1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
/*
* emif4.c
*
* AM33XX emif4 configuration file
*
* Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR /PURPOSE. See the
* GNU General Public License for more details.
*/
#include <common.h>
#include <asm/arch/cpu.h>
#include <asm/arch/ddr_defs.h>
#include <asm/arch/hardware.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/io.h>
#include <asm/emif.h>
DECLARE_GLOBAL_DATA_PTR;
int dram_init(void)
{
/* dram_init must store complete ramsize in gd->ram_size */
gd->ram_size = get_ram_size(
(void *)CONFIG_SYS_SDRAM_BASE,
CONFIG_MAX_RAM_BANK_SIZE);
return 0;
}
void dram_init_banksize(void)
{
gd->bd->bi_dram[0].start = CONFIG_SYS_SDRAM_BASE;
gd->bd->bi_dram[0].size = gd->ram_size;
}
#ifdef CONFIG_SPL_BUILD
static struct vtp_reg *vtpreg = (struct vtp_reg *)VTP0_CTRL_ADDR;
static struct ddr_ctrl *ddrctrl = (struct ddr_ctrl *)DDR_CTRL_ADDR;
static const struct ddr_data ddr2_data = {
.datardsratio0 = ((DDR2_RD_DQS<<30)|(DDR2_RD_DQS<<20)
|(DDR2_RD_DQS<<10)|(DDR2_RD_DQS<<0)),
.datawdsratio0 = ((DDR2_WR_DQS<<30)|(DDR2_WR_DQS<<20)
|(DDR2_WR_DQS<<10)|(DDR2_WR_DQS<<0)),
.datawiratio0 = ((DDR2_PHY_WRLVL<<30)|(DDR2_PHY_WRLVL<<20)
|(DDR2_PHY_WRLVL<<10)|(DDR2_PHY_WRLVL<<0)),
.datagiratio0 = ((DDR2_PHY_GATELVL<<30)|(DDR2_PHY_GATELVL<<20)
|(DDR2_PHY_GATELVL<<10)|(DDR2_PHY_GATELVL<<0)),
.datafwsratio0 = ((DDR2_PHY_FIFO_WE<<30)|(DDR2_PHY_FIFO_WE<<20)
|(DDR2_PHY_FIFO_WE<<10)|(DDR2_PHY_FIFO_WE<<0)),
.datawrsratio0 = ((DDR2_PHY_WR_DATA<<30)|(DDR2_PHY_WR_DATA<<20)
|(DDR2_PHY_WR_DATA<<10)|(DDR2_PHY_WR_DATA<<0)),
.datauserank0delay = DDR2_PHY_RANK0_DELAY,
.datadldiff0 = PHY_DLL_LOCK_DIFF,
};
static const struct cmd_control ddr2_cmd_ctrl_data = {
.cmd0csratio = DDR2_RATIO,
.cmd0dldiff = DDR2_DLL_LOCK_DIFF,
.cmd0iclkout = DDR2_INVERT_CLKOUT,
.cmd1csratio = DDR2_RATIO,
.cmd1dldiff = DDR2_DLL_LOCK_DIFF,
.cmd1iclkout = DDR2_INVERT_CLKOUT,
.cmd2csratio = DDR2_RATIO,
.cmd2dldiff = DDR2_DLL_LOCK_DIFF,
.cmd2iclkout = DDR2_INVERT_CLKOUT,
};
static const struct emif_regs ddr2_emif_reg_data = {
.sdram_config = DDR2_EMIF_SDCFG,
.ref_ctrl = DDR2_EMIF_SDREF,
.sdram_tim1 = DDR2_EMIF_TIM1,
.sdram_tim2 = DDR2_EMIF_TIM2,
.sdram_tim3 = DDR2_EMIF_TIM3,
.emif_ddr_phy_ctlr_1 = DDR2_EMIF_READ_LATENCY,
};
static const struct ddr_data ddr3_data = {
.datardsratio0 = DDR3_RD_DQS,
.datawdsratio0 = DDR3_WR_DQS,
.datafwsratio0 = DDR3_PHY_FIFO_WE,
.datawrsratio0 = DDR3_PHY_WR_DATA,
.datadldiff0 = PHY_DLL_LOCK_DIFF,
};
static const struct cmd_control ddr3_cmd_ctrl_data = {
.cmd0csratio = DDR3_RATIO,
.cmd0dldiff = DDR3_DLL_LOCK_DIFF,
.cmd0iclkout = DDR3_INVERT_CLKOUT,
.cmd1csratio = DDR3_RATIO,
.cmd1dldiff = DDR3_DLL_LOCK_DIFF,
.cmd1iclkout = DDR3_INVERT_CLKOUT,
.cmd2csratio = DDR3_RATIO,
.cmd2dldiff = DDR3_DLL_LOCK_DIFF,
.cmd2iclkout = DDR3_INVERT_CLKOUT,
};
static struct emif_regs ddr3_emif_reg_data = {
.sdram_config = DDR3_EMIF_SDCFG,
.ref_ctrl = DDR3_EMIF_SDREF,
.sdram_tim1 = DDR3_EMIF_TIM1,
.sdram_tim2 = DDR3_EMIF_TIM2,
.sdram_tim3 = DDR3_EMIF_TIM3,
.zq_config = DDR3_ZQ_CFG,
.emif_ddr_phy_ctlr_1 = DDR3_EMIF_READ_LATENCY,
};
static void config_vtp(void)
{
writel(readl(&vtpreg->vtp0ctrlreg) | VTP_CTRL_ENABLE,
&vtpreg->vtp0ctrlreg);
writel(readl(&vtpreg->vtp0ctrlreg) & (~VTP_CTRL_START_EN),
&vtpreg->vtp0ctrlreg);
writel(readl(&vtpreg->vtp0ctrlreg) | VTP_CTRL_START_EN,
&vtpreg->vtp0ctrlreg);
/* Poll for READY */
while ((readl(&vtpreg->vtp0ctrlreg) & VTP_CTRL_READY) !=
VTP_CTRL_READY)
;
}
void config_ddr(short ddr_type)
{
int ddr_pll, ioctrl_val;
const struct emif_regs *emif_regs;
const struct ddr_data *ddr_data;
const struct cmd_control *cmd_ctrl_data;
if (ddr_type == EMIF_REG_SDRAM_TYPE_DDR2) {
ddr_pll = 266;
cmd_ctrl_data = &ddr2_cmd_ctrl_data;
ddr_data = &ddr2_data;
ioctrl_val = DDR2_IOCTRL_VALUE;
emif_regs = &ddr2_emif_reg_data;
} else if (ddr_type == EMIF_REG_SDRAM_TYPE_DDR3) {
ddr_pll = 303;
cmd_ctrl_data = &ddr3_cmd_ctrl_data;
ddr_data = &ddr3_data;
ioctrl_val = DDR3_IOCTRL_VALUE;
emif_regs = &ddr3_emif_reg_data;
} else {
puts("Unknown memory type");
hang();
}
enable_emif_clocks();
ddr_pll_config(ddr_pll);
config_vtp();
config_cmd_ctrl(cmd_ctrl_data);
config_ddr_data(0, ddr_data);
config_ddr_data(1, ddr_data);
config_io_ctrl(ioctrl_val);
/* Set CKE to be controlled by EMIF/DDR PHY */
writel(DDR_CKE_CTRL_NORMAL, &ddrctrl->ddrckectrl);
/* Program EMIF instance */
config_ddr_phy(emif_regs);
set_sdram_timings(emif_regs);
config_sdram(emif_regs);
}
#endif
|