1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
// SPDX-License-Identifier: GPL-2.0+
/*
* AM6: SoC specific initialization
*
* Copyright (C) 2017-2018 Texas Instruments Incorporated - http://www.ti.com/
* Lokesh Vutla <lokeshvutla@ti.com>
*/
#include <common.h>
#include <init.h>
#include <asm/io.h>
#include <spl.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sysfw-loader.h>
#include <asm/arch/sys_proto.h>
#include "common.h"
#include <dm.h>
#include <dm/uclass-internal.h>
#include <dm/pinctrl.h>
#include <linux/soc/ti/ti_sci_protocol.h>
#include <mmc.h>
#ifdef CONFIG_SPL_BUILD
#ifdef CONFIG_K3_LOAD_SYSFW
#ifdef CONFIG_TI_SECURE_DEVICE
struct fwl_data main_cbass_fwls[] = {
{ "MMCSD1_CFG", 2057, 1 },
{ "MMCSD0_CFG", 2058, 1 },
{ "USB3SS0_SLV0", 2176, 2 },
{ "PCIE0_SLV", 2336, 8 },
{ "PCIE1_SLV", 2337, 8 },
{ "PCIE0_CFG", 2688, 1 },
{ "PCIE1_CFG", 2689, 1 },
}, mcu_cbass_fwls[] = {
{ "MCU_ARMSS0_CORE0_SLV", 1024, 1 },
{ "MCU_ARMSS0_CORE1_SLV", 1028, 1 },
{ "MCU_FSS0_S1", 1033, 8 },
{ "MCU_FSS0_S0", 1036, 8 },
{ "MCU_CPSW0", 1220, 1 },
};
#endif
#endif
static void mmr_unlock(u32 base, u32 partition)
{
/* Translate the base address */
phys_addr_t part_base = base + partition * CTRL_MMR0_PARTITION_SIZE;
/* Unlock the requested partition if locked using two-step sequence */
writel(CTRLMMR_LOCK_KICK0_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK0);
writel(CTRLMMR_LOCK_KICK1_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK1);
}
static void ctrl_mmr_unlock(void)
{
/* Unlock all WKUP_CTRL_MMR0 module registers */
mmr_unlock(WKUP_CTRL_MMR0_BASE, 0);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 1);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 2);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 3);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 6);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 7);
/* Unlock all MCU_CTRL_MMR0 module registers */
mmr_unlock(MCU_CTRL_MMR0_BASE, 0);
mmr_unlock(MCU_CTRL_MMR0_BASE, 1);
mmr_unlock(MCU_CTRL_MMR0_BASE, 2);
mmr_unlock(MCU_CTRL_MMR0_BASE, 6);
/* Unlock all CTRL_MMR0 module registers */
mmr_unlock(CTRL_MMR0_BASE, 0);
mmr_unlock(CTRL_MMR0_BASE, 1);
mmr_unlock(CTRL_MMR0_BASE, 2);
mmr_unlock(CTRL_MMR0_BASE, 3);
mmr_unlock(CTRL_MMR0_BASE, 6);
mmr_unlock(CTRL_MMR0_BASE, 7);
}
/*
* This uninitialized global variable would normal end up in the .bss section,
* but the .bss is cleared between writing and reading this variable, so move
* it to the .data section.
*/
u32 bootindex __attribute__((section(".data")));
static void store_boot_index_from_rom(void)
{
bootindex = *(u32 *)(CONFIG_SYS_K3_BOOT_PARAM_TABLE_INDEX);
}
#if defined(CONFIG_K3_LOAD_SYSFW)
void k3_mmc_stop_clock(void)
{
if (spl_boot_device() == BOOT_DEVICE_MMC1) {
struct mmc *mmc = find_mmc_device(0);
if (!mmc)
return;
mmc->saved_clock = mmc->clock;
mmc_set_clock(mmc, 0, true);
}
}
void k3_mmc_restart_clock(void)
{
if (spl_boot_device() == BOOT_DEVICE_MMC1) {
struct mmc *mmc = find_mmc_device(0);
if (!mmc)
return;
mmc_set_clock(mmc, mmc->saved_clock, false);
}
}
#endif
void board_init_f(ulong dummy)
{
#if defined(CONFIG_K3_LOAD_SYSFW) || defined(CONFIG_K3_AM654_DDRSS)
struct udevice *dev;
int ret;
#endif
/*
* Cannot delay this further as there is a chance that
* K3_BOOT_PARAM_TABLE_INDEX can be over written by SPL MALLOC section.
*/
store_boot_index_from_rom();
/* Make all control module registers accessible */
ctrl_mmr_unlock();
#ifdef CONFIG_CPU_V7R
disable_linefill_optimization();
setup_k3_mpu_regions();
#endif
/* Init DM early in-order to invoke system controller */
spl_early_init();
#ifdef CONFIG_K3_EARLY_CONS
/*
* Allow establishing an early console as required for example when
* doing a UART-based boot. Note that this console may not "survive"
* through a SYSFW PM-init step and will need a re-init in some way
* due to changing module clock frequencies.
*/
early_console_init();
#endif
#ifdef CONFIG_K3_LOAD_SYSFW
/*
* Process pinctrl for the serial0 a.k.a. WKUP_UART0 module and continue
* regardless of the result of pinctrl. Do this without probing the
* device, but instead by searching the device that would request the
* given sequence number if probed. The UART will be used by the system
* firmware (SYSFW) image for various purposes and SYSFW depends on us
* to initialize its pin settings.
*/
ret = uclass_find_device_by_seq(UCLASS_SERIAL, 0, true, &dev);
if (!ret)
pinctrl_select_state(dev, "default");
/*
* Load, start up, and configure system controller firmware while
* also populating the SYSFW post-PM configuration callback hook.
*/
k3_sysfw_loader(k3_mmc_stop_clock, k3_mmc_restart_clock);
/* Prepare console output */
preloader_console_init();
/* Disable ROM configured firewalls right after loading sysfw */
#ifdef CONFIG_TI_SECURE_DEVICE
remove_fwl_configs(main_cbass_fwls, ARRAY_SIZE(main_cbass_fwls));
remove_fwl_configs(mcu_cbass_fwls, ARRAY_SIZE(mcu_cbass_fwls));
#endif
#else
/* Prepare console output */
preloader_console_init();
#endif
/* Output System Firmware version info */
k3_sysfw_print_ver();
/* Perform EEPROM-based board detection */
do_board_detect();
#if defined(CONFIG_CPU_V7R) && defined(CONFIG_K3_AVS0)
ret = uclass_get_device_by_driver(UCLASS_MISC, DM_GET_DRIVER(k3_avs),
&dev);
if (ret)
printf("AVS init failed: %d\n", ret);
#endif
#ifdef CONFIG_K3_AM654_DDRSS
ret = uclass_get_device(UCLASS_RAM, 0, &dev);
if (ret)
panic("DRAM init failed: %d\n", ret);
#endif
}
u32 spl_mmc_boot_mode(const u32 boot_device)
{
#if defined(CONFIG_SUPPORT_EMMC_BOOT)
u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT);
u32 bootmode = (devstat & CTRLMMR_MAIN_DEVSTAT_BOOTMODE_MASK) >>
CTRLMMR_MAIN_DEVSTAT_BOOTMODE_SHIFT;
/* eMMC boot0 mode is only supported for primary boot */
if (bootindex == K3_PRIMARY_BOOTMODE &&
bootmode == BOOT_DEVICE_MMC1)
return MMCSD_MODE_EMMCBOOT;
#endif
/* Everything else use filesystem if available */
#if defined(CONFIG_SPL_FS_FAT) || defined(CONFIG_SPL_FS_EXT4)
return MMCSD_MODE_FS;
#else
return MMCSD_MODE_RAW;
#endif
}
static u32 __get_backup_bootmedia(u32 devstat)
{
u32 bkup_boot = (devstat & CTRLMMR_MAIN_DEVSTAT_BKUP_BOOTMODE_MASK) >>
CTRLMMR_MAIN_DEVSTAT_BKUP_BOOTMODE_SHIFT;
switch (bkup_boot) {
case BACKUP_BOOT_DEVICE_USB:
return BOOT_DEVICE_USB;
case BACKUP_BOOT_DEVICE_UART:
return BOOT_DEVICE_UART;
case BACKUP_BOOT_DEVICE_ETHERNET:
return BOOT_DEVICE_ETHERNET;
case BACKUP_BOOT_DEVICE_MMC2:
{
u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_BKUP_MMC_PORT_MASK) >>
CTRLMMR_MAIN_DEVSTAT_BKUP_MMC_PORT_SHIFT;
if (port == 0x0)
return BOOT_DEVICE_MMC1;
return BOOT_DEVICE_MMC2;
}
case BACKUP_BOOT_DEVICE_SPI:
return BOOT_DEVICE_SPI;
case BACKUP_BOOT_DEVICE_HYPERFLASH:
return BOOT_DEVICE_HYPERFLASH;
case BACKUP_BOOT_DEVICE_I2C:
return BOOT_DEVICE_I2C;
};
return BOOT_DEVICE_RAM;
}
static u32 __get_primary_bootmedia(u32 devstat)
{
u32 bootmode = (devstat & CTRLMMR_MAIN_DEVSTAT_BOOTMODE_MASK) >>
CTRLMMR_MAIN_DEVSTAT_BOOTMODE_SHIFT;
if (bootmode == BOOT_DEVICE_OSPI || bootmode == BOOT_DEVICE_QSPI)
bootmode = BOOT_DEVICE_SPI;
if (bootmode == BOOT_DEVICE_MMC2) {
u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_MMC_PORT_MASK) >>
CTRLMMR_MAIN_DEVSTAT_MMC_PORT_SHIFT;
if (port == 0x0)
bootmode = BOOT_DEVICE_MMC1;
} else if (bootmode == BOOT_DEVICE_MMC1) {
u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_EMMC_PORT_MASK) >>
CTRLMMR_MAIN_DEVSTAT_EMMC_PORT_SHIFT;
if (port == 0x1)
bootmode = BOOT_DEVICE_MMC2;
}
return bootmode;
}
u32 spl_boot_device(void)
{
u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT);
if (bootindex == K3_PRIMARY_BOOTMODE)
return __get_primary_bootmedia(devstat);
else
return __get_backup_bootmedia(devstat);
}
#endif
#ifdef CONFIG_SYS_K3_SPL_ATF
#define AM6_DEV_MCU_RTI0 134
#define AM6_DEV_MCU_RTI1 135
#define AM6_DEV_MCU_ARMSS0_CPU0 159
#define AM6_DEV_MCU_ARMSS0_CPU1 245
void release_resources_for_core_shutdown(void)
{
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
struct ti_sci_dev_ops *dev_ops = &ti_sci->ops.dev_ops;
struct ti_sci_proc_ops *proc_ops = &ti_sci->ops.proc_ops;
int ret;
u32 i;
const u32 put_device_ids[] = {
AM6_DEV_MCU_RTI0,
AM6_DEV_MCU_RTI1,
};
/* Iterate through list of devices to put (shutdown) */
for (i = 0; i < ARRAY_SIZE(put_device_ids); i++) {
u32 id = put_device_ids[i];
ret = dev_ops->put_device(ti_sci, id);
if (ret)
panic("Failed to put device %u (%d)\n", id, ret);
}
const u32 put_core_ids[] = {
AM6_DEV_MCU_ARMSS0_CPU1,
AM6_DEV_MCU_ARMSS0_CPU0, /* Handle CPU0 after CPU1 */
};
/* Iterate through list of cores to put (shutdown) */
for (i = 0; i < ARRAY_SIZE(put_core_ids); i++) {
u32 id = put_core_ids[i];
/*
* Queue up the core shutdown request. Note that this call
* needs to be followed up by an actual invocation of an WFE
* or WFI CPU instruction.
*/
ret = proc_ops->proc_shutdown_no_wait(ti_sci, id);
if (ret)
panic("Failed sending core %u shutdown message (%d)\n",
id, ret);
}
}
#endif
|