summaryrefslogtreecommitdiff
path: root/arch/arm/cpu/armv7/sunxi/dram.c
blob: dc9fdb930b6e5c51c2d7252f7b4511439c3f33a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
/*
 * sunxi DRAM controller initialization
 * (C) Copyright 2012 Henrik Nordstrom <henrik@henriknordstrom.net>
 * (C) Copyright 2013 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
 *
 * Based on sun4i Linux kernel sources mach-sunxi/pm/standby/dram*.c
 * and earlier U-Boot Allwiner A10 SPL work
 *
 * (C) Copyright 2007-2012
 * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
 * Berg Xing <bergxing@allwinnertech.com>
 * Tom Cubie <tangliang@allwinnertech.com>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

/*
 * Unfortunately the only documentation we have on the sun7i DRAM
 * controller is Allwinner boot0 + boot1 code, and that code uses
 * magic numbers & shifts with no explanations. Hence this code is
 * rather undocumented and full of magic.
 */

#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/dram.h>
#include <asm/arch/timer.h>
#include <asm/arch/sys_proto.h>

#define CPU_CFG_CHIP_VER(n) ((n) << 6)
#define CPU_CFG_CHIP_VER_MASK CPU_CFG_CHIP_VER(0x3)
#define CPU_CFG_CHIP_REV_A 0x0
#define CPU_CFG_CHIP_REV_C1 0x1
#define CPU_CFG_CHIP_REV_C2 0x2
#define CPU_CFG_CHIP_REV_B 0x3

/*
 * Wait up to 1s for value to be set in given part of reg.
 */
static void await_completion(u32 *reg, u32 mask, u32 val)
{
	unsigned long tmo = timer_get_us() + 1000000;

	while ((readl(reg) & mask) != val) {
		if (timer_get_us() > tmo)
			panic("Timeout initialising DRAM\n");
	}
}

/*
 * Wait up to 1s for mask to be clear in given reg.
 */
static inline void await_bits_clear(u32 *reg, u32 mask)
{
	await_completion(reg, mask, 0);
}

/*
 * Wait up to 1s for mask to be set in given reg.
 */
static inline void await_bits_set(u32 *reg, u32 mask)
{
	await_completion(reg, mask, mask);
}

/*
 * This performs the external DRAM reset by driving the RESET pin low and
 * then high again. According to the DDR3 spec, the RESET pin needs to be
 * kept low for at least 200 us.
 */
static void mctl_ddr3_reset(void)
{
	struct sunxi_dram_reg *dram =
			(struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

#ifdef CONFIG_MACH_SUN4I
	struct sunxi_timer_reg *timer =
			(struct sunxi_timer_reg *)SUNXI_TIMER_BASE;
	u32 reg_val;

	writel(0, &timer->cpu_cfg);
	reg_val = readl(&timer->cpu_cfg);

	if ((reg_val & CPU_CFG_CHIP_VER_MASK) !=
	    CPU_CFG_CHIP_VER(CPU_CFG_CHIP_REV_A)) {
		setbits_le32(&dram->mcr, DRAM_MCR_RESET);
		udelay(200);
		clrbits_le32(&dram->mcr, DRAM_MCR_RESET);
	} else
#endif
	{
		clrbits_le32(&dram->mcr, DRAM_MCR_RESET);
		udelay(200);
		setbits_le32(&dram->mcr, DRAM_MCR_RESET);
	}
	/* After the RESET pin is de-asserted, the DDR3 spec requires to wait
	 * for additional 500 us before driving the CKE pin (Clock Enable)
	 * high. The duration of this delay can be configured in the SDR_IDCR
	 * (Initialization Delay Configuration Register) and applied
	 * automatically by the DRAM controller during the DDR3 initialization
	 * step. But SDR_IDCR has limited range on sun4i/sun5i hardware and
	 * can't provide sufficient delay at DRAM clock frequencies higher than
	 * 524 MHz (while Allwinner A13 supports DRAM clock frequency up to
	 * 533 MHz according to the datasheet). Additionally, there is no
	 * official documentation for the SDR_IDCR register anywhere, and
	 * there is always a chance that we are interpreting it wrong.
	 * Better be safe than sorry, so add an explicit delay here. */
	udelay(500);
}

static void mctl_set_drive(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

#ifdef CONFIG_MACH_SUN7I
	clrsetbits_le32(&dram->mcr, DRAM_MCR_MODE_NORM(0x3) | (0x3 << 28),
#else
	clrsetbits_le32(&dram->mcr, DRAM_MCR_MODE_NORM(0x3),
#endif
			DRAM_MCR_MODE_EN(0x3) |
			0xffc);
}

static void mctl_itm_disable(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

	clrsetbits_le32(&dram->ccr, DRAM_CCR_INIT, DRAM_CCR_ITM_OFF);
}

static void mctl_itm_enable(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

	clrbits_le32(&dram->ccr, DRAM_CCR_ITM_OFF);
}

static void mctl_itm_reset(void)
{
	mctl_itm_disable();
	udelay(1); /* ITM reset needs a bit of delay */
	mctl_itm_enable();
	udelay(1);
}

static void mctl_enable_dll0(u32 phase)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

	clrsetbits_le32(&dram->dllcr[0], 0x3f << 6,
			((phase >> 16) & 0x3f) << 6);
	clrsetbits_le32(&dram->dllcr[0], DRAM_DLLCR_NRESET, DRAM_DLLCR_DISABLE);
	udelay(2);

	clrbits_le32(&dram->dllcr[0], DRAM_DLLCR_NRESET | DRAM_DLLCR_DISABLE);
	udelay(22);

	clrsetbits_le32(&dram->dllcr[0], DRAM_DLLCR_DISABLE, DRAM_DLLCR_NRESET);
	udelay(22);
}

/* Get the number of DDR byte lanes */
static u32 mctl_get_number_of_lanes(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	if ((readl(&dram->dcr) & DRAM_DCR_BUS_WIDTH_MASK) ==
				DRAM_DCR_BUS_WIDTH(DRAM_DCR_BUS_WIDTH_32BIT))
		return 4;
	else
		return 2;
}

/*
 * Note: This differs from pm/standby in that it checks the bus width
 */
static void mctl_enable_dllx(u32 phase)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 i, number_of_lanes;

	number_of_lanes = mctl_get_number_of_lanes();

	for (i = 1; i <= number_of_lanes; i++) {
		clrsetbits_le32(&dram->dllcr[i], 0xf << 14,
				(phase & 0xf) << 14);
		clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET,
				DRAM_DLLCR_DISABLE);
		phase >>= 4;
	}
	udelay(2);

	for (i = 1; i <= number_of_lanes; i++)
		clrbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET |
			     DRAM_DLLCR_DISABLE);
	udelay(22);

	for (i = 1; i <= number_of_lanes; i++)
		clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_DISABLE,
				DRAM_DLLCR_NRESET);
	udelay(22);
}

static u32 hpcr_value[32] = {
#ifdef CONFIG_MACH_SUN5I
	0, 0, 0, 0,
	0, 0, 0, 0,
	0, 0, 0, 0,
	0, 0, 0, 0,
	0x1031, 0x1031, 0x0735, 0x1035,
	0x1035, 0x0731, 0x1031, 0,
	0x0301, 0x0301, 0x0301, 0x0301,
	0x0301, 0x0301, 0x0301, 0
#endif
#ifdef CONFIG_MACH_SUN4I
	0x0301, 0x0301, 0x0301, 0x0301,
	0x0301, 0x0301, 0, 0,
	0, 0, 0, 0,
	0, 0, 0, 0,
	0x1031, 0x1031, 0x0735, 0x5031,
	0x1035, 0x0731, 0x1031, 0x0735,
	0x1035, 0x1031, 0x0731, 0x1035,
	0x1031, 0x0301, 0x0301, 0x0731
#endif
#ifdef CONFIG_MACH_SUN7I
	0x0301, 0x0301, 0x0301, 0x0301,
	0x0301, 0x0301, 0x0301, 0x0301,
	0, 0, 0, 0,
	0, 0, 0, 0,
	0x1031, 0x1031, 0x0735, 0x1035,
	0x1035, 0x0731, 0x1031, 0x0735,
	0x1035, 0x1031, 0x0731, 0x1035,
	0x0001, 0x1031, 0, 0x1031
	/* last row differs from boot0 source table
	 * 0x1031, 0x0301, 0x0301, 0x0731
	 * but boot0 code skips #28 and #30, and sets #29 and #31 to the
	 * value from #28 entry (0x1031)
	 */
#endif
};

static void mctl_configure_hostport(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 i;

	for (i = 0; i < 32; i++)
		writel(hpcr_value[i], &dram->hpcr[i]);
}

static void mctl_setup_dram_clock(u32 clk, u32 mbus_clk)
{
	u32 reg_val;
	struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
	u32 pll5p_clk, pll6x_clk;
	u32 pll5p_div, pll6x_div;
	u32 pll5p_rate, pll6x_rate;

	/* setup DRAM PLL */
	reg_val = readl(&ccm->pll5_cfg);
	reg_val &= ~CCM_PLL5_CTRL_M_MASK;		/* set M to 0 (x1) */
	reg_val &= ~CCM_PLL5_CTRL_K_MASK;		/* set K to 0 (x1) */
	reg_val &= ~CCM_PLL5_CTRL_N_MASK;		/* set N to 0 (x0) */
	reg_val &= ~CCM_PLL5_CTRL_P_MASK;		/* set P to 0 (x1) */
#ifdef CONFIG_OLD_SUNXI_KERNEL_COMPAT
	/* Old kernels are hardcoded to P=1 (divide by 2) */
	reg_val |= CCM_PLL5_CTRL_P(1);
#endif
	if (clk >= 540 && clk < 552) {
		/* dram = 540MHz */
		reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
		reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3));
		reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(15));
	} else if (clk >= 512 && clk < 528) {
		/* dram = 512MHz */
		reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(3));
		reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(4));
		reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(16));
	} else if (clk >= 496 && clk < 504) {
		/* dram = 496MHz */
		reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(3));
		reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(2));
		reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(31));
	} else if (clk >= 468 && clk < 480) {
		/* dram = 468MHz */
		reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
		reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3));
		reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(13));
	} else if (clk >= 396 && clk < 408) {
		/* dram = 396MHz */
		reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
		reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3));
		reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(11));
	} else 	{
		/* any other frequency that is a multiple of 24 */
		reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
		reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(2));
		reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(clk / 24));
	}
	reg_val &= ~CCM_PLL5_CTRL_VCO_GAIN;		/* PLL VCO Gain off */
	reg_val |= CCM_PLL5_CTRL_EN;			/* PLL On */
	writel(reg_val, &ccm->pll5_cfg);
	udelay(5500);

	setbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_DDR_CLK);

#if defined(CONFIG_MACH_SUN4I) || defined(CONFIG_MACH_SUN7I)
	/* reset GPS */
	clrbits_le32(&ccm->gps_clk_cfg, CCM_GPS_CTRL_RESET | CCM_GPS_CTRL_GATE);
	setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_GPS);
	udelay(1);
	clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_GPS);
#endif

	/* setup MBUS clock */
	if (!mbus_clk)
		mbus_clk = 300;

	/* PLL5P and PLL6 are the potential clock sources for MBUS */
	pll6x_clk = clock_get_pll6() / 1000000;
#ifdef CONFIG_MACH_SUN7I
	pll6x_clk *= 2; /* sun7i uses PLL6*2, sun5i uses just PLL6 */
#endif
	pll5p_clk = clock_get_pll5p() / 1000000;
	pll6x_div = DIV_ROUND_UP(pll6x_clk, mbus_clk);
	pll5p_div = DIV_ROUND_UP(pll5p_clk, mbus_clk);
	pll6x_rate = pll6x_clk / pll6x_div;
	pll5p_rate = pll5p_clk / pll5p_div;

	if (pll6x_div <= 16 && pll6x_rate > pll5p_rate) {
		/* use PLL6 as the MBUS clock source */
		reg_val = CCM_MBUS_CTRL_GATE |
			  CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL6) |
			  CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) |
			  CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(pll6x_div));
	} else if (pll5p_div <= 16) {
		/* use PLL5P as the MBUS clock source */
		reg_val = CCM_MBUS_CTRL_GATE |
			  CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL5) |
			  CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) |
			  CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(pll5p_div));
	} else {
		panic("Bad mbus_clk\n");
	}
	writel(reg_val, &ccm->mbus_clk_cfg);

	/*
	 * open DRAMC AHB & DLL register clock
	 * close it first
	 */
#if defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I)
	clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM | CCM_AHB_GATE_DLL);
#else
	clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM);
#endif
	udelay(22);

	/* then open it */
#if defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I)
	setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM | CCM_AHB_GATE_DLL);
#else
	setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM);
#endif
	udelay(22);
}

/*
 * The data from rslrX and rdgrX registers (X=rank) is stored
 * in a single 32-bit value using the following format:
 *   bits [31:26] - DQS gating system latency for byte lane 3
 *   bits [25:24] - DQS gating phase select for byte lane 3
 *   bits [23:18] - DQS gating system latency for byte lane 2
 *   bits [17:16] - DQS gating phase select for byte lane 2
 *   bits [15:10] - DQS gating system latency for byte lane 1
 *   bits [ 9:8 ] - DQS gating phase select for byte lane 1
 *   bits [ 7:2 ] - DQS gating system latency for byte lane 0
 *   bits [ 1:0 ] - DQS gating phase select for byte lane 0
 */
static void mctl_set_dqs_gating_delay(int rank, u32 dqs_gating_delay)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 lane, number_of_lanes = mctl_get_number_of_lanes();
	/* rank0 gating system latency (3 bits per lane: cycles) */
	u32 slr = readl(rank == 0 ? &dram->rslr0 : &dram->rslr1);
	/* rank0 gating phase select (2 bits per lane: 90, 180, 270, 360) */
	u32 dgr = readl(rank == 0 ? &dram->rdgr0 : &dram->rdgr1);
	for (lane = 0; lane < number_of_lanes; lane++) {
		u32 tmp = dqs_gating_delay >> (lane * 8);
		slr &= ~(7 << (lane * 3));
		slr |= ((tmp >> 2) & 7) << (lane * 3);
		dgr &= ~(3 << (lane * 2));
		dgr |= (tmp & 3) << (lane * 2);
	}
	writel(slr, rank == 0 ? &dram->rslr0 : &dram->rslr1);
	writel(dgr, rank == 0 ? &dram->rdgr0 : &dram->rdgr1);
}

static int dramc_scan_readpipe(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 reg_val;

	/* data training trigger */
	clrbits_le32(&dram->csr, DRAM_CSR_FAILED);
	setbits_le32(&dram->ccr, DRAM_CCR_DATA_TRAINING);

	/* check whether data training process has completed */
	await_bits_clear(&dram->ccr, DRAM_CCR_DATA_TRAINING);

	/* check data training result */
	reg_val = readl(&dram->csr);
	if (reg_val & DRAM_CSR_FAILED)
		return -1;

	return 0;
}

static void dramc_clock_output_en(u32 on)
{
#if defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I)
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

	if (on)
		setbits_le32(&dram->mcr, DRAM_MCR_DCLK_OUT);
	else
		clrbits_le32(&dram->mcr, DRAM_MCR_DCLK_OUT);
#endif
#ifdef CONFIG_MACH_SUN4I
	struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
	if (on)
		setbits_le32(&ccm->dram_clk_cfg, CCM_DRAM_CTRL_DCLK_OUT);
	else
		clrbits_le32(&ccm->dram_clk_cfg, CCM_DRAM_CTRL_DCLK_OUT);
#endif
}

/* tRFC in nanoseconds for different densities (from the DDR3 spec) */
static const u16 tRFC_DDR3_table[6] = {
	/* 256Mb    512Mb    1Gb      2Gb      4Gb      8Gb */
	   90,      90,      110,     160,     300,     350
};

static void dramc_set_autorefresh_cycle(u32 clk, u32 density)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 tRFC, tREFI;

	tRFC = (tRFC_DDR3_table[density] * clk + 999) / 1000;
	tREFI = (7987 * clk) >> 10;	/* <= 7.8us */

	writel(DRAM_DRR_TREFI(tREFI) | DRAM_DRR_TRFC(tRFC), &dram->drr);
}

/* Calculate the value for A11, A10, A9 bits in MR0 (write recovery) */
static u32 ddr3_write_recovery(u32 clk)
{
	u32 twr_ns = 15; /* DDR3 spec says that it is 15ns for all speed bins */
	u32 twr_ck = (twr_ns * clk + 999) / 1000;
	if (twr_ck < 5)
		return 1;
	else if (twr_ck <= 8)
		return twr_ck - 4;
	else if (twr_ck <= 10)
		return 5;
	else
		return 6;
}

/*
 * If the dram->ppwrsctl (SDR_DPCR) register has the lowest bit set to 1, this
 * means that DRAM is currently in self-refresh mode and retaining the old
 * data. Since we have no idea what to do in this situation yet, just set this
 * register to 0 and initialize DRAM in the same way as on any normal reboot
 * (discarding whatever was stored there).
 *
 * Note: on sun7i hardware, the highest 16 bits need to be set to 0x1651 magic
 * value for this write operation to have any effect. On sun5i hadware this
 * magic value is not necessary. And on sun4i hardware the writes to this
 * register seem to have no effect at all.
 */
static void mctl_disable_power_save(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	writel(0x16510000, &dram->ppwrsctl);
}

/*
 * After the DRAM is powered up or reset, the DDR3 spec requires to wait at
 * least 500 us before driving the CKE pin (Clock Enable) high. The dram->idct
 * (SDR_IDCR) register appears to configure this delay, which gets applied
 * right at the time when the DRAM initialization is activated in the
 * 'mctl_ddr3_initialize' function.
 */
static void mctl_set_cke_delay(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

	/* The CKE delay is represented in DRAM clock cycles, multiplied by N
	 * (where N=2 for sun4i/sun5i and N=3 for sun7i). Here it is set to
	 * the maximum possible value 0x1ffff, just like in the Allwinner's
	 * boot0 bootloader. The resulting delay value is somewhere between
	 * ~0.4 ms (sun5i with 648 MHz DRAM clock speed) and ~1.1 ms (sun7i
	 * with 360 MHz DRAM clock speed). */
	setbits_le32(&dram->idcr, 0x1ffff);
}

/*
 * This triggers the DRAM initialization. It performs sending the mode registers
 * to the DRAM among other things. Very likely the ZQCL command is also getting
 * executed (to do the initial impedance calibration on the DRAM side of the
 * wire). The memory controller and the PHY must be already configured before
 * calling this function.
 */
static void mctl_ddr3_initialize(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	setbits_le32(&dram->ccr, DRAM_CCR_INIT);
	await_bits_clear(&dram->ccr, DRAM_CCR_INIT);
}

/*
 * Perform impedance calibration on the DRAM controller side of the wire.
 */
static void mctl_set_impedance(u32 zq, u32 odt_en)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 reg_val;
	u32 zprog = zq & 0xFF, zdata = (zq >> 8) & 0xFFFFF;

#ifndef CONFIG_MACH_SUN7I
	/* Appears that some kind of automatically initiated default
	 * ZQ calibration is already in progress at this point on sun4i/sun5i
	 * hardware, but not on sun7i. So it is reasonable to wait for its
	 * completion before doing anything else. */
	await_bits_set(&dram->zqsr, DRAM_ZQSR_ZDONE);
#endif

	/* ZQ calibration is not really useful unless ODT is enabled */
	if (!odt_en)
		return;

#ifdef CONFIG_MACH_SUN7I
	/* Enabling ODT in SDR_IOCR on sun7i hardware results in a deadlock
	 * unless bit 24 is set in SDR_ZQCR1. Not much is known about the
	 * SDR_ZQCR1 register, but there are hints indicating that it might
	 * be related to periodic impedance re-calibration. This particular
	 * magic value is borrowed from the Allwinner boot0 bootloader, and
	 * using it helps to avoid troubles */
	writel((1 << 24) | (1 << 1), &dram->zqcr1);
#endif

	/* Needed at least for sun5i, because it does not self clear there */
	clrbits_le32(&dram->zqcr0, DRAM_ZQCR0_ZCAL);

	if (zdata) {
		/* Set the user supplied impedance data */
		reg_val = DRAM_ZQCR0_ZDEN | zdata;
		writel(reg_val, &dram->zqcr0);
		/* no need to wait, this takes effect immediately */
	} else {
		/* Do the calibration using the external resistor */
		reg_val = DRAM_ZQCR0_ZCAL | DRAM_ZQCR0_IMP_DIV(zprog);
		writel(reg_val, &dram->zqcr0);
		/* Wait for the new impedance configuration to settle */
		await_bits_set(&dram->zqsr, DRAM_ZQSR_ZDONE);
	}

	/* Needed at least for sun5i, because it does not self clear there */
	clrbits_le32(&dram->zqcr0, DRAM_ZQCR0_ZCAL);

	/* Set I/O configure register */
	writel(DRAM_IOCR_ODT_EN(odt_en), &dram->iocr);
}

static unsigned long dramc_init_helper(struct dram_para *para)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 reg_val;
	u32 density;
	int ret_val;

	/*
	 * only single rank DDR3 is supported by this code even though the
	 * hardware can theoretically support DDR2 and up to two ranks
	 */
	if (para->type != DRAM_MEMORY_TYPE_DDR3 || para->rank_num != 1)
		return 0;

	/* setup DRAM relative clock */
	mctl_setup_dram_clock(para->clock, para->mbus_clock);

	/* Disable any pad power save control */
	mctl_disable_power_save();

	mctl_set_drive();

	/* dram clock off */
	dramc_clock_output_en(0);

#ifdef CONFIG_MACH_SUN4I
	/* select dram controller 1 */
	writel(DRAM_CSEL_MAGIC, &dram->csel);
#endif

	mctl_itm_disable();
	mctl_enable_dll0(para->tpr3);

	/* configure external DRAM */
	reg_val = DRAM_DCR_TYPE_DDR3;
	reg_val |= DRAM_DCR_IO_WIDTH(para->io_width >> 3);

	if (para->density == 256)
		density = DRAM_DCR_CHIP_DENSITY_256M;
	else if (para->density == 512)
		density = DRAM_DCR_CHIP_DENSITY_512M;
	else if (para->density == 1024)
		density = DRAM_DCR_CHIP_DENSITY_1024M;
	else if (para->density == 2048)
		density = DRAM_DCR_CHIP_DENSITY_2048M;
	else if (para->density == 4096)
		density = DRAM_DCR_CHIP_DENSITY_4096M;
	else if (para->density == 8192)
		density = DRAM_DCR_CHIP_DENSITY_8192M;
	else
		density = DRAM_DCR_CHIP_DENSITY_256M;

	reg_val |= DRAM_DCR_CHIP_DENSITY(density);
	reg_val |= DRAM_DCR_BUS_WIDTH((para->bus_width >> 3) - 1);
	reg_val |= DRAM_DCR_RANK_SEL(para->rank_num - 1);
	reg_val |= DRAM_DCR_CMD_RANK_ALL;
	reg_val |= DRAM_DCR_MODE(DRAM_DCR_MODE_INTERLEAVE);
	writel(reg_val, &dram->dcr);

	dramc_clock_output_en(1);

	mctl_set_impedance(para->zq, para->odt_en);

	mctl_set_cke_delay();

	mctl_ddr3_reset();

	udelay(1);

	await_bits_clear(&dram->ccr, DRAM_CCR_INIT);

	mctl_enable_dllx(para->tpr3);

	/* set refresh period */
	dramc_set_autorefresh_cycle(para->clock, density);

	/* set timing parameters */
	writel(para->tpr0, &dram->tpr0);
	writel(para->tpr1, &dram->tpr1);
	writel(para->tpr2, &dram->tpr2);

	reg_val = DRAM_MR_BURST_LENGTH(0x0);
#if (defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I))
	reg_val |= DRAM_MR_POWER_DOWN;
#endif
	reg_val |= DRAM_MR_CAS_LAT(para->cas - 4);
	reg_val |= DRAM_MR_WRITE_RECOVERY(ddr3_write_recovery(para->clock));
	writel(reg_val, &dram->mr);

	writel(para->emr1, &dram->emr);
	writel(para->emr2, &dram->emr2);
	writel(para->emr3, &dram->emr3);

	/* disable drift compensation and set passive DQS window mode */
	clrsetbits_le32(&dram->ccr, DRAM_CCR_DQS_DRIFT_COMP, DRAM_CCR_DQS_GATE);

#ifdef CONFIG_MACH_SUN7I
	/* Command rate timing mode 2T & 1T */
	if (para->tpr4 & 0x1)
		setbits_le32(&dram->ccr, DRAM_CCR_COMMAND_RATE_1T);
#endif
	/* initialize external DRAM */
	mctl_ddr3_initialize();

	/* scan read pipe value */
	mctl_itm_enable();

	/* Hardware DQS gate training */
	ret_val = dramc_scan_readpipe();

	if (ret_val < 0)
		return 0;

	/* allow to override the DQS training results with a custom delay */
	if (para->dqs_gating_delay)
		mctl_set_dqs_gating_delay(0, para->dqs_gating_delay);

	/* set the DQS gating window type */
	if (para->active_windowing)
		clrbits_le32(&dram->ccr, DRAM_CCR_DQS_GATE);
	else
		setbits_le32(&dram->ccr, DRAM_CCR_DQS_GATE);

	mctl_itm_reset();

	/* configure all host port */
	mctl_configure_hostport();

	return get_ram_size((long *)PHYS_SDRAM_0, PHYS_SDRAM_0_SIZE);
}

unsigned long dramc_init(struct dram_para *para)
{
	unsigned long dram_size, actual_density;

	/* If the dram configuration is not provided, use a default */
	if (!para)
		return 0;

	/* if everything is known, then autodetection is not necessary */
	if (para->io_width && para->bus_width && para->density)
		return dramc_init_helper(para);

	/* try to autodetect the DRAM bus width and density */
	para->io_width  = 16;
	para->bus_width = 32;
#if defined(CONFIG_MACH_SUN4I) || defined(CONFIG_MACH_SUN5I)
	/* only A0-A14 address lines on A10/A13, limiting max density to 4096 */
	para->density = 4096;
#else
	/* all A0-A15 address lines on A20, which allow density 8192 */
	para->density = 8192;
#endif

	dram_size = dramc_init_helper(para);
	if (!dram_size) {
		/* if 32-bit bus width failed, try 16-bit bus width instead */
		para->bus_width = 16;
		dram_size = dramc_init_helper(para);
		if (!dram_size) {
			/* if 16-bit bus width also failed, then bail out */
			return dram_size;
		}
	}

	/* check if we need to adjust the density */
	actual_density = (dram_size >> 17) * para->io_width / para->bus_width;

	if (actual_density != para->density) {
		/* update the density and re-initialize DRAM again */
		para->density = actual_density;
		dram_size = dramc_init_helper(para);
	}

	return dram_size;
}