1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
|
/*
* Copyright 2014 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/armv8/mmu.h>
#include <asm/io.h>
#include <asm/arch-fsl-lsch3/immap_lsch3.h>
#include <fsl-mc/fsl_mc.h>
#include "cpu.h"
#include "mp.h"
#include "speed.h"
DECLARE_GLOBAL_DATA_PTR;
#ifndef CONFIG_SYS_DCACHE_OFF
/*
* To start MMU before DDR is available, we create MMU table in SRAM.
* The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
* levels of translation tables here to cover 40-bit address space.
* We use 4KB granule size, with 40 bits physical address, T0SZ=24
* Level 0 IA[39], table address @0
* Level 1 IA[31:30], table address @01000, 0x2000
* Level 2 IA[29:21], table address @0x3000
*/
#define SECTION_SHIFT_L0 39UL
#define SECTION_SHIFT_L1 30UL
#define SECTION_SHIFT_L2 21UL
#define BLOCK_SIZE_L0 0x8000000000UL
#define BLOCK_SIZE_L1 (1 << SECTION_SHIFT_L1)
#define BLOCK_SIZE_L2 (1 << SECTION_SHIFT_L2)
#define CONFIG_SYS_IFC_BASE 0x30000000
#define CONFIG_SYS_IFC_SIZE 0x10000000
#define CONFIG_SYS_IFC_BASE2 0x500000000
#define CONFIG_SYS_IFC_SIZE2 0x100000000
#define TCR_EL2_PS_40BIT (2 << 16)
#define LSCH3_VA_BITS (40)
#define LSCH3_TCR (TCR_TG0_4K | \
TCR_EL2_PS_40BIT | \
TCR_SHARED_NON | \
TCR_ORGN_NC | \
TCR_IRGN_NC | \
TCR_T0SZ(LSCH3_VA_BITS))
/*
* Final MMU
* Let's start from the same layout as early MMU and modify as needed.
* IFC regions will be cache-inhibit.
*/
#define FINAL_QBMAN_CACHED_MEM 0x818000000UL
#define FINAL_QBMAN_CACHED_SIZE 0x4000000
static inline void early_mmu_setup(void)
{
int el;
u64 i;
u64 section_l1t0, section_l1t1, section_l2;
u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE;
u64 *level1_table_0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000);
u64 *level1_table_1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000);
u64 *level2_table = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000);
level0_table[0] =
(u64)level1_table_0 | PMD_TYPE_TABLE;
level0_table[1] =
(u64)level1_table_1 | PMD_TYPE_TABLE;
/*
* set level 1 table 0 to cache_inhibit, covering 0 to 512GB
* set level 1 table 1 to cache enabled, covering 512GB to 1TB
* set level 2 table to cache-inhibit, covering 0 to 1GB
*/
section_l1t0 = 0;
section_l1t1 = BLOCK_SIZE_L0;
section_l2 = 0;
for (i = 0; i < 512; i++) {
set_pgtable_section(level1_table_0, i, section_l1t0,
MT_DEVICE_NGNRNE);
set_pgtable_section(level1_table_1, i, section_l1t1,
MT_NORMAL);
set_pgtable_section(level2_table, i, section_l2,
MT_DEVICE_NGNRNE);
section_l1t0 += BLOCK_SIZE_L1;
section_l1t1 += BLOCK_SIZE_L1;
section_l2 += BLOCK_SIZE_L2;
}
level1_table_0[0] =
(u64)level2_table | PMD_TYPE_TABLE;
level1_table_0[1] =
0x40000000 | PMD_SECT_AF | PMD_TYPE_SECT |
PMD_ATTRINDX(MT_DEVICE_NGNRNE);
level1_table_0[2] =
0x80000000 | PMD_SECT_AF | PMD_TYPE_SECT |
PMD_ATTRINDX(MT_NORMAL);
level1_table_0[3] =
0xc0000000 | PMD_SECT_AF | PMD_TYPE_SECT |
PMD_ATTRINDX(MT_NORMAL);
/* Rewrite table to enable cache */
set_pgtable_section(level2_table,
CONFIG_SYS_FSL_OCRAM_BASE >> SECTION_SHIFT_L2,
CONFIG_SYS_FSL_OCRAM_BASE,
MT_NORMAL);
for (i = CONFIG_SYS_IFC_BASE >> SECTION_SHIFT_L2;
i < (CONFIG_SYS_IFC_BASE + CONFIG_SYS_IFC_SIZE)
>> SECTION_SHIFT_L2; i++) {
section_l2 = i << SECTION_SHIFT_L2;
set_pgtable_section(level2_table, i,
section_l2, MT_NORMAL);
}
el = current_el();
set_ttbr_tcr_mair(el, (u64)level0_table, LSCH3_TCR, MEMORY_ATTRIBUTES);
set_sctlr(get_sctlr() | CR_M);
}
/*
* This final tale looks similar to early table, but different in detail.
* These tables are in regular memory. Cache on IFC is disabled. One sub table
* is added to enable cache for QBMan.
*/
static inline void final_mmu_setup(void)
{
int el;
u64 i, tbl_base, tbl_limit, section_base;
u64 section_l1t0, section_l1t1, section_l2;
u64 *level0_table = (u64 *)gd->arch.tlb_addr;
u64 *level1_table_0 = (u64 *)(gd->arch.tlb_addr + 0x1000);
u64 *level1_table_1 = (u64 *)(gd->arch.tlb_addr + 0x2000);
u64 *level2_table_0 = (u64 *)(gd->arch.tlb_addr + 0x3000);
u64 *level2_table_1 = (u64 *)(gd->arch.tlb_addr + 0x4000);
level0_table[0] =
(u64)level1_table_0 | PMD_TYPE_TABLE;
level0_table[1] =
(u64)level1_table_1 | PMD_TYPE_TABLE;
/*
* set level 1 table 0 to cache_inhibit, covering 0 to 512GB
* set level 1 table 1 to cache enabled, covering 512GB to 1TB
* set level 2 table 0 to cache-inhibit, covering 0 to 1GB
*/
section_l1t0 = 0;
section_l1t1 = BLOCK_SIZE_L0 | PMD_SECT_OUTER_SHARE;
section_l2 = 0;
for (i = 0; i < 512; i++) {
set_pgtable_section(level1_table_0, i, section_l1t0,
MT_DEVICE_NGNRNE);
set_pgtable_section(level1_table_1, i, section_l1t1,
MT_NORMAL);
set_pgtable_section(level2_table_0, i, section_l2,
MT_DEVICE_NGNRNE);
section_l1t0 += BLOCK_SIZE_L1;
section_l1t1 += BLOCK_SIZE_L1;
section_l2 += BLOCK_SIZE_L2;
}
level1_table_0[0] =
(u64)level2_table_0 | PMD_TYPE_TABLE;
level1_table_0[2] =
0x80000000 | PMD_SECT_AF | PMD_TYPE_SECT |
PMD_SECT_OUTER_SHARE | PMD_ATTRINDX(MT_NORMAL);
level1_table_0[3] =
0xc0000000 | PMD_SECT_AF | PMD_TYPE_SECT |
PMD_SECT_OUTER_SHARE | PMD_ATTRINDX(MT_NORMAL);
/* Rewrite table to enable cache */
set_pgtable_section(level2_table_0,
CONFIG_SYS_FSL_OCRAM_BASE >> SECTION_SHIFT_L2,
CONFIG_SYS_FSL_OCRAM_BASE,
MT_NORMAL);
/*
* Fill in other part of tables if cache is needed
* If finer granularity than 1GB is needed, sub table
* should be created.
*/
section_base = FINAL_QBMAN_CACHED_MEM & ~(BLOCK_SIZE_L1 - 1);
i = section_base >> SECTION_SHIFT_L1;
level1_table_0[i] = (u64)level2_table_1 | PMD_TYPE_TABLE;
section_l2 = section_base;
for (i = 0; i < 512; i++) {
set_pgtable_section(level2_table_1, i, section_l2,
MT_DEVICE_NGNRNE);
section_l2 += BLOCK_SIZE_L2;
}
tbl_base = FINAL_QBMAN_CACHED_MEM & (BLOCK_SIZE_L1 - 1);
tbl_limit = (FINAL_QBMAN_CACHED_MEM + FINAL_QBMAN_CACHED_SIZE) &
(BLOCK_SIZE_L1 - 1);
for (i = tbl_base >> SECTION_SHIFT_L2;
i < tbl_limit >> SECTION_SHIFT_L2; i++) {
section_l2 = section_base + (i << SECTION_SHIFT_L2);
set_pgtable_section(level2_table_1, i,
section_l2, MT_NORMAL);
}
/* flush new MMU table */
flush_dcache_range(gd->arch.tlb_addr,
gd->arch.tlb_addr + gd->arch.tlb_size);
/* point TTBR to the new table */
el = current_el();
asm volatile("dsb sy");
if (el == 1) {
asm volatile("msr ttbr0_el1, %0"
: : "r" ((u64)level0_table) : "memory");
} else if (el == 2) {
asm volatile("msr ttbr0_el2, %0"
: : "r" ((u64)level0_table) : "memory");
} else if (el == 3) {
asm volatile("msr ttbr0_el3, %0"
: : "r" ((u64)level0_table) : "memory");
} else {
hang();
}
asm volatile("isb");
/*
* MMU is already enabled, just need to invalidate TLB to load the
* new table. The new table is compatible with the current table, if
* MMU somehow walks through the new table before invalidation TLB,
* it still works. So we don't need to turn off MMU here.
*/
}
int arch_cpu_init(void)
{
icache_enable();
__asm_invalidate_dcache_all();
__asm_invalidate_tlb_all();
early_mmu_setup();
set_sctlr(get_sctlr() | CR_C);
return 0;
}
/*
* This function is called from lib/board.c.
* It recreates MMU table in main memory. MMU and d-cache are enabled earlier.
* There is no need to disable d-cache for this operation.
*/
void enable_caches(void)
{
final_mmu_setup();
__asm_invalidate_tlb_all();
}
#endif
static inline u32 initiator_type(u32 cluster, int init_id)
{
struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
u32 type = in_le32(&gur->tp_ityp[idx]);
if (type & TP_ITYP_AV)
return type;
return 0;
}
u32 cpu_mask(void)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster, type, mask = 0;
do {
int j;
cluster = in_le32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type) {
if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
mask |= 1 << count;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
return mask;
}
/*
* Return the number of cores on this SOC.
*/
int cpu_numcores(void)
{
return hweight32(cpu_mask());
}
int fsl_qoriq_core_to_cluster(unsigned int core)
{
struct ccsr_gur __iomem *gur =
(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster;
do {
int j;
cluster = in_le32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
if (initiator_type(cluster, j)) {
if (count == core)
return i;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
return -1; /* cannot identify the cluster */
}
u32 fsl_qoriq_core_to_type(unsigned int core)
{
struct ccsr_gur __iomem *gur =
(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster, type;
do {
int j;
cluster = in_le32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type) {
if (count == core)
return type;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
return -1; /* cannot identify the cluster */
}
#ifdef CONFIG_DISPLAY_CPUINFO
int print_cpuinfo(void)
{
struct sys_info sysinfo;
char buf[32];
unsigned int i, core;
u32 type;
get_sys_info(&sysinfo);
puts("Clock Configuration:");
for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
if (!(i % 3))
puts("\n ");
type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
printf("CPU%d(%s):%-4s MHz ", core,
type == TY_ITYP_VER_A7 ? "A7 " :
(type == TY_ITYP_VER_A53 ? "A53" :
(type == TY_ITYP_VER_A57 ? "A57" : " ")),
strmhz(buf, sysinfo.freq_processor[core]));
}
printf("\n Bus: %-4s MHz ",
strmhz(buf, sysinfo.freq_systembus));
printf("DDR: %-4s MHz", strmhz(buf, sysinfo.freq_ddrbus));
printf(" DP-DDR: %-4s MHz", strmhz(buf, sysinfo.freq_ddrbus2));
puts("\n");
return 0;
}
#endif
int cpu_eth_init(bd_t *bis)
{
int error = 0;
#ifdef CONFIG_FSL_MC_ENET
error = mc_init(bis);
#endif
return error;
}
int arch_early_init_r(void)
{
int rv;
rv = fsl_lsch3_wake_seconday_cores();
if (rv)
printf("Did not wake secondary cores\n");
return 0;
}
|