Age | Commit message (Collapse) | Author |
|
Two power-on-self-test values are the same. Fix this.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
|
|
The Intel GPIO driver can set up the GPIO pin mapping when the first GPIO
is probed. However, it assumes that the first GPIO to be probed is in the
first GPIO bank. If this is not the case then the init will write to the
wrong registers.
Fix this. Also add a note that this code is deprecated. We should move to
using device tree instead.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
|
|
At present the board ID GPIOs are hard-coded. Move them to the device tree
so that we can use general SDRAM init code.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
|
|
The SDRAM SPD (Serial Presence Detect) information should be contained
with the SDRAM controller. This makes it easier for the controller to access
it and removes the need for a separate compatible string.
As a first step, move the information.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
|
|
In order to use GPIO phandles we need to add some GPIO properties as
specified by the GPIO bindings. Add these for link.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
|
|
Many of the model-specific indexes are common to several Intel CPUs. Add
some more common ones, and remove them from the ivybridge-specific header
file.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
|
|
This does not need to be modified at run-time, so make it const.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
|
|
SeaBIOS is an open source implementation of a 16-bit x86 BIOS.
It can run in an emulator or natively on x86 hardware with the
use of coreboot. With SeaBIOS's help, we can boot some OSes
that require 16-bit BIOS services like Windows/DOS.
As U-Boot, we have to manually create a table where SeaBIOS gets
system information (eg: E820) from. The table unfortunately has
to follow the coreboot table format as SeaBIOS currently supports
booting as a coreboot payload.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
To prepare generating coreboot table from U-Boot, implement functions
to handle the writing.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
For those secondary bootloaders like SeaBIOS who want to live in
the F segment, which conflicts the configuration table address,
now we allow write_tables() to write the configuration tables in
high area (malloc'ed memory).
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
Given all table write routines have the same signature, we can
simplify the codes by using a function table.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
Change the parameter and return value of write_acpi_tables() to u32
to conform with other table write routines.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
Define ROM_TABLE_ALIGN instead of using 1024 directly.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
Add a new variable rom_table_start and pass it to ROM table write
routines. This reads better than previous single rom_table_end.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
Clean up this file a little bit:
- Remove inclusion of <linux/compiler.h>
- Use tab in the macro definition
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
coreboot_tables.h should not include sysinfo related stuff.
Move those to asm/arch-coreboot/sysinfo.h.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
Move asm/arch-coreboot/tables.h to asm/coreboot_tables.h so that
coreboot table definitions can be used by other x86 builds.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
|
|
Starting with 96e5b03 we use a linker list for partition table
information. However since we use this in SPL we need to make sure that
the SPL linker scripts include these as well. While doing this, it's
best to simply include all linker lists to future proof ourselves.
Cc: Andreas Bießmann <andreas.devel@googlemail.com>
Acked-by: Michal Simek <michal.simek@xilinx.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Reported-by: Nishanth Menon <nm@ti.com>
Tested-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
|
|
On OMAP4 platforms that also need to calculate their DDR settings we are
now getting very close to the linker limit size. Since OMAP44XX is only
seen with LPDDR2, remove some run time tests for LPDDR2 or DDR3 as we
will know that we don't have it for OMAP44XX.
Cc: Nishanth Menon <nm@ti.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
|
|
When we switch to including all linker lists in SPL it is important
to not include commands as that may lead to link errors due to other
things we have already discarded. In this case simply move cmd_ddr3.o
over to the list with the rest.
Cc: Vitaly Andrianov <vitalya@ti.com>
Cc: Nishanth Menon <nm@ti.com>
Cc: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
|
|
Now that we have a standard way to power off the hardware, switch to
using that rather than our own command.
Cc: Vitaly Andrianov <vitalya@ti.com>
Cc: Nishanth Menon <nm@ti.com>
Cc: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
|
|
When we switch to including all linker lists in SPL it is important
to not include commands as that may lead to link errors due to other
things we have already discarded. In this case, we split the code for
supporting the monitor out from the code for loading it.
Cc: Vitaly Andrianov <vitalya@ti.com>
Cc: Nishanth Menon <nm@ti.com>
Cc: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
|
|
If EMIF is idle for certain amount of DDR cycles, EMIF will put the
DDR in self refresh mode to save power if EMIF_PWR_MGMT_CTRL register
is programmed. And also before entering suspend-resume ddr needs to
be put in self-refresh. Linux kernel does not program this register
before entering suspend and relies on u-boot setting.
So configuring it in u-boot.
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Tested-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
|
|
There are 2 ways an EFI payload could return into u-boot:
- Callback function
- Exception
While in EFI payload mode, r9 is owned by the payload and may not contain
a valid pointer to gd, so we need to fix it up. We do that properly for the
payload to callback path already.
This patch also adds gd pointer restoral for the exception path.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
There are 2 ways an EFI payload could return into u-boot:
- Callback function
- Exception
While in EFI payload mode, x18 is owned by the payload and may not contain
a valid pointer to gd, so we need to fix it up. We do that properly for the
payload to callback path already.
This patch also adds gd pointer restoral for the exception path.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Our current arm64 exception handlers all panic and never return to the
exception triggering code.
But if any handler wanted to continue execution after fixups, it would
need help from the exception handling code to restore all registers.
This patch implements that help. With this code, exception handlers on
aarch64 can successfully return to the place the exception happened (or
somewhere else if they modify elr).
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
After booting has finished, EFI allows firmware to still interact with the OS
using the "runtime services". These callbacks live in a separate address space,
since they are available long after U-Boot has been overwritten by the OS.
This patch adds enough framework for arbitrary code inside of U-Boot to become
a runtime service with the right section attributes set. For now, we don't make
use of it yet though.
We could maybe in the future map U-boot environment variables to EFI variables
here.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
|
|
Now that we have an easy way to describe memory regions and enable the MMU,
there really shouldn't be anything holding people back from running with
caches enabled on AArch64. To make sure people catch early if they're missing
on the caching fun, give them a compile error.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
By now the code to only have a single page table level with 64k page
size and 42 bit address space is no longer used by any board in tree,
so we can safely remove it.
To clean up code, move the layerscape mmu code to the new defines,
removing redundant field definitions.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Now that we have nice table driven page table creating code that gives
us everything we need, move to that.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Now that we have nice table driven page table creating code that gives
us everything we need, move to that.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The MMU range table can vary depending on things we may only find
out at runtime. While the very simple ThunderX variant does not
change, other boards will, so move the definition from a static
entry in a header file to the board file.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The idea to generate our pages tables from an array of memory ranges
is very sound. However, instead of hard coding the code to create up
to 2 levels of 64k granule page tables, we really should just create
normal 4k page tables that allow us to set caching attributes on 2M
or 4k level later on.
So this patch moves the full_va mapping code to 4k page size and
makes it fully flexible to dynamically create as many levels as
necessary for a map (including dynamic 1G/2M pages). It also adds
support to dynamically split a large map into smaller ones when
some code wants to set dcache attributes.
With all this in place, there is very little reason to create your
own page tables in board specific files.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
When running in EL1, AArch64 knows two page table maps. One with addresses
that start with all zeros (TTBR0) and one with addresses that start with all
ones (TTBR1).
In U-Boot we don't care about the high up maps, so just disable them to ensure
we don't walk an invalid page table by accident.
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Based on the memory map we can determine a lot of hard coded fields of
TCR, like the maximum VA and max PA we want to support. Calculate those
dynamically to reduce the chance for pit falls.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Since the SAR registers are filled with garbage on cold reset, this checks for a
warm reset to assert the validity of reboot mode.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
|
|
Reboot mode is written to SAR memory before reboot in the form of a string.
This mechanism is supported on OMAP4 by various TI kernels.
It is up to each board to make use of this mechanism or not.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
|
|
This correctly enables the USB PHY clocks, by enabling CM_ALWON_USBPHY_CLKCTRL
and correctly setting CM_L3INIT_USBPHY_CLKCTRL's value.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
|
|
On (at least) OMAP4, the USB DPLL is required to be setup for the internal PHY
to work properly. The internal PHY is used by default with the MUSB USB OTG
controller.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
|
|
The Amazon Kindle Fire (first generation) codename kc1 is a tablet that was
released by Amazon back in 2011.
It is using an OMAP4430 SoC GP version, which allows running U-Boot and the
U-Boot SPL from the ground up.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
|
|
I2C is often enabled withing the U-Boot SPL, thus those clocks are required to
be enabled early (especially when the bootrom doesn't enable them for us).
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
|
|
This removes a duplicate reference to CM_L3INIT_USBPHY_CLKCTRLin
enable_basic_uboot_clocks. Also, a doubled whitespace is removed.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
|
|
save_omap_boot_params is called from spl_board_init in the SPL context. Thus,
there is no reason to duplicate that call on arch_cpu_init.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
|
|
There is no distinction between essential and non-essential mux configuration,
so it doesn't make sense to have an "essential" prefix.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
|
|
Individual boards might provide their own emif_get_device_timings function and
use the jedec timings in their own way, hence those have to be exported.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
|
|
Individual boards might provide their own emif_get_device_timings function and
use the elpidia timings in their own way, hence those have to be exported.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
|
|
Individual boards might provide their own emif_get_device_details function and
use elpidia device details in their own way, hence those have to be exported.
This also wraps existing definitions with the proper ifdef logic.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
|
|
This introduces a define for the offset to the reboot reason, rather than
hardcoding it.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Reviewed-by: Tom Rini <trini@konsulko.com>
|
|
This switches reboot mode handling to a string-based interface, that allows more
flexibility to set a common interface with the next generations of OMAP devices.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Reviewed-by: Tom Rini <trini@konsulko.com>
|
|
|