summaryrefslogtreecommitdiff
path: root/arch/arm/cpu/arm720t/tegra30/cpu.c
blob: 9003902e3ff704c6244ff1cc0e804fd577c3ad1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
 * Copyright (c) 2010-2014, NVIDIA CORPORATION.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/flow.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/pmc.h>
#include <asm/arch-tegra/tegra_i2c.h>
#include "../tegra-common/cpu.h"

/* Tegra30-specific CPU init code */
void tegra_i2c_ll_write_addr(uint addr, uint config)
{
	struct i2c_ctlr *reg = (struct i2c_ctlr *)TEGRA_DVC_BASE;

	writel(addr, &reg->cmd_addr0);
	writel(config, &reg->cnfg);
}

void tegra_i2c_ll_write_data(uint data, uint config)
{
	struct i2c_ctlr *reg = (struct i2c_ctlr *)TEGRA_DVC_BASE;

	writel(data, &reg->cmd_data1);
	writel(config, &reg->cnfg);
}

#define TPS62366A_I2C_ADDR		0xC0
#define TPS62366A_SET1_REG		0x01
#define TPS62366A_SET1_DATA		(0x4600 | TPS62366A_SET1_REG)

#define TPS62361B_I2C_ADDR		0xC0
#define TPS62361B_SET3_REG		0x03
#define TPS62361B_SET3_DATA		(0x4600 | TPS62361B_SET3_REG)

#define TPS65911_I2C_ADDR		0x5A
#define TPS65911_VDDCTRL_OP_REG		0x28
#define TPS65911_VDDCTRL_SR_REG		0x27
#define TPS65911_VDDCTRL_OP_DATA	(0x2400 | TPS65911_VDDCTRL_OP_REG)
#define TPS65911_VDDCTRL_SR_DATA	(0x0100 | TPS65911_VDDCTRL_SR_REG)
#define I2C_SEND_2_BYTES		0x0A02

static void enable_cpu_power_rail(void)
{
	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
	u32 reg;

	debug("enable_cpu_power_rail entry\n");
	reg = readl(&pmc->pmc_cntrl);
	reg |= CPUPWRREQ_OE;
	writel(reg, &pmc->pmc_cntrl);

	/* Set VDD_CORE to 1.200V. */
#ifdef CONFIG_TEGRA_VDD_CORE_TPS62366A_SET1
	tegra_i2c_ll_write_addr(TPS62366A_I2C_ADDR, 2);
	tegra_i2c_ll_write_data(TPS62366A_SET1_DATA, I2C_SEND_2_BYTES);
#endif
#ifdef CONFIG_TEGRA_VDD_CORE_TPS62361B_SET3
	tegra_i2c_ll_write_addr(TPS62361B_I2C_ADDR, 2);
	tegra_i2c_ll_write_data(TPS62361B_SET3_DATA, I2C_SEND_2_BYTES);
#endif
	udelay(1000);

	/*
	 * Bring up CPU VDD via the TPS65911x PMIC on the DVC I2C bus.
	 * First set VDD to 1.0125V, then enable the VDD regulator.
	 */
	tegra_i2c_ll_write_addr(TPS65911_I2C_ADDR, 2);
	tegra_i2c_ll_write_data(TPS65911_VDDCTRL_OP_DATA, I2C_SEND_2_BYTES);
	udelay(1000);
	tegra_i2c_ll_write_data(TPS65911_VDDCTRL_SR_DATA, I2C_SEND_2_BYTES);
	udelay(10 * 1000);
}

/**
 * The T30 requires some special clock initialization, including setting up
 * the dvc i2c, turning on mselect and selecting the G CPU cluster
 */
void t30_init_clocks(void)
{
	struct clk_rst_ctlr *clkrst =
			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
	struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
	u32 val;

	debug("t30_init_clocks entry\n");
	/* Set active CPU cluster to G */
	clrbits_le32(flow->cluster_control, 1 << 0);

	writel(SUPER_SCLK_ENB_MASK, &clkrst->crc_super_sclk_div);

	val = (0 << CLK_SYS_RATE_HCLK_DISABLE_SHIFT) |
		(1 << CLK_SYS_RATE_AHB_RATE_SHIFT) |
		(0 << CLK_SYS_RATE_PCLK_DISABLE_SHIFT) |
		(0 << CLK_SYS_RATE_APB_RATE_SHIFT);
	writel(val, &clkrst->crc_clk_sys_rate);

	/* Put i2c, mselect in reset and enable clocks */
	reset_set_enable(PERIPH_ID_DVC_I2C, 1);
	clock_set_enable(PERIPH_ID_DVC_I2C, 1);
	reset_set_enable(PERIPH_ID_MSELECT, 1);
	clock_set_enable(PERIPH_ID_MSELECT, 1);

	/* Switch MSELECT clock to PLLP (00) and use a divisor of 2 */
	clock_ll_set_source_divisor(PERIPH_ID_MSELECT, 0, 2);

	/*
	 * Our high-level clock routines are not available prior to
	 * relocation. We use the low-level functions which require a
	 * hard-coded divisor. Use CLK_M with divide by (n + 1 = 17)
	 */
	clock_ll_set_source_divisor(PERIPH_ID_DVC_I2C, 3, 16);

	/*
	 * Give clocks time to stabilize, then take i2c and mselect out of
	 * reset
	 */
	udelay(1000);
	reset_set_enable(PERIPH_ID_DVC_I2C, 0);
	reset_set_enable(PERIPH_ID_MSELECT, 0);
}

static void set_cpu_running(int run)
{
	struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;

	debug("set_cpu_running entry, run = %d\n", run);
	writel(run ? FLOW_MODE_NONE : FLOW_MODE_STOP, &flow->halt_cpu_events);
}

void start_cpu(u32 reset_vector)
{
	debug("start_cpu entry, reset_vector = %x\n", reset_vector);
	t30_init_clocks();

	/* Enable VDD_CPU */
	enable_cpu_power_rail();

	set_cpu_running(0);

	/* Hold the CPUs in reset */
	reset_A9_cpu(1);

	/* Disable the CPU clock */
	enable_cpu_clock(0);

	/* Enable CoreSight */
	clock_enable_coresight(1);

	/*
	 * Set the entry point for CPU execution from reset,
	 *  if it's a non-zero value.
	 */
	if (reset_vector)
		writel(reset_vector, EXCEP_VECTOR_CPU_RESET_VECTOR);

	/* Enable the CPU clock */
	enable_cpu_clock(1);

	/* If the CPU doesn't already have power, power it up */
	powerup_cpu();

	/* Take the CPU out of reset */
	reset_A9_cpu(0);

	set_cpu_running(1);
}