1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2018 NXP
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/uclass.h>
#include <errno.h>
#include <asm/arch/sci/sci.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch-imx/cpu.h>
#include <asm/armv8/cpu.h>
#include <asm/armv8/mmu.h>
#include <asm/mach-imx/boot_mode.h>
DECLARE_GLOBAL_DATA_PTR;
u32 get_cpu_rev(void)
{
u32 id = 0, rev = 0;
int ret;
ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
if (ret)
return 0;
rev = (id >> 5) & 0xf;
id = (id & 0x1f) + MXC_SOC_IMX8; /* Dummy ID for chip */
return (id << 12) | rev;
}
#ifdef CONFIG_DISPLAY_CPUINFO
const char *get_imx8_type(u32 imxtype)
{
switch (imxtype) {
case MXC_CPU_IMX8QXP:
return "8QXP";
default:
return "??";
}
}
const char *get_imx8_rev(u32 rev)
{
switch (rev) {
case CHIP_REV_A:
return "A";
case CHIP_REV_B:
return "B";
default:
return "?";
}
}
const char *get_core_name(void)
{
if (is_cortex_a35())
return "A35";
else
return "?";
}
int print_cpuinfo(void)
{
struct udevice *dev;
struct clk cpu_clk;
int ret;
ret = uclass_get_device(UCLASS_CPU, 0, &dev);
if (ret)
return 0;
ret = clk_get_by_index(dev, 0, &cpu_clk);
if (ret) {
dev_err(dev, "failed to clk\n");
return 0;
}
u32 cpurev;
cpurev = get_cpu_rev();
printf("CPU: Freescale i.MX%s rev%s %s at %ld MHz\n",
get_imx8_type((cpurev & 0xFF000) >> 12),
get_imx8_rev((cpurev & 0xFFF)),
get_core_name(),
clk_get_rate(&cpu_clk) / 1000000);
return 0;
}
#endif
#define BT_PASSOVER_TAG 0x504F
struct pass_over_info_t *get_pass_over_info(void)
{
struct pass_over_info_t *p =
(struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
if (p->barker != BT_PASSOVER_TAG ||
p->len != sizeof(struct pass_over_info_t))
return NULL;
return p;
}
int arch_cpu_init(void)
{
struct pass_over_info_t *pass_over = get_pass_over_info();
if (pass_over && pass_over->g_ap_mu == 0) {
/*
* When ap_mu is 0, means the U-Boot booted
* from first container
*/
sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
}
return 0;
}
int arch_cpu_init_dm(void)
{
struct udevice *devp;
int node, ret;
node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
ret = device_bind_driver_to_node(gd->dm_root, "imx8_scu", "imx8_scu",
offset_to_ofnode(node), &devp);
if (ret) {
printf("could not find scu %d\n", ret);
return ret;
}
ret = device_probe(devp);
if (ret) {
printf("scu probe failed %d\n", ret);
return ret;
}
return 0;
}
int print_bootinfo(void)
{
enum boot_device bt_dev = get_boot_device();
puts("Boot: ");
switch (bt_dev) {
case SD1_BOOT:
puts("SD0\n");
break;
case SD2_BOOT:
puts("SD1\n");
break;
case SD3_BOOT:
puts("SD2\n");
break;
case MMC1_BOOT:
puts("MMC0\n");
break;
case MMC2_BOOT:
puts("MMC1\n");
break;
case MMC3_BOOT:
puts("MMC2\n");
break;
case FLEXSPI_BOOT:
puts("FLEXSPI\n");
break;
case SATA_BOOT:
puts("SATA\n");
break;
case NAND_BOOT:
puts("NAND\n");
break;
case USB_BOOT:
puts("USB\n");
break;
default:
printf("Unknown device %u\n", bt_dev);
break;
}
return 0;
}
enum boot_device get_boot_device(void)
{
enum boot_device boot_dev = SD1_BOOT;
sc_rsrc_t dev_rsrc;
sc_misc_get_boot_dev(-1, &dev_rsrc);
switch (dev_rsrc) {
case SC_R_SDHC_0:
boot_dev = MMC1_BOOT;
break;
case SC_R_SDHC_1:
boot_dev = SD2_BOOT;
break;
case SC_R_SDHC_2:
boot_dev = SD3_BOOT;
break;
case SC_R_NAND:
boot_dev = NAND_BOOT;
break;
case SC_R_FSPI_0:
boot_dev = FLEXSPI_BOOT;
break;
case SC_R_SATA_0:
boot_dev = SATA_BOOT;
break;
case SC_R_USB_0:
case SC_R_USB_1:
case SC_R_USB_2:
boot_dev = USB_BOOT;
break;
default:
break;
}
return boot_dev;
}
#ifdef CONFIG_ENV_IS_IN_MMC
__weak int board_mmc_get_env_dev(int devno)
{
return CONFIG_SYS_MMC_ENV_DEV;
}
int mmc_get_env_dev(void)
{
sc_rsrc_t dev_rsrc;
int devno;
sc_misc_get_boot_dev(-1, &dev_rsrc);
switch (dev_rsrc) {
case SC_R_SDHC_0:
devno = 0;
break;
case SC_R_SDHC_1:
devno = 1;
break;
case SC_R_SDHC_2:
devno = 2;
break;
default:
/* If not boot from sd/mmc, use default value */
return CONFIG_SYS_MMC_ENV_DEV;
}
return board_mmc_get_env_dev(devno);
}
#endif
#define MEMSTART_ALIGNMENT SZ_2M /* Align the memory start with 2MB */
static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
sc_faddr_t *addr_end)
{
sc_faddr_t start, end;
int ret;
bool owned;
owned = sc_rm_is_memreg_owned(-1, mr);
if (owned) {
ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
if (ret) {
printf("Memreg get info failed, %d\n", ret);
return -EINVAL;
}
debug("0x%llx -- 0x%llx\n", start, end);
*addr_start = start;
*addr_end = end;
return 0;
}
return -EINVAL;
}
phys_size_t get_effective_memsize(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end, end1;
int err;
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
for (mr = 0; mr < 64; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
start = roundup(start, MEMSTART_ALIGNMENT);
/* Too small memory region, not use it */
if (start > end)
continue;
/* Find the memory region runs the U-Boot */
if (start >= PHYS_SDRAM_1 && start <= end1 &&
(start <= CONFIG_SYS_TEXT_BASE &&
end >= CONFIG_SYS_TEXT_BASE)) {
if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
PHYS_SDRAM_1_SIZE))
return (end - PHYS_SDRAM_1 + 1);
else
return PHYS_SDRAM_1_SIZE;
}
}
}
return PHYS_SDRAM_1_SIZE;
}
int dram_init(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end, end1, end2;
int err;
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
for (mr = 0; mr < 64; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
start = roundup(start, MEMSTART_ALIGNMENT);
/* Too small memory region, not use it */
if (start > end)
continue;
if (start >= PHYS_SDRAM_1 && start <= end1) {
if ((end + 1) <= end1)
gd->ram_size += end - start + 1;
else
gd->ram_size += end1 - start;
} else if (start >= PHYS_SDRAM_2 && start <= end2) {
if ((end + 1) <= end2)
gd->ram_size += end - start + 1;
else
gd->ram_size += end2 - start;
}
}
}
/* If error, set to the default value */
if (!gd->ram_size) {
gd->ram_size = PHYS_SDRAM_1_SIZE;
gd->ram_size += PHYS_SDRAM_2_SIZE;
}
return 0;
}
static void dram_bank_sort(int current_bank)
{
phys_addr_t start;
phys_size_t size;
while (current_bank > 0) {
if (gd->bd->bi_dram[current_bank - 1].start >
gd->bd->bi_dram[current_bank].start) {
start = gd->bd->bi_dram[current_bank - 1].start;
size = gd->bd->bi_dram[current_bank - 1].size;
gd->bd->bi_dram[current_bank - 1].start =
gd->bd->bi_dram[current_bank].start;
gd->bd->bi_dram[current_bank - 1].size =
gd->bd->bi_dram[current_bank].size;
gd->bd->bi_dram[current_bank].start = start;
gd->bd->bi_dram[current_bank].size = size;
}
current_bank--;
}
}
int dram_init_banksize(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end, end1, end2;
int i = 0;
int err;
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
start = roundup(start, MEMSTART_ALIGNMENT);
if (start > end) /* Small memory region, no use it */
continue;
if (start >= PHYS_SDRAM_1 && start <= end1) {
gd->bd->bi_dram[i].start = start;
if ((end + 1) <= end1)
gd->bd->bi_dram[i].size =
end - start + 1;
else
gd->bd->bi_dram[i].size = end1 - start;
dram_bank_sort(i);
i++;
} else if (start >= PHYS_SDRAM_2 && start <= end2) {
gd->bd->bi_dram[i].start = start;
if ((end + 1) <= end2)
gd->bd->bi_dram[i].size =
end - start + 1;
else
gd->bd->bi_dram[i].size = end2 - start;
dram_bank_sort(i);
i++;
}
}
}
/* If error, set to the default value */
if (!i) {
gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
}
return 0;
}
static u64 get_block_attrs(sc_faddr_t addr_start)
{
u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN;
if ((addr_start >= PHYS_SDRAM_1 &&
addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
(addr_start >= PHYS_SDRAM_2 &&
addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
return attr;
}
static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
{
sc_faddr_t end1, end2;
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
if ((addr_end + 1) > end1)
return end1 - addr_start;
} else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
if ((addr_end + 1) > end2)
return end2 - addr_start;
}
return (addr_end - addr_start + 1);
}
#define MAX_PTE_ENTRIES 512
#define MAX_MEM_MAP_REGIONS 16
static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
struct mm_region *mem_map = imx8_mem_map;
void enable_caches(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end;
int err, i;
/* Create map for registers access from 0x1c000000 to 0x80000000*/
imx8_mem_map[0].virt = 0x1c000000UL;
imx8_mem_map[0].phys = 0x1c000000UL;
imx8_mem_map[0].size = 0x64000000UL;
imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
i = 1;
for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
imx8_mem_map[i].virt = start;
imx8_mem_map[i].phys = start;
imx8_mem_map[i].size = get_block_size(start, end);
imx8_mem_map[i].attrs = get_block_attrs(start);
i++;
}
}
if (i < MAX_MEM_MAP_REGIONS) {
imx8_mem_map[i].size = 0;
imx8_mem_map[i].attrs = 0;
} else {
puts("Error, need more MEM MAP REGIONS reserved\n");
icache_enable();
return;
}
for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
imx8_mem_map[i].size, imx8_mem_map[i].attrs);
}
icache_enable();
dcache_enable();
}
#ifndef CONFIG_SYS_DCACHE_OFF
u64 get_page_table_size(void)
{
u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
u64 size = 0;
/*
* For each memory region, the max table size:
* 2 level 3 tables + 2 level 2 tables + 1 level 1 table
*/
size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
/*
* We need to duplicate our page table once to have an emergency pt to
* resort to when splitting page tables later on
*/
size *= 2;
/*
* We may need to split page tables later on if dcache settings change,
* so reserve up to 4 (random pick) page tables for that.
*/
size += one_pt * 4;
return size;
}
#endif
#define FUSE_MAC0_WORD0 708
#define FUSE_MAC0_WORD1 709
#define FUSE_MAC1_WORD0 710
#define FUSE_MAC1_WORD1 711
void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
u32 word[2], val[2] = {};
int i, ret;
if (dev_id == 0) {
word[0] = FUSE_MAC0_WORD0;
word[1] = FUSE_MAC0_WORD1;
} else {
word[0] = FUSE_MAC1_WORD0;
word[1] = FUSE_MAC1_WORD1;
}
for (i = 0; i < 2; i++) {
ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
if (ret < 0)
goto err;
}
mac[0] = val[0];
mac[1] = val[0] >> 8;
mac[2] = val[0] >> 16;
mac[3] = val[0] >> 24;
mac[4] = val[1];
mac[5] = val[1] >> 8;
debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
__func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return;
err:
printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
}
|