1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
/*
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
enum pll_clocks {
PLL_SYS, /* System PLL */
PLL_BUS, /* System Bus PLL*/
PLL_USBOTG, /* OTG USB PLL */
PLL_ENET, /* ENET PLL */
};
struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
#ifdef CONFIG_MXC_OCOTP
void enable_ocotp_clk(unsigned char enable)
{
u32 reg;
reg = __raw_readl(&imx_ccm->CCGR2);
if (enable)
reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
else
reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
__raw_writel(reg, &imx_ccm->CCGR2);
}
#endif
void enable_usboh3_clk(unsigned char enable)
{
u32 reg;
reg = __raw_readl(&imx_ccm->CCGR6);
if (enable)
reg |= MXC_CCM_CCGR6_USBOH3_MASK;
else
reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
__raw_writel(reg, &imx_ccm->CCGR6);
}
#ifdef CONFIG_SYS_I2C_MXC
/* i2c_num can be from 0 - 2 */
int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
{
u32 reg;
u32 mask;
if (i2c_num > 2)
return -EINVAL;
mask = MXC_CCM_CCGR_CG_MASK
<< (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET + (i2c_num << 1));
reg = __raw_readl(&imx_ccm->CCGR2);
if (enable)
reg |= mask;
else
reg &= ~mask;
__raw_writel(reg, &imx_ccm->CCGR2);
return 0;
}
#endif
static u32 decode_pll(enum pll_clocks pll, u32 infreq)
{
u32 div;
switch (pll) {
case PLL_SYS:
div = __raw_readl(&imx_ccm->analog_pll_sys);
div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
return infreq * (div >> 1);
case PLL_BUS:
div = __raw_readl(&imx_ccm->analog_pll_528);
div &= BM_ANADIG_PLL_528_DIV_SELECT;
return infreq * (20 + (div << 1));
case PLL_USBOTG:
div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
return infreq * (20 + (div << 1));
case PLL_ENET:
div = __raw_readl(&imx_ccm->analog_pll_enet);
div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
return 25000000 * (div + (div >> 1) + 1);
default:
return 0;
}
/* NOTREACHED */
}
static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
{
u32 div;
u64 freq;
switch (pll) {
case PLL_BUS:
if (pfd_num == 3) {
/* No PFD3 on PPL2 */
return 0;
}
div = __raw_readl(&imx_ccm->analog_pfd_528);
freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
break;
case PLL_USBOTG:
div = __raw_readl(&imx_ccm->analog_pfd_480);
freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
break;
default:
/* No PFD on other PLL */
return 0;
}
return (freq * 18) / ((div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
ANATOP_PFD_FRAC_SHIFT(pfd_num));
}
static u32 get_mcu_main_clk(void)
{
u32 reg, freq;
reg = __raw_readl(&imx_ccm->cacrr);
reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
freq = decode_pll(PLL_SYS, MXC_HCLK);
return freq / (reg + 1);
}
u32 get_periph_clk(void)
{
u32 reg, freq = 0;
reg = __raw_readl(&imx_ccm->cbcdr);
if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
reg = __raw_readl(&imx_ccm->cbcmr);
reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
switch (reg) {
case 0:
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
break;
case 1:
case 2:
freq = MXC_HCLK;
break;
default:
break;
}
} else {
reg = __raw_readl(&imx_ccm->cbcmr);
reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
switch (reg) {
case 0:
freq = decode_pll(PLL_BUS, MXC_HCLK);
break;
case 1:
freq = mxc_get_pll_pfd(PLL_BUS, 2);
break;
case 2:
freq = mxc_get_pll_pfd(PLL_BUS, 0);
break;
case 3:
/* static / 2 divider */
freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
break;
default:
break;
}
}
return freq;
}
static u32 get_ipg_clk(void)
{
u32 reg, ipg_podf;
reg = __raw_readl(&imx_ccm->cbcdr);
reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
return get_ahb_clk() / (ipg_podf + 1);
}
static u32 get_ipg_per_clk(void)
{
u32 reg, perclk_podf;
reg = __raw_readl(&imx_ccm->cscmr1);
perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
return get_ipg_clk() / (perclk_podf + 1);
}
static u32 get_uart_clk(void)
{
u32 reg, uart_podf;
u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
reg = __raw_readl(&imx_ccm->cscdr1);
#ifdef CONFIG_MX6SL
if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
freq = MXC_HCLK;
#endif
reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
return freq / (uart_podf + 1);
}
static u32 get_cspi_clk(void)
{
u32 reg, cspi_podf;
reg = __raw_readl(&imx_ccm->cscdr2);
reg &= MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK;
cspi_podf = reg >> MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
return decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
}
static u32 get_axi_clk(void)
{
u32 root_freq, axi_podf;
u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
else
root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
} else
root_freq = get_periph_clk();
return root_freq / (axi_podf + 1);
}
static u32 get_emi_slow_clk(void)
{
u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
cscmr1 = __raw_readl(&imx_ccm->cscmr1);
emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
switch (emi_clk_sel) {
case 0:
root_freq = get_axi_clk();
break;
case 1:
root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
break;
case 2:
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
break;
case 3:
root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
break;
}
return root_freq / (emi_slow_podf + 1);
}
#ifdef CONFIG_MX6SL
static u32 get_mmdc_ch0_clk(void)
{
u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
u32 freq, podf;
podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) \
>> MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
switch ((cbcmr & MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
case 0:
freq = decode_pll(PLL_BUS, MXC_HCLK);
break;
case 1:
freq = mxc_get_pll_pfd(PLL_BUS, 2);
break;
case 2:
freq = mxc_get_pll_pfd(PLL_BUS, 0);
break;
case 3:
/* static / 2 divider */
freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
}
return freq / (podf + 1);
}
#else
static u32 get_mmdc_ch0_clk(void)
{
u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
u32 mmdc_ch0_podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
return get_periph_clk() / (mmdc_ch0_podf + 1);
}
#endif
#ifdef CONFIG_FEC_MXC
int enable_fec_anatop_clock(void)
{
u32 reg = 0;
s32 timeout = 100000;
struct anatop_regs __iomem *anatop =
(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
reg = readl(&anatop->pll_enet);
if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
(!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
writel(reg, &anatop->pll_enet);
while (timeout--) {
if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
break;
}
if (timeout < 0)
return -ETIMEDOUT;
}
/* Enable FEC clock */
reg |= BM_ANADIG_PLL_ENET_ENABLE;
reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
writel(reg, &anatop->pll_enet);
return 0;
}
#endif
static u32 get_usdhc_clk(u32 port)
{
u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
switch (port) {
case 0:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
break;
case 1:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
break;
case 2:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
break;
case 3:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
break;
default:
break;
}
if (clk_sel)
root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
else
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
return root_freq / (usdhc_podf + 1);
}
u32 imx_get_uartclk(void)
{
return get_uart_clk();
}
u32 imx_get_fecclk(void)
{
return decode_pll(PLL_ENET, MXC_HCLK);
}
int enable_sata_clock(void)
{
u32 reg = 0;
s32 timeout = 100000;
struct mxc_ccm_reg *const imx_ccm
= (struct mxc_ccm_reg *) CCM_BASE_ADDR;
/* Enable sata clock */
reg = readl(&imx_ccm->CCGR5); /* CCGR5 */
reg |= MXC_CCM_CCGR5_SATA_MASK;
writel(reg, &imx_ccm->CCGR5);
/* Enable PLLs */
reg = readl(&imx_ccm->analog_pll_enet);
reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
writel(reg, &imx_ccm->analog_pll_enet);
reg |= BM_ANADIG_PLL_SYS_ENABLE;
while (timeout--) {
if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
break;
}
if (timeout <= 0)
return -EIO;
reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
writel(reg, &imx_ccm->analog_pll_enet);
reg |= BM_ANADIG_PLL_ENET_ENABLE_SATA;
writel(reg, &imx_ccm->analog_pll_enet);
return 0 ;
}
unsigned int mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ARM_CLK:
return get_mcu_main_clk();
case MXC_PER_CLK:
return get_periph_clk();
case MXC_AHB_CLK:
return get_ahb_clk();
case MXC_IPG_CLK:
return get_ipg_clk();
case MXC_IPG_PERCLK:
case MXC_I2C_CLK:
return get_ipg_per_clk();
case MXC_UART_CLK:
return get_uart_clk();
case MXC_CSPI_CLK:
return get_cspi_clk();
case MXC_AXI_CLK:
return get_axi_clk();
case MXC_EMI_SLOW_CLK:
return get_emi_slow_clk();
case MXC_DDR_CLK:
return get_mmdc_ch0_clk();
case MXC_ESDHC_CLK:
return get_usdhc_clk(0);
case MXC_ESDHC2_CLK:
return get_usdhc_clk(1);
case MXC_ESDHC3_CLK:
return get_usdhc_clk(2);
case MXC_ESDHC4_CLK:
return get_usdhc_clk(3);
case MXC_SATA_CLK:
return get_ahb_clk();
default:
break;
}
return -1;
}
/*
* Dump some core clockes.
*/
int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
u32 freq;
freq = decode_pll(PLL_SYS, MXC_HCLK);
printf("PLL_SYS %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_BUS, MXC_HCLK);
printf("PLL_BUS %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
printf("PLL_OTG %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_ENET, MXC_HCLK);
printf("PLL_NET %8d MHz\n", freq / 1000000);
printf("\n");
printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
#ifdef CONFIG_MXC_SPI
printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
#endif
printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
return 0;
}
void enable_ipu_clock(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
int reg;
reg = readl(&mxc_ccm->CCGR3);
reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK;
writel(reg, &mxc_ccm->CCGR3);
}
/***************************************************/
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
"display clocks",
""
);
|