1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
|
/*
* Copyright (c) 2011 The Chromium OS Authors.
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/* Tegra2 Clock control functions */
#include <asm/io.h>
#include <asm/arch/clk_rst.h>
#include <asm/arch/clock.h>
#include <asm/arch/timer.h>
#include <asm/arch/tegra2.h>
#include <common.h>
#include <div64.h>
/*
* This is our record of the current clock rate of each clock. We don't
* fill all of these in since we are only really interested in clocks which
* we use as parents.
*/
static unsigned pll_rate[CLOCK_ID_COUNT];
/*
* The oscillator frequency is fixed to one of four set values. Based on this
* the other clocks are set up appropriately.
*/
static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
13000000,
19200000,
12000000,
26000000,
};
/*
* Clock types that we can use as a source. The Tegra2 has muxes for the
* peripheral clocks, and in most cases there are four options for the clock
* source. This gives us a clock 'type' and exploits what commonality exists
* in the device.
*
* Letters are obvious, except for T which means CLK_M, and S which means the
* clock derived from 32KHz. Beware that CLK_M (also called OSC in the
* datasheet) and PLL_M are different things. The former is the basic
* clock supplied to the SOC from an external oscillator. The latter is the
* memory clock PLL.
*
* See definitions in clock_id in the header file.
*/
enum clock_type_id {
CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
CLOCK_TYPE_MCPA, /* and so on */
CLOCK_TYPE_MCPT,
CLOCK_TYPE_PCM,
CLOCK_TYPE_PCMT,
CLOCK_TYPE_PCXTS,
CLOCK_TYPE_PDCT,
CLOCK_TYPE_COUNT,
CLOCK_TYPE_NONE = -1, /* invalid clock type */
};
/* return 1 if a peripheral ID is in range */
#define clock_type_id_isvalid(id) ((id) >= 0 && \
(id) < CLOCK_TYPE_COUNT)
char pllp_valid = 1; /* PLLP is set up correctly */
enum {
CLOCK_MAX_MUX = 4 /* number of source options for each clock */
};
/*
* Clock source mux for each clock type. This just converts our enum into
* a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
* is special as it has 5 sources. Since it also has a different number of
* bits in its register for the source, we just handle it with a special
* case in the code.
*/
#define CLK(x) CLOCK_ID_ ## x
static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
{ CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC) },
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO) },
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC) },
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE) },
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
{ CLK(PERIPH), CLK(CGENERAL), CLK(XCPU), CLK(OSC) },
{ CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC) },
};
/*
* Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
* not in the header file since it is for purely internal use - we want
* callers to use the PERIPH_ID for all access to peripheral clocks to avoid
* confusion bewteen PERIPH_ID_... and PERIPHC_...
*
* We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
* confusing.
*
* Note to SOC vendors: perhaps define a unified numbering for peripherals and
* use it for reset, clock enable, clock source/divider and even pinmuxing
* if you can.
*/
enum periphc_internal_id {
/* 0x00 */
PERIPHC_I2S1,
PERIPHC_I2S2,
PERIPHC_SPDIF_OUT,
PERIPHC_SPDIF_IN,
PERIPHC_PWM,
PERIPHC_SPI1,
PERIPHC_SPI2,
PERIPHC_SPI3,
/* 0x08 */
PERIPHC_XIO,
PERIPHC_I2C1,
PERIPHC_DVC_I2C,
PERIPHC_TWC,
PERIPHC_0c,
PERIPHC_10, /* PERIPHC_SPI1, what is this really? */
PERIPHC_DISP1,
PERIPHC_DISP2,
/* 0x10 */
PERIPHC_CVE,
PERIPHC_IDE0,
PERIPHC_VI,
PERIPHC_1c,
PERIPHC_SDMMC1,
PERIPHC_SDMMC2,
PERIPHC_G3D,
PERIPHC_G2D,
/* 0x18 */
PERIPHC_NDFLASH,
PERIPHC_SDMMC4,
PERIPHC_VFIR,
PERIPHC_EPP,
PERIPHC_MPE,
PERIPHC_MIPI,
PERIPHC_UART1,
PERIPHC_UART2,
/* 0x20 */
PERIPHC_HOST1X,
PERIPHC_21,
PERIPHC_TVO,
PERIPHC_HDMI,
PERIPHC_24,
PERIPHC_TVDAC,
PERIPHC_I2C2,
PERIPHC_EMC,
/* 0x28 */
PERIPHC_UART3,
PERIPHC_29,
PERIPHC_VI_SENSOR,
PERIPHC_2b,
PERIPHC_2c,
PERIPHC_SPI4,
PERIPHC_I2C3,
PERIPHC_SDMMC3,
/* 0x30 */
PERIPHC_UART4,
PERIPHC_UART5,
PERIPHC_VDE,
PERIPHC_OWR,
PERIPHC_NOR,
PERIPHC_CSITE,
PERIPHC_COUNT,
PERIPHC_NONE = -1,
};
/* return 1 if a periphc_internal_id is in range */
#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
(id) < PERIPHC_COUNT)
/*
* Clock type for each peripheral clock source. We put the name in each
* record just so it is easy to match things up
*/
#define TYPE(name, type) type
static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
/* 0x00 */
TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
TYPE(PERIPHC_PWM, CLOCK_TYPE_PCXTS),
TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SPI22, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SPI3, CLOCK_TYPE_PCMT),
/* 0x08 */
TYPE(PERIPHC_XIO, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_TWC, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDCT),
/* 0x10 */
TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_IDE0, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
/* 0x18 */
TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
/* 0x20 */
TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_HDMI, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
/* 0x28 */
TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SPI4, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
/* 0x30 */
TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
};
/*
* This array translates a periph_id to a periphc_internal_id
*
* Not present/matched up:
* uint vi_sensor; _VI_SENSOR_0, 0x1A8
* SPDIF - which is both 0x08 and 0x0c
*
*/
#define NONE(name) (-1)
#define OFFSET(name, value) PERIPHC_ ## name
static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
/* Low word: 31:0 */
NONE(CPU),
NONE(RESERVED1),
NONE(RESERVED2),
NONE(AC97),
NONE(RTC),
NONE(TMR),
PERIPHC_UART1,
PERIPHC_UART2, /* and vfir 0x68 */
/* 0x08 */
NONE(GPIO),
PERIPHC_SDMMC2,
NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
PERIPHC_I2S1,
PERIPHC_I2C1,
PERIPHC_NDFLASH,
PERIPHC_SDMMC1,
PERIPHC_SDMMC4,
/* 0x10 */
PERIPHC_TWC,
PERIPHC_PWM,
PERIPHC_I2S2,
PERIPHC_EPP,
PERIPHC_VI,
PERIPHC_G2D,
NONE(USBD),
NONE(ISP),
/* 0x18 */
PERIPHC_G3D,
PERIPHC_IDE0,
PERIPHC_DISP2,
PERIPHC_DISP1,
PERIPHC_HOST1X,
NONE(VCP),
NONE(RESERVED30),
NONE(CACHE2),
/* Middle word: 63:32 */
NONE(MEM),
NONE(AHBDMA),
NONE(APBDMA),
NONE(RESERVED35),
NONE(KBC),
NONE(STAT_MON),
NONE(PMC),
NONE(FUSE),
/* 0x28 */
NONE(KFUSE),
NONE(SBC1), /* SBC1, 0x34, is this SPI1? */
PERIPHC_NOR,
PERIPHC_SPI1,
PERIPHC_SPI2,
PERIPHC_XIO,
PERIPHC_SPI3,
PERIPHC_DVC_I2C,
/* 0x30 */
NONE(DSI),
PERIPHC_TVO, /* also CVE 0x40 */
PERIPHC_MIPI,
PERIPHC_HDMI,
PERIPHC_CSITE,
PERIPHC_TVDAC,
PERIPHC_I2C2,
PERIPHC_UART3,
/* 0x38 */
NONE(RESERVED56),
PERIPHC_EMC,
NONE(USB2),
NONE(USB3),
PERIPHC_MPE,
PERIPHC_VDE,
NONE(BSEA),
NONE(BSEV),
/* Upper word 95:64 */
NONE(SPEEDO),
PERIPHC_UART4,
PERIPHC_UART5,
PERIPHC_I2C3,
PERIPHC_SPI4,
PERIPHC_SDMMC3,
NONE(PCIE),
PERIPHC_OWR,
/* 0x48 */
NONE(AFI),
NONE(CORESIGHT),
NONE(RESERVED74),
NONE(AVPUCQ),
NONE(RESERVED76),
NONE(RESERVED77),
NONE(RESERVED78),
NONE(RESERVED79),
/* 0x50 */
NONE(RESERVED80),
NONE(RESERVED81),
NONE(RESERVED82),
NONE(RESERVED83),
NONE(IRAMA),
NONE(IRAMB),
NONE(IRAMC),
NONE(IRAMD),
/* 0x58 */
NONE(CRAM2),
};
/*
* Get the oscillator frequency, from the corresponding hardware configuration
* field.
*/
enum clock_osc_freq clock_get_osc_freq(void)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 reg;
reg = readl(&clkrst->crc_osc_ctrl);
return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
}
/* Returns a pointer to the registers of the given pll */
static struct clk_pll *get_pll(enum clock_id clkid)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
assert(clock_id_isvalid(clkid));
return &clkrst->crc_pll[clkid];
}
unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
u32 divp, u32 cpcon, u32 lfcon)
{
struct clk_pll *pll = get_pll(clkid);
u32 data;
/*
* We cheat by treating all PLL (except PLLU) in the same fashion.
* This works only because:
* - same fields are always mapped at same offsets, except DCCON
* - DCCON is always 0, doesn't conflict
* - M,N, P of PLLP values are ignored for PLLP
*/
data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
writel(data, &pll->pll_misc);
data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
(0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
if (clkid == CLOCK_ID_USB)
data |= divp << PLLU_VCO_FREQ_SHIFT;
else
data |= divp << PLL_DIVP_SHIFT;
writel(data, &pll->pll_base);
/* calculate the stable time */
return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
}
/* return 1 if a peripheral ID is in range and valid */
static int clock_periph_id_isvalid(enum periph_id id)
{
if (id < PERIPH_ID_FIRST || id >= PERIPH_ID_COUNT)
printf("Peripheral id %d out of range\n", id);
else {
switch (id) {
case PERIPH_ID_RESERVED1:
case PERIPH_ID_RESERVED2:
case PERIPH_ID_RESERVED30:
case PERIPH_ID_RESERVED35:
case PERIPH_ID_RESERVED56:
case PERIPH_ID_RESERVED74:
case PERIPH_ID_RESERVED76:
case PERIPH_ID_RESERVED77:
case PERIPH_ID_RESERVED78:
case PERIPH_ID_RESERVED79:
case PERIPH_ID_RESERVED80:
case PERIPH_ID_RESERVED81:
case PERIPH_ID_RESERVED82:
case PERIPH_ID_RESERVED83:
printf("Peripheral id %d is reserved\n", id);
break;
default:
return 1;
}
}
return 0;
}
/* Returns a pointer to the clock source register for a peripheral */
static u32 *get_periph_source_reg(enum periph_id periph_id)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
enum periphc_internal_id internal_id;
assert(clock_periph_id_isvalid(periph_id));
internal_id = periph_id_to_internal_id[periph_id];
assert(internal_id != -1);
return &clkrst->crc_clk_src[internal_id];
}
void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
unsigned divisor)
{
u32 *reg = get_periph_source_reg(periph_id);
u32 value;
value = readl(reg);
value &= ~OUT_CLK_SOURCE_MASK;
value |= source << OUT_CLK_SOURCE_SHIFT;
value &= ~OUT_CLK_DIVISOR_MASK;
value |= divisor << OUT_CLK_DIVISOR_SHIFT;
writel(value, reg);
}
void clock_ll_set_source(enum periph_id periph_id, unsigned source)
{
u32 *reg = get_periph_source_reg(periph_id);
clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
source << OUT_CLK_SOURCE_SHIFT);
}
/**
* Given the parent's rate and the required rate for the children, this works
* out the peripheral clock divider to use, in 7.1 binary format.
*
* @param parent_rate clock rate of parent clock in Hz
* @param rate required clock rate for this clock
* @return divider which should be used
*/
static int clk_div7_1_get_divider(unsigned long parent_rate,
unsigned long rate)
{
u64 divider = parent_rate * 2;
divider += rate - 1;
do_div(divider, rate);
if ((s64)divider - 2 < 0)
return 0;
if ((s64)divider - 2 > 255)
return -1;
return divider - 2;
}
/**
* Given the parent's rate and the divider in 7.1 format, this works out the
* resulting peripheral clock rate.
*
* @param parent_rate clock rate of parent clock in Hz
* @param divider which should be used in 7.1 format
* @return effective clock rate of peripheral
*/
static unsigned long get_rate_from_divider(unsigned long parent_rate,
int divider)
{
u64 rate;
rate = (u64)parent_rate * 2;
do_div(rate, divider + 2);
return rate;
}
unsigned long clock_get_periph_rate(enum periph_id periph_id,
enum clock_id parent)
{
u32 *reg = get_periph_source_reg(periph_id);
return get_rate_from_divider(pll_rate[parent],
(readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
}
/**
* Find the best available 7.1 format divisor given a parent clock rate and
* required child clock rate. This function assumes that a second-stage
* divisor is available which can divide by powers of 2 from 1 to 256.
*
* @param parent_rate clock rate of parent clock in Hz
* @param rate required clock rate for this clock
* @param extra_div value for the second-stage divisor (not set if this
* function returns -1.
* @return divider which should be used, or -1 if nothing is valid
*
*/
static int find_best_divider(unsigned long parent_rate, unsigned long rate,
int *extra_div)
{
int shift;
int best_divider = -1;
int best_error = rate;
/* try dividers from 1 to 256 and find closest match */
for (shift = 0; shift <= 8 && best_error > 0; shift++) {
unsigned divided_parent = parent_rate >> shift;
int divider = clk_div7_1_get_divider(divided_parent, rate);
unsigned effective_rate = get_rate_from_divider(divided_parent,
divider);
int error = rate - effective_rate;
/* Given a valid divider, look for the lowest error */
if (divider != -1 && error < best_error) {
best_error = error;
*extra_div = 1 << shift;
best_divider = divider;
}
}
/* return what we found - *extra_div will already be set */
return best_divider;
}
/**
* Given a peripheral ID and the required source clock, this returns which
* value should be programmed into the source mux for that peripheral.
*
* There is special code here to handle the one source type with 5 sources.
*
* @param periph_id peripheral to start
* @param source PLL id of required parent clock
* @param mux_bits Set to number of bits in mux register: 2 or 4
* @return mux value (0-4, or -1 if not found)
*/
static int get_periph_clock_source(enum periph_id periph_id,
enum clock_id parent, int *mux_bits)
{
enum clock_type_id type;
enum periphc_internal_id internal_id;
int mux;
assert(clock_periph_id_isvalid(periph_id));
internal_id = periph_id_to_internal_id[periph_id];
assert(periphc_internal_id_isvalid(internal_id));
type = clock_periph_type[internal_id];
assert(clock_type_id_isvalid(type));
/* Special case here for the clock with a 4-bit source mux */
if (type == CLOCK_TYPE_PCXTS)
*mux_bits = 4;
else
*mux_bits = 2;
for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
if (clock_source[type][mux] == parent)
return mux;
/*
* Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
* which is not in our table. If not, then they are asking for a
* source which this peripheral can't access through its mux.
*/
assert(type == CLOCK_TYPE_PCXTS);
assert(parent == CLOCK_ID_SFROM32KHZ);
if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
return 4; /* mux value for this clock */
/* if we get here, either us or the caller has made a mistake */
printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
parent);
return -1;
}
/**
* Adjust peripheral PLL to use the given divider and source.
*
* @param periph_id peripheral to adjust
* @param parent Required parent clock (for source mux)
* @param divider Required divider in 7.1 format
* @return 0 if ok, -1 on error (requesting a parent clock which is not valid
* for this peripheral)
*/
static int adjust_periph_pll(enum periph_id periph_id,
enum clock_id parent, unsigned divider)
{
u32 *reg = get_periph_source_reg(periph_id);
unsigned source;
int mux_bits;
clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
divider << OUT_CLK_DIVISOR_SHIFT);
udelay(1);
/* work out the source clock and set it */
source = get_periph_clock_source(periph_id, parent, &mux_bits);
if (source < 0)
return -1;
if (mux_bits == 4) {
clrsetbits_le32(reg, OUT_CLK_SOURCE4_MASK,
source << OUT_CLK_SOURCE4_SHIFT);
} else {
clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
source << OUT_CLK_SOURCE_SHIFT);
}
udelay(2);
return 0;
}
unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
enum clock_id parent, unsigned rate, int *extra_div)
{
unsigned effective_rate;
int divider;
if (extra_div)
divider = find_best_divider(pll_rate[parent], rate, extra_div);
else
divider = clk_div7_1_get_divider(pll_rate[parent], rate);
assert(divider >= 0);
if (adjust_periph_pll(periph_id, parent, divider))
return -1U;
debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
get_periph_source_reg(periph_id),
readl(get_periph_source_reg(periph_id)));
/* Check what we ended up with. This shouldn't matter though */
effective_rate = clock_get_periph_rate(periph_id, parent);
if (extra_div)
effective_rate /= *extra_div;
if (rate != effective_rate)
debug("Requested clock rate %u not honored (got %u)\n",
rate, effective_rate);
return effective_rate;
}
unsigned clock_start_periph_pll(enum periph_id periph_id,
enum clock_id parent, unsigned rate)
{
unsigned effective_rate;
reset_set_enable(periph_id, 1);
clock_enable(periph_id);
effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
NULL);
reset_set_enable(periph_id, 0);
return effective_rate;
}
void clock_set_enable(enum periph_id periph_id, int enable)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
u32 reg;
/* Enable/disable the clock to this peripheral */
assert(clock_periph_id_isvalid(periph_id));
reg = readl(clk);
if (enable)
reg |= PERIPH_MASK(periph_id);
else
reg &= ~PERIPH_MASK(periph_id);
writel(reg, clk);
}
void clock_enable(enum periph_id clkid)
{
clock_set_enable(clkid, 1);
}
void clock_disable(enum periph_id clkid)
{
clock_set_enable(clkid, 0);
}
void reset_set_enable(enum periph_id periph_id, int enable)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
u32 reg;
/* Enable/disable reset to the peripheral */
assert(clock_periph_id_isvalid(periph_id));
reg = readl(reset);
if (enable)
reg |= PERIPH_MASK(periph_id);
else
reg &= ~PERIPH_MASK(periph_id);
writel(reg, reset);
}
void reset_periph(enum periph_id periph_id, int us_delay)
{
/* Put peripheral into reset */
reset_set_enable(periph_id, 1);
udelay(us_delay);
/* Remove reset */
reset_set_enable(periph_id, 0);
udelay(us_delay);
}
void reset_cmplx_set_enable(int cpu, int which, int reset)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 mask;
/* Form the mask, which depends on the cpu chosen. Tegra2 has 2 */
assert(cpu >= 0 && cpu < 2);
mask = which << cpu;
/* either enable or disable those reset for that CPU */
if (reset)
writel(mask, &clkrst->crc_cpu_cmplx_set);
else
writel(mask, &clkrst->crc_cpu_cmplx_clr);
}
unsigned clock_get_rate(enum clock_id clkid)
{
struct clk_pll *pll;
u32 base;
u32 divm;
u64 parent_rate;
u64 rate;
parent_rate = osc_freq[clock_get_osc_freq()];
if (clkid == CLOCK_ID_OSC)
return parent_rate;
pll = get_pll(clkid);
base = readl(&pll->pll_base);
/* Oh for bf_unpack()... */
rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
if (clkid == CLOCK_ID_USB)
divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
else
divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
do_div(rate, divm);
return rate;
}
/**
* Set the output frequency you want for each PLL clock.
* PLL output frequencies are programmed by setting their N, M and P values.
* The governing equations are:
* VCO = (Fi / m) * n, Fo = VCO / (2^p)
* where Fo is the output frequency from the PLL.
* Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
* 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
* Please see Tegra TRM section 5.3 to get the detail for PLL Programming
*
* @param n PLL feedback divider(DIVN)
* @param m PLL input divider(DIVN)
* @param p post divider(DIVP)
* @param cpcon base PLL charge pump(CPCON)
* @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
* be overriden), 1 if PLL is already correct
*/
static int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
{
u32 base_reg;
u32 misc_reg;
struct clk_pll *pll;
pll = get_pll(clkid);
base_reg = readl(&pll->pll_base);
/* Set BYPASS, m, n and p to PLL_BASE */
base_reg &= ~PLL_DIVM_MASK;
base_reg |= m << PLL_DIVM_SHIFT;
base_reg &= ~PLL_DIVN_MASK;
base_reg |= n << PLL_DIVN_SHIFT;
base_reg &= ~PLL_DIVP_MASK;
base_reg |= p << PLL_DIVP_SHIFT;
if (clkid == CLOCK_ID_PERIPH) {
/*
* If the PLL is already set up, check that it is correct
* and record this info for clock_verify() to check.
*/
if (base_reg & PLL_BASE_OVRRIDE_MASK) {
base_reg |= PLL_ENABLE_MASK;
if (base_reg != readl(&pll->pll_base))
pllp_valid = 0;
return pllp_valid ? 1 : -1;
}
base_reg |= PLL_BASE_OVRRIDE_MASK;
}
base_reg |= PLL_BYPASS_MASK;
writel(base_reg, &pll->pll_base);
/* Set cpcon to PLL_MISC */
misc_reg = readl(&pll->pll_misc);
misc_reg &= ~PLL_CPCON_MASK;
misc_reg |= cpcon << PLL_CPCON_SHIFT;
writel(misc_reg, &pll->pll_misc);
/* Enable PLL */
base_reg |= PLL_ENABLE_MASK;
writel(base_reg, &pll->pll_base);
/* Disable BYPASS */
base_reg &= ~PLL_BYPASS_MASK;
writel(base_reg, &pll->pll_base);
return 0;
}
int clock_verify(void)
{
struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
u32 reg = readl(&pll->pll_base);
if (!pllp_valid) {
printf("Warning: PLLP %x is not correct\n", reg);
return -1;
}
debug("PLLX %x is correct\n", reg);
return 0;
}
void clock_early_init(void)
{
/*
* PLLP output frequency set to 216MHz
* PLLC output frequency set to 600Mhz
*
* TODO: Can we calculate these values instead of hard-coding?
*/
switch (clock_get_osc_freq()) {
case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
break;
case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
break;
case CLOCK_OSC_FREQ_13_0:
case CLOCK_OSC_FREQ_19_2:
default:
/*
* These are not supported. It is too early to print a
* message and the UART likely won't work anyway due to the
* oscillator being wrong.
*/
break;
}
}
void clock_init(void)
{
pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
}
|