Block NAND
+ * ----------------------------------------------------------
+ * 1. Steps(1-4) of Write Operations repeate for four times
+ * which generates 16 DMA descriptors to X'fer 2048 bytes of
+ * data & 32 bytes of ECC data.
+ * 2. X'fer 64 bytes of Spare area from Memory to Flash.
+ * Read Operation Sequence for Large Block NAND
+ * ----------------------------------------------------------
+ * 1. Steps(1-4) of Read Operations repeate for four times
+ * which generates 16 DMA descriptors to X'fer 2048 bytes of
+ * data & 32 bytes of ECC data.
+ * 2. X'fer 64 bytes of Spare area from Flash to Memory.
+ */
+
+ for (i = 0; i < size/CONFIG_SYS_NAND_ECCSIZE; i++) {
+ dmalist_cur = &dmalist[i * 2];
+ dmalist_cur_ecc = &dmalist[(i * 2) + 1];
+
+ dmalist_cur->dma_src = (read ? (dmasrc) : (dmasrc + (i*256)));
+ dmalist_cur->dma_dest = (read ? (dmadst + (i*256)) : dmadst);
+ dmalist_cur->next_lli = lpc32xx_dmac_next_lli(dmalist_cur_ecc);
+ dmalist_cur->next_ctrl = ctrl;
+
+ dmalist_cur_ecc->dma_src = lpc32xx_dmac_set_ecc();
+ dmalist_cur_ecc->dma_dest = (u32)&ecc_buffer[i];
+ dmalist_cur_ecc->next_lli =
+ lpc32xx_dmac_next_lli(&dmalist[(i * 2) + 2]);
+ dmalist_cur_ecc->next_ctrl = ecc_ctrl;
+ }
+
+ if (i) { /* Data only transfer */
+ dmalist_cur_ecc = &dmalist[(i * 2) - 1];
+ dmalist_cur_ecc->next_lli = 0;
+ dmalist_cur_ecc->next_ctrl |= DMAC_CHAN_INT_TC_EN;
+ return;
+ }
+
+ /* OOB only transfer */
+ if (read) {
+ dmasrc = lpc32xx_dmac_set_dma_data();
+ dmadst = (u32)buffer;
+ oob_ctrl |= DMAC_CHAN_DEST_AUTOINC;
+ } else {
+ dmadst = lpc32xx_dmac_set_dma_data();
+ dmasrc = (u32)buffer;
+ oob_ctrl |= DMAC_CHAN_SRC_AUTOINC;
+ }
+
+ /* Read/ Write Spare Area Data To/From Flash */
+ dmalist_cur = &dmalist[i * 2];
+ dmalist_cur->dma_src = dmasrc;
+ dmalist_cur->dma_dest = dmadst;
+ dmalist_cur->next_lli = 0;
+ dmalist_cur->next_ctrl = (oob_ctrl | DMAC_CHAN_INT_TC_EN);
+}
+
+static void lpc32xx_nand_xfer(struct mtd_info *mtd, const u8 *buf,
+ int len, int read)
+{
+ struct nand_chip *chip = mtd->priv;
+ u32 config;
+ int ret;
+
+ /* DMA Channel Configuration */
+ config = (read ? DMAC_CHAN_FLOW_D_P2M : DMAC_CHAN_FLOW_D_M2P) |
+ (read ? DMAC_DEST_PERIP(0) : DMAC_DEST_PERIP(DMA_PERID_NAND1)) |
+ (read ? DMAC_SRC_PERIP(DMA_PERID_NAND1) : DMAC_SRC_PERIP(0)) |
+ DMAC_CHAN_ENABLE;
+
+ /* Prepare DMA descriptors */
+ lpc32xx_nand_dma_configure(chip, buf, len, read);
+
+ /* Setup SLC controller and start transfer */
+ if (read)
+ setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR);
+ else /* NAND_ECC_WRITE */
+ clrbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR);
+ setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_BURST);
+
+ /* Write length for new transfers */
+ if (!((readl(&lpc32xx_nand_slc_regs->stat) & STAT_DMA_FIFO) |
+ readl(&lpc32xx_nand_slc_regs->tc))) {
+ int tmp = (len != mtd->oobsize) ? mtd->oobsize : 0;
+ writel(len + tmp, &lpc32xx_nand_slc_regs->tc);
+ }
+
+ setbits_le32(&lpc32xx_nand_slc_regs->ctrl, CTRL_DMA_START);
+
+ /* Start DMA transfers */
+ ret = lpc32xx_dma_start_xfer(dmachan, dmalist, config);
+ if (unlikely(ret < 0))
+ BUG();
+
+
+ /* Wait for NAND to be ready */
+ while (!lpc32xx_nand_dev_ready(mtd))
+ ;
+
+ /* Wait till DMA transfer is DONE */
+ if (lpc32xx_dma_wait_status(dmachan))
+ pr_err("NAND DMA transfer error!\r\n");
+
+ /* Stop DMA & HW ECC */
+ clrbits_le32(&lpc32xx_nand_slc_regs->ctrl, CTRL_DMA_START);
+ clrbits_le32(&lpc32xx_nand_slc_regs->cfg,
+ CFG_DMA_DIR | CFG_DMA_BURST | CFG_ECC_EN | CFG_DMA_ECC);
+}
+
+static u32 slc_ecc_copy_to_buffer(u8 *spare, const u32 *ecc, int count)
+{
+ int i;
+ for (i = 0; i < (count * CONFIG_SYS_NAND_ECCBYTES);
+ i += CONFIG_SYS_NAND_ECCBYTES) {
+ u32 ce = ecc[i / CONFIG_SYS_NAND_ECCBYTES];
+ ce = ~(ce << 2) & 0xFFFFFF;
+ spare[i+2] = (u8)(ce & 0xFF); ce >>= 8;
+ spare[i+1] = (u8)(ce & 0xFF); ce >>= 8;
+ spare[i] = (u8)(ce & 0xFF);
+ }
+ return 0;
+}
+
+static int lpc32xx_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat,
+ uint8_t *ecc_code)
+{
+ return slc_ecc_copy_to_buffer(ecc_code, ecc_buffer, ECCSTEPS);
+}
+
+/*
+ * Enables and prepares SLC NAND controller
+ * for doing data transfers with H/W ECC enabled.
+ */
+static void lpc32xx_hwecc_enable(struct mtd_info *mtd, int mode)
+{
+ /* Clear ECC */
+ writel(CTRL_ECC_CLEAR, &lpc32xx_nand_slc_regs->ctrl);
+
+ /* Setup SLC controller for H/W ECC operations */
+ setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_ECC_EN | CFG_DMA_ECC);
+}
+
+/*
+ * lpc32xx_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * mtd: MTD block structure
+ * dat: raw data read from the chip
+ * read_ecc: ECC from the chip
+ * calc_ecc: the ECC calculated from raw data
+ *
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+int lpc32xx_correct_data(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ unsigned int i;
+ int ret1, ret2 = 0;
+ u_char *r = read_ecc;
+ u_char *c = calc_ecc;
+ u16 data_offset = 0;
+
+ for (i = 0 ; i < ECCSTEPS ; i++) {
+ r += CONFIG_SYS_NAND_ECCBYTES;
+ c += CONFIG_SYS_NAND_ECCBYTES;
+ data_offset += CONFIG_SYS_NAND_ECCSIZE;
+
+ ret1 = nand_correct_data(mtd, dat + data_offset, r, c);
+ if (ret1 < 0)
+ return -EBADMSG;
+ else
+ ret2 += ret1;
+ }
+
+ return ret2;
+}
+#endif
+
+#if defined(CONFIG_DMA_LPC32XX)
+static void lpc32xx_dma_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ lpc32xx_nand_xfer(mtd, buf, len, 1);
+}
+#else
static void lpc32xx_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
while (len-- > 0)
*buf++ = readl(&lpc32xx_nand_slc_regs->data);
}
+#endif
static uint8_t lpc32xx_read_byte(struct mtd_info *mtd)
{
return readl(&lpc32xx_nand_slc_regs->data);
}
+#if defined(CONFIG_DMA_LPC32XX)
+static void lpc32xx_dma_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+ int len)
+{
+ lpc32xx_nand_xfer(mtd, buf, len, 0);
+}
+#else
static void lpc32xx_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
while (len-- > 0)
writel(*buf++, &lpc32xx_nand_slc_regs->data);
}
+#endif
static void lpc32xx_write_byte(struct mtd_info *mtd, uint8_t byte)
{
writel(byte, &lpc32xx_nand_slc_regs->data);
}
+#if defined(CONFIG_DMA_LPC32XX)
+/* Reuse the logic from "nand_read_page_hwecc()" */
+static int lpc32xx_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ int i;
+ int stat;
+ uint8_t *p = buf;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ uint8_t *ecc_code = chip->buffers->ecccode;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ unsigned int max_bitflips = 0;
+
+ /*
+ * As per the "LPC32x0 and LPC32x0/01 User manual" table 173 notes
+ * and section 9.7, the NAND SLC & DMA allowed single DMA transaction
+ * of a page size using DMA controller scatter/gather mode through
+ * linked list; the ECC read is done without any software intervention.
+ */
+
+ lpc32xx_hwecc_enable(mtd, NAND_ECC_READ);
+ lpc32xx_dma_read_buf(mtd, p, chip->ecc.size * chip->ecc.steps);
+ lpc32xx_ecc_calculate(mtd, p, &ecc_calc[0]);
+ lpc32xx_dma_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+ stat = chip->ecc.correct(mtd, p, &ecc_code[0], &ecc_calc[0]);
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+
+ return max_bitflips;
+}
+
+/* Reuse the logic from "nand_write_page_hwecc()" */
+static int lpc32xx_write_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const uint8_t *buf, int oob_required)
+{
+ int i;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ const uint8_t *p = buf;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+ /*
+ * As per the "LPC32x0 and LPC32x0/01 User manual" table 173 notes
+ * and section 9.7, the NAND SLC & DMA allowed single DMA transaction
+ * of a page size using DMA controller scatter/gather mode through
+ * linked list; the ECC read is done without any software intervention.
+ */
+
+ lpc32xx_hwecc_enable(mtd, NAND_ECC_WRITE);
+ lpc32xx_dma_write_buf(mtd, p, chip->ecc.size * chip->ecc.steps);
+ lpc32xx_ecc_calculate(mtd, p, &ecc_calc[0]);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+ lpc32xx_dma_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ return 0;
+}
+#endif
+
/*
* LPC32xx has only one SLC NAND controller, don't utilize
* CONFIG_SYS_NAND_SELF_INIT to be able to reuse this function
@@ -137,10 +507,46 @@ static void lpc32xx_write_byte(struct mtd_info *mtd, uint8_t byte)
*/
int board_nand_init(struct nand_chip *lpc32xx_chip)
{
+#if defined(CONFIG_DMA_LPC32XX)
+ int ret;
+
+ /* Acquire a channel for our use */
+ ret = lpc32xx_dma_get_channel();
+ if (unlikely(ret < 0)) {
+ pr_info("Unable to get free DMA channel for NAND transfers\n");
+ return -1;
+ }
+ dmachan = (unsigned int)ret;
+#endif
+
lpc32xx_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
lpc32xx_chip->dev_ready = lpc32xx_nand_dev_ready;
/*
+ * The implementation of these functions is quite common, but
+ * they MUST be defined, because access to data register
+ * is strictly 32-bit aligned.
+ */
+ lpc32xx_chip->read_byte = lpc32xx_read_byte;
+ lpc32xx_chip->write_byte = lpc32xx_write_byte;
+
+#if defined(CONFIG_DMA_LPC32XX)
+ /* Hardware ECC calculation is supported when DMA driver is selected */
+ lpc32xx_chip->ecc.mode = NAND_ECC_HW;
+
+ lpc32xx_chip->read_buf = lpc32xx_dma_read_buf;
+ lpc32xx_chip->write_buf = lpc32xx_dma_write_buf;
+
+ lpc32xx_chip->ecc.calculate = lpc32xx_ecc_calculate;
+ lpc32xx_chip->ecc.correct = lpc32xx_correct_data;
+ lpc32xx_chip->ecc.hwctl = lpc32xx_hwecc_enable;
+ lpc32xx_chip->chip_delay = 2000;
+
+ lpc32xx_chip->ecc.read_page = lpc32xx_read_page_hwecc;
+ lpc32xx_chip->ecc.write_page = lpc32xx_write_page_hwecc;
+ lpc32xx_chip->options |= NAND_NO_SUBPAGE_WRITE;
+#else
+ /*
* Hardware ECC calculation is not supported by the driver,
* because it requires DMA support, see LPC32x0 User Manual,
* note after SLC_ECC register description (UM10326, p.198)
@@ -153,16 +559,15 @@ int board_nand_init(struct nand_chip *lpc32xx_chip)
* is strictly 32-bit aligned.
*/
lpc32xx_chip->read_buf = lpc32xx_read_buf;
- lpc32xx_chip->read_byte = lpc32xx_read_byte;
lpc32xx_chip->write_buf = lpc32xx_write_buf;
- lpc32xx_chip->write_byte = lpc32xx_write_byte;
+#endif
/*
* Use default ECC layout, but these values are predefined
* for both small and large page NAND flash devices.
*/
- lpc32xx_chip->ecc.size = 256;
- lpc32xx_chip->ecc.bytes = 3;
+ lpc32xx_chip->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
+ lpc32xx_chip->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
lpc32xx_chip->ecc.strength = 1;
#if defined(CONFIG_SYS_NAND_USE_FLASH_BBT)