summaryrefslogtreecommitdiff
path: root/arch/arm/mach-k3/common.c
blob: 4e35a13156bdab7226a11b7e927ba918547675f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// SPDX-License-Identifier: GPL-2.0+
/*
 * K3: Common Architecture initialization
 *
 * Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com/
 *	Lokesh Vutla <lokeshvutla@ti.com>
 */

#include <common.h>
#include <cpu_func.h>
#include <spl.h>
#include "common.h"
#include <dm.h>
#include <remoteproc.h>
#include <linux/soc/ti/ti_sci_protocol.h>
#include <fdt_support.h>
#include <asm/arch/sys_proto.h>
#include <asm/hardware.h>
#include <asm/io.h>

struct ti_sci_handle *get_ti_sci_handle(void)
{
	struct udevice *dev;
	int ret;

	ret = uclass_get_device_by_driver(UCLASS_FIRMWARE,
					  DM_GET_DRIVER(ti_sci), &dev);
	if (ret)
		panic("Failed to get SYSFW (%d)\n", ret);

	return (struct ti_sci_handle *)ti_sci_get_handle_from_sysfw(dev);
}

DECLARE_GLOBAL_DATA_PTR;

#ifdef CONFIG_K3_EARLY_CONS
int early_console_init(void)
{
	struct udevice *dev;
	int ret;

	gd->baudrate = CONFIG_BAUDRATE;

	ret = uclass_get_device_by_seq(UCLASS_SERIAL, CONFIG_K3_EARLY_CONS_IDX,
				       &dev);
	if (ret) {
		printf("Error getting serial dev for early console! (%d)\n",
		       ret);
		return ret;
	}

	gd->cur_serial_dev = dev;
	gd->flags |= GD_FLG_SERIAL_READY;
	gd->have_console = 1;

	return 0;
}
#endif

#ifdef CONFIG_SYS_K3_SPL_ATF
void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image)
{
	struct ti_sci_handle *ti_sci = get_ti_sci_handle();
	int ret;

	/* Release all the exclusive devices held by SPL before starting ATF */
	ti_sci->ops.dev_ops.release_exclusive_devices(ti_sci);

	/*
	 * It is assumed that remoteproc device 1 is the corresponding
	 * Cortex-A core which runs ATF. Make sure DT reflects the same.
	 */
	ret = rproc_dev_init(1);
	if (ret)
		panic("%s: ATF failed to initialize on rproc (%d)\n", __func__,
		      ret);

	ret = rproc_load(1, spl_image->entry_point, 0x200);
	if (ret)
		panic("%s: ATF failed to load on rproc (%d)\n", __func__, ret);

	/* Add an extra newline to differentiate the ATF logs from SPL */
	printf("Starting ATF on ARM64 core...\n\n");

	ret = rproc_start(1);
	if (ret)
		panic("%s: ATF failed to start on rproc (%d)\n", __func__, ret);

	debug("Releasing resources...\n");
	release_resources_for_core_shutdown();

	debug("Finalizing core shutdown...\n");
	while (1)
		asm volatile("wfe");
}
#endif

#if defined(CONFIG_OF_LIBFDT)
int fdt_fixup_msmc_ram(void *blob, char *parent_path, char *node_name)
{
	u64 msmc_start = 0, msmc_end = 0, msmc_size, reg[2];
	struct ti_sci_handle *ti_sci = get_ti_sci_handle();
	int ret, node, subnode, len, prev_node;
	u32 range[4], addr, size;
	const fdt32_t *sub_reg;

	ti_sci->ops.core_ops.query_msmc(ti_sci, &msmc_start, &msmc_end);
	msmc_size = msmc_end - msmc_start + 1;
	debug("%s: msmc_start = 0x%llx, msmc_size = 0x%llx\n", __func__,
	      msmc_start, msmc_size);

	/* find or create "msmc_sram node */
	ret = fdt_path_offset(blob, parent_path);
	if (ret < 0)
		return ret;

	node = fdt_find_or_add_subnode(blob, ret, node_name);
	if (node < 0)
		return node;

	ret = fdt_setprop_string(blob, node, "compatible", "mmio-sram");
	if (ret < 0)
		return ret;

	reg[0] = cpu_to_fdt64(msmc_start);
	reg[1] = cpu_to_fdt64(msmc_size);
	ret = fdt_setprop(blob, node, "reg", reg, sizeof(reg));
	if (ret < 0)
		return ret;

	fdt_setprop_cell(blob, node, "#address-cells", 1);
	fdt_setprop_cell(blob, node, "#size-cells", 1);

	range[0] = 0;
	range[1] = cpu_to_fdt32(msmc_start >> 32);
	range[2] = cpu_to_fdt32(msmc_start & 0xffffffff);
	range[3] = cpu_to_fdt32(msmc_size);
	ret = fdt_setprop(blob, node, "ranges", range, sizeof(range));
	if (ret < 0)
		return ret;

	subnode = fdt_first_subnode(blob, node);
	prev_node = 0;

	/* Look for invalid subnodes and delete them */
	while (subnode >= 0) {
		sub_reg = fdt_getprop(blob, subnode, "reg", &len);
		addr = fdt_read_number(sub_reg, 1);
		sub_reg++;
		size = fdt_read_number(sub_reg, 1);
		debug("%s: subnode = %d, addr = 0x%x. size = 0x%x\n", __func__,
		      subnode, addr, size);
		if (addr + size > msmc_size ||
		    !strncmp(fdt_get_name(blob, subnode, &len), "sysfw", 5) ||
		    !strncmp(fdt_get_name(blob, subnode, &len), "l3cache", 7)) {
			fdt_del_node(blob, subnode);
			debug("%s: deleting subnode %d\n", __func__, subnode);
			if (!prev_node)
				subnode = fdt_first_subnode(blob, node);
			else
				subnode = fdt_next_subnode(blob, prev_node);
		} else {
			prev_node = subnode;
			subnode = fdt_next_subnode(blob, prev_node);
		}
	}

	return 0;
}

int fdt_disable_node(void *blob, char *node_path)
{
	int offs;
	int ret;

	offs = fdt_path_offset(blob, node_path);
	if (offs < 0) {
		debug("Node %s not found.\n", node_path);
		return 0;
	}
	ret = fdt_setprop_string(blob, offs, "status", "disabled");
	if (ret < 0) {
		printf("Could not add status property to node %s: %s\n",
		       node_path, fdt_strerror(ret));
		return ret;
	}
	return 0;
}

#endif

#ifndef CONFIG_SYSRESET
void reset_cpu(ulong ignored)
{
}
#endif

#if defined(CONFIG_DISPLAY_CPUINFO)
int print_cpuinfo(void)
{
	u32 soc, rev;
	char *name;

	soc = (readl(CTRLMMR_WKUP_JTAG_DEVICE_ID) &
		DEVICE_ID_FAMILY_MASK) >> DEVICE_ID_FAMILY_SHIFT;
	rev = (readl(CTRLMMR_WKUP_JTAG_ID) &
		JTAG_ID_VARIANT_MASK) >> JTAG_ID_VARIANT_SHIFT;

	printf("SoC:   ");
	switch (soc) {
	case AM654:
		name = "AM654";
		break;
	case J721E:
		name = "J721E";
		break;
	default:
		name = "Unknown Silicon";
	};

	printf("%s PG ", name);
	switch (rev) {
	case REV_PG1_0:
		name = "1.0";
		break;
	case REV_PG2_0:
		name = "2.0";
		break;
	default:
		name = "Unknown Revision";
	};
	printf("%s\n", name);

	return 0;
}
#endif

#ifdef CONFIG_ARM64
void board_prep_linux(bootm_headers_t *images)
{
	debug("Linux kernel Image start = 0x%lx end = 0x%lx\n",
	      images->os.start, images->os.end);
	__asm_flush_dcache_range(images->os.start,
				 ROUND(images->os.end,
				       CONFIG_SYS_CACHELINE_SIZE));
}
#endif

#ifdef CONFIG_CPU_V7R
void disable_linefill_optimization(void)
{
	u32 actlr;

	/*
	 * On K3 devices there are 2 conditions where R5F can deadlock:
	 * 1.When software is performing series of store operations to
	 *   cacheable write back/write allocate memory region and later
	 *   on software execute barrier operation (DSB or DMB). R5F may
	 *   hang at the barrier instruction.
	 * 2.When software is performing a mix of load and store operations
	 *   within a tight loop and store operations are all writing to
	 *   cacheable write back/write allocates memory regions, R5F may
	 *   hang at one of the load instruction.
	 *
	 * To avoid the above two conditions disable linefill optimization
	 * inside Cortex R5F.
	 */
	asm("mrc p15, 0, %0, c1, c0, 1" : "=r" (actlr));
	actlr |= (1 << 13); /* Set DLFO bit  */
	asm("mcr p15, 0, %0, c1, c0, 1" : : "r" (actlr));
}
#endif