summaryrefslogtreecommitdiff
path: root/arch/arm/cpu/armv7/am33xx/clock.c
blob: 3d17698e1865b81503a09bc76edb039ebc6c476d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 * clock.c
 *
 * Clock initialization for AM33XX boards.
 * Derived from OMAP4 boards
 *
 * Copyright (C) 2013, Texas Instruments, Incorporated - http://www.ti.com/
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */
#include <common.h>
#include <asm/arch/cpu.h>
#include <asm/arch/clock.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>
#include <asm/io.h>

static void setup_post_dividers(const struct dpll_regs *dpll_regs,
			 const struct dpll_params *params)
{
	/* Setup post-dividers */
	if (params->m2 >= 0)
		writel(params->m2, dpll_regs->cm_div_m2_dpll);
	if (params->m3 >= 0)
		writel(params->m3, dpll_regs->cm_div_m3_dpll);
	if (params->m4 >= 0)
		writel(params->m4, dpll_regs->cm_div_m4_dpll);
	if (params->m5 >= 0)
		writel(params->m5, dpll_regs->cm_div_m5_dpll);
	if (params->m6 >= 0)
		writel(params->m6, dpll_regs->cm_div_m6_dpll);
}

static inline void do_lock_dpll(const struct dpll_regs *dpll_regs)
{
	clrsetbits_le32(dpll_regs->cm_clkmode_dpll,
			CM_CLKMODE_DPLL_DPLL_EN_MASK,
			DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT);
}

static inline void wait_for_lock(const struct dpll_regs *dpll_regs)
{
	if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK,
			   (void *)dpll_regs->cm_idlest_dpll, LDELAY)) {
		printf("DPLL locking failed for 0x%x\n",
		       dpll_regs->cm_clkmode_dpll);
		hang();
	}
}

static inline void do_bypass_dpll(const struct dpll_regs *dpll_regs)
{
	clrsetbits_le32(dpll_regs->cm_clkmode_dpll,
			CM_CLKMODE_DPLL_DPLL_EN_MASK,
			DPLL_EN_MN_BYPASS << CM_CLKMODE_DPLL_EN_SHIFT);
}

static inline void wait_for_bypass(const struct dpll_regs *dpll_regs)
{
	if (!wait_on_value(ST_DPLL_CLK_MASK, 0,
			   (void *)dpll_regs->cm_idlest_dpll, LDELAY)) {
		printf("Bypassing DPLL failed 0x%x\n",
		       dpll_regs->cm_clkmode_dpll);
	}
}

static void bypass_dpll(const struct dpll_regs *dpll_regs)
{
	do_bypass_dpll(dpll_regs);
	wait_for_bypass(dpll_regs);
}

void do_setup_dpll(const struct dpll_regs *dpll_regs,
		   const struct dpll_params *params)
{
	u32 temp;

	if (!params)
		return;

	temp = readl(dpll_regs->cm_clksel_dpll);

	bypass_dpll(dpll_regs);

	/* Set M & N */
	temp &= ~CM_CLKSEL_DPLL_M_MASK;
	temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK;

	temp &= ~CM_CLKSEL_DPLL_N_MASK;
	temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK;

	writel(temp, dpll_regs->cm_clksel_dpll);

	setup_post_dividers(dpll_regs, params);

	/* Wait till the DPLL locks */
	do_lock_dpll(dpll_regs);
	wait_for_lock(dpll_regs);
}

static void setup_dplls(void)
{
	const struct dpll_params *params;

	params = get_dpll_core_params();
	do_setup_dpll(&dpll_core_regs, params);

	params = get_dpll_mpu_params();
	do_setup_dpll(&dpll_mpu_regs, params);

	params = get_dpll_per_params();
	do_setup_dpll(&dpll_per_regs, params);
	writel(0x300, &cmwkup->clkdcoldodpllper);

	params = get_dpll_ddr_params();
	do_setup_dpll(&dpll_ddr_regs, params);
}

static inline void wait_for_clk_enable(u32 *clkctrl_addr)
{
	u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED;
	u32 bound = LDELAY;

	while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) ||
		(idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) {
		clkctrl = readl(clkctrl_addr);
		idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
			 MODULE_CLKCTRL_IDLEST_SHIFT;
		if (--bound == 0) {
			printf("Clock enable failed for 0x%p idlest 0x%x\n",
			       clkctrl_addr, clkctrl);
			return;
		}
	}
}

static inline void enable_clock_module(u32 *const clkctrl_addr, u32 enable_mode,
				       u32 wait_for_enable)
{
	clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
			enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT);
	debug("Enable clock module - %p\n", clkctrl_addr);
	if (wait_for_enable)
		wait_for_clk_enable(clkctrl_addr);
}

static inline void wait_for_clk_disable(u32 *clkctrl_addr)
{
	u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_FULLY_FUNCTIONAL;
	u32 bound = LDELAY;

	while ((idlest != MODULE_CLKCTRL_IDLEST_DISABLED)) {
		clkctrl = readl(clkctrl_addr);
		idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
			  MODULE_CLKCTRL_IDLEST_SHIFT;
		if (--bound == 0) {
			printf("Clock disable failed for 0x%p idlest 0x%x\n",
			       clkctrl_addr, clkctrl);
			 return;
		}
	}
}
static inline void disable_clock_module(u32 *const clkctrl_addr,
					u32 wait_for_disable)
{
	clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
			MODULE_CLKCTRL_MODULEMODE_SW_DISABLE <<
			MODULE_CLKCTRL_MODULEMODE_SHIFT);
	debug("Disable clock module - %p\n", clkctrl_addr);
	if (wait_for_disable)
		wait_for_clk_disable(clkctrl_addr);
}

static inline void enable_clock_domain(u32 *const clkctrl_reg, u32 enable_mode)
{
	clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
			enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT);
	debug("Enable clock domain - %p\n", clkctrl_reg);
}

static inline void disable_clock_domain(u32 *const clkctrl_reg)
{
	clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
			CD_CLKCTRL_CLKTRCTRL_SW_SLEEP <<
			CD_CLKCTRL_CLKTRCTRL_SHIFT);
	debug("Disable clock domain - %p\n", clkctrl_reg);
}

void do_enable_clocks(u32 *const *clk_domains,
		      u32 *const *clk_modules_explicit_en, u8 wait_for_enable)
{
	u32 i, max = 100;

	/* Put the clock domains in SW_WKUP mode */
	for (i = 0; (i < max) && clk_domains[i]; i++) {
		enable_clock_domain(clk_domains[i],
				    CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
	}

	/* Clock modules that need to be put in SW_EXPLICIT_EN mode */
	for (i = 0; (i < max) && clk_modules_explicit_en[i]; i++) {
		enable_clock_module(clk_modules_explicit_en[i],
				    MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN,
				    wait_for_enable);
	};
}

void do_disable_clocks(u32 *const *clk_domains,
			u32 *const *clk_modules_disable,
			u8 wait_for_disable)
{
	u32 i, max = 100;


	/* Clock modules that need to be put in SW_DISABLE */
	for (i = 0; (i < max) && clk_modules_disable[i]; i++)
		disable_clock_module(clk_modules_disable[i],
				     wait_for_disable);

	/* Put the clock domains in SW_SLEEP mode */
	for (i = 0; (i < max) && clk_domains[i]; i++)
		disable_clock_domain(clk_domains[i]);
}

/*
 * Before scaling up the clocks we need to have the PMIC scale up the
 * voltages first.  This will be dependent on which PMIC is in use
 * and in some cases we may not be scaling things up at all and thus not
 * need to do anything here.
 */
__weak void scale_vcores(void)
{
}

void setup_early_clocks(void)
{
	setup_clocks_for_console();
	enable_basic_clocks();
	timer_init();
}

void prcm_init(void)
{
	scale_vcores();
	setup_dplls();
}