1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
/*
* Keystone2: pll initialization
*
* (C) Copyright 2012-2014
* Texas Instruments Incorporated, <www.ti.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/arch/clock.h>
#include <asm/arch/clock_defs.h>
#define MAX_SPEEDS 13
static void wait_for_completion(const struct pll_init_data *data)
{
int i;
for (i = 0; i < 100; i++) {
sdelay(450);
if ((pllctl_reg_read(data->pll, stat) & PLLSTAT_GO) == 0)
break;
}
}
void init_pll(const struct pll_init_data *data)
{
u32 tmp, tmp_ctl, pllm, plld, pllod, bwadj;
pllm = data->pll_m - 1;
plld = (data->pll_d - 1) & PLL_DIV_MASK;
pllod = (data->pll_od - 1) & PLL_CLKOD_MASK;
if (data->pll == MAIN_PLL) {
/* The requered delay before main PLL configuration */
sdelay(210000);
tmp = pllctl_reg_read(data->pll, secctl);
if (tmp & (PLLCTL_BYPASS)) {
setbits_le32(keystone_pll_regs[data->pll].reg1,
BIT(MAIN_ENSAT_OFFSET));
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLEN |
PLLCTL_PLLENSRC);
sdelay(340);
pllctl_reg_setbits(data->pll, secctl, PLLCTL_BYPASS);
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN);
sdelay(21000);
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN);
} else {
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLEN |
PLLCTL_PLLENSRC);
sdelay(340);
}
pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
PLLM_MULT_HI_SMASK, (pllm << 6));
/* Set the BWADJ (12 bit field) */
tmp_ctl = pllm >> 1; /* Divide the pllm by 2 */
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
PLL_BWADJ_LO_SMASK,
(tmp_ctl << PLL_BWADJ_LO_SHIFT));
clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
PLL_BWADJ_HI_MASK,
(tmp_ctl >> 8));
/*
* Set the pll divider (6 bit field) *
* PLLD[5:0] is located in MAINPLLCTL0
*/
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
PLL_DIV_MASK, plld);
/* Set the OUTPUT DIVIDE (4 bit field) in SECCTL */
pllctl_reg_rmw(data->pll, secctl, PLL_CLKOD_SMASK,
(pllod << PLL_CLKOD_SHIFT));
wait_for_completion(data);
pllctl_reg_write(data->pll, div1, PLLM_RATIO_DIV1);
pllctl_reg_write(data->pll, div2, PLLM_RATIO_DIV2);
pllctl_reg_write(data->pll, div3, PLLM_RATIO_DIV3);
pllctl_reg_write(data->pll, div4, PLLM_RATIO_DIV4);
pllctl_reg_write(data->pll, div5, PLLM_RATIO_DIV5);
pllctl_reg_setbits(data->pll, alnctl, 0x1f);
/*
* Set GOSET bit in PLLCMD to initiate the GO operation
* to change the divide
*/
pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GO);
sdelay(1500); /* wait for the phase adj */
wait_for_completion(data);
/* Reset PLL */
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST);
sdelay(21000); /* Wait for a minimum of 7 us*/
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST);
sdelay(105000); /* Wait for PLL Lock time (min 50 us) */
pllctl_reg_clrbits(data->pll, secctl, PLLCTL_BYPASS);
tmp = pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN);
#ifndef CONFIG_SOC_K2E
} else if (data->pll == TETRIS_PLL) {
bwadj = pllm >> 1;
/* 1.5 Set PLLCTL0[BYPASS] =1 (enable bypass), */
setbits_le32(keystone_pll_regs[data->pll].reg0, PLLCTL_BYPASS);
/*
* Set CHIPMISCCTL1[13] = 0 (enable glitchfree bypass)
* only applicable for Kepler
*/
clrbits_le32(KS2_MISC_CTRL, KS2_ARM_PLL_EN);
/* 2 In PLLCTL1, write PLLRST = 1 (PLL is reset) */
setbits_le32(keystone_pll_regs[data->pll].reg1 ,
PLL_PLLRST | PLLCTL_ENSAT);
/*
* 3 Program PLLM and PLLD in PLLCTL0 register
* 4 Program BWADJ[7:0] in PLLCTL0 and BWADJ[11:8] in
* PLLCTL1 register. BWADJ value must be set
* to ((PLLM + 1) >> 1) – 1)
*/
tmp = ((bwadj & PLL_BWADJ_LO_MASK) << PLL_BWADJ_LO_SHIFT) |
(pllm << 6) |
(plld & PLL_DIV_MASK) |
(pllod << PLL_CLKOD_SHIFT) | PLLCTL_BYPASS;
__raw_writel(tmp, keystone_pll_regs[data->pll].reg0);
/* Set BWADJ[11:8] bits */
tmp = __raw_readl(keystone_pll_regs[data->pll].reg1);
tmp &= ~(PLL_BWADJ_HI_MASK);
tmp |= ((bwadj>>8) & PLL_BWADJ_HI_MASK);
__raw_writel(tmp, keystone_pll_regs[data->pll].reg1);
/*
* 5 Wait for at least 5 us based on the reference
* clock (PLL reset time)
*/
sdelay(21000); /* Wait for a minimum of 7 us*/
/* 6 In PLLCTL1, write PLLRST = 0 (PLL reset is released) */
clrbits_le32(keystone_pll_regs[data->pll].reg1, PLL_PLLRST);
/*
* 7 Wait for at least 500 * REFCLK cycles * (PLLD + 1)
* (PLL lock time)
*/
sdelay(105000);
/* 8 disable bypass */
clrbits_le32(keystone_pll_regs[data->pll].reg0, PLLCTL_BYPASS);
/*
* 9 Set CHIPMISCCTL1[13] = 1 (disable glitchfree bypass)
* only applicable for Kepler
*/
setbits_le32(KS2_MISC_CTRL, KS2_ARM_PLL_EN);
#endif
} else {
setbits_le32(keystone_pll_regs[data->pll].reg1, PLLCTL_ENSAT);
/*
* process keeps state of Bypass bit while programming
* all other DDR PLL settings
*/
tmp = __raw_readl(keystone_pll_regs[data->pll].reg0);
tmp &= PLLCTL_BYPASS; /* clear everything except Bypass */
/*
* Set the BWADJ[7:0], PLLD[5:0] and PLLM to PLLCTL0,
* bypass disabled
*/
bwadj = pllm >> 1;
tmp |= ((bwadj & PLL_BWADJ_LO_MASK) << PLL_BWADJ_LO_SHIFT) |
(pllm << PLL_MULT_SHIFT) |
(plld & PLL_DIV_MASK) |
(pllod << PLL_CLKOD_SHIFT);
__raw_writel(tmp, keystone_pll_regs[data->pll].reg0);
/* Set BWADJ[11:8] bits */
tmp = __raw_readl(keystone_pll_regs[data->pll].reg1);
tmp &= ~(PLL_BWADJ_HI_MASK);
tmp |= ((bwadj >> 8) & PLL_BWADJ_HI_MASK);
__raw_writel(tmp, keystone_pll_regs[data->pll].reg1);
/* Reset bit: bit 14 for both DDR3 & PASS PLL */
tmp = PLL_PLLRST;
/* Set RESET bit = 1 */
setbits_le32(keystone_pll_regs[data->pll].reg1, tmp);
/* Wait for a minimum of 7 us*/
sdelay(21000);
/* Clear RESET bit */
clrbits_le32(keystone_pll_regs[data->pll].reg1, tmp);
sdelay(105000);
/* clear BYPASS (Enable PLL Mode) */
clrbits_le32(keystone_pll_regs[data->pll].reg0, PLLCTL_BYPASS);
sdelay(21000); /* Wait for a minimum of 7 us*/
}
/*
* This is required to provide a delay between multiple
* consequent PPL configurations
*/
sdelay(210000);
}
void init_plls(int num_pll, struct pll_init_data *config)
{
int i;
for (i = 0; i < num_pll; i++)
init_pll(&config[i]);
}
static int get_max_speed(u32 val, int *speeds)
{
int j;
if (!val)
return speeds[0];
for (j = 1; j < MAX_SPEEDS; j++) {
if (val == 1)
return speeds[j];
val >>= 1;
}
return SPD800;
}
#ifdef CONFIG_SOC_K2HK
static u32 read_efuse_bootrom(void)
{
return (cpu_revision() > 1) ? __raw_readl(KS2_EFUSE_BOOTROM) :
__raw_readl(KS2_REV1_DEVSPEED);
}
#else
static inline u32 read_efuse_bootrom(void)
{
return __raw_readl(KS2_EFUSE_BOOTROM);
}
#endif
#ifndef CONFIG_SOC_K2E
inline int get_max_arm_speed(void)
{
return get_max_speed(read_efuse_bootrom() & 0xffff, arm_speeds);
}
#endif
inline int get_max_dev_speed(void)
{
return get_max_speed((read_efuse_bootrom() >> 16) & 0xffff, dev_speeds);
}
void pass_pll_pa_clk_enable(void)
{
u32 reg;
reg = readl(keystone_pll_regs[PASS_PLL].reg1);
reg |= PLLCTL_PAPLL;
writel(reg, keystone_pll_regs[PASS_PLL].reg1);
/* wait till clock is enabled */
sdelay(15000);
}
|