1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
|
// SPDX-License-Identifier: GPL-2.0+
/*
*
* Clock initialization for OMAP4
*
* (C) Copyright 2010
* Texas Instruments, <www.ti.com>
*
* Aneesh V <aneesh@ti.com>
*
* Based on previous work by:
* Santosh Shilimkar <santosh.shilimkar@ti.com>
* Rajendra Nayak <rnayak@ti.com>
*/
#include <common.h>
#include <hang.h>
#include <i2c.h>
#include <asm/omap_common.h>
#include <asm/gpio.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/utils.h>
#include <asm/omap_gpio.h>
#include <asm/emif.h>
#ifndef CONFIG_SPL_BUILD
/*
* printing to console doesn't work unless
* this code is executed from SPL
*/
#define printf(fmt, args...)
#define puts(s)
#endif
const u32 sys_clk_array[8] = {
12000000, /* 12 MHz */
20000000, /* 20 MHz */
16800000, /* 16.8 MHz */
19200000, /* 19.2 MHz */
26000000, /* 26 MHz */
27000000, /* 27 MHz */
38400000, /* 38.4 MHz */
};
static inline u32 __get_sys_clk_index(void)
{
s8 ind;
/*
* For ES1 the ROM code calibration of sys clock is not reliable
* due to hw issue. So, use hard-coded value. If this value is not
* correct for any board over-ride this function in board file
* From ES2.0 onwards you will get this information from
* CM_SYS_CLKSEL
*/
if (omap_revision() == OMAP4430_ES1_0)
ind = OMAP_SYS_CLK_IND_38_4_MHZ;
else {
/* SYS_CLKSEL - 1 to match the dpll param array indices */
ind = (readl((*prcm)->cm_sys_clksel) &
CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1;
}
return ind;
}
u32 get_sys_clk_index(void)
__attribute__ ((weak, alias("__get_sys_clk_index")));
u32 get_sys_clk_freq(void)
{
u8 index = get_sys_clk_index();
return sys_clk_array[index];
}
void setup_post_dividers(u32 const base, const struct dpll_params *params)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
/* Setup post-dividers */
if (params->m2 >= 0)
writel(params->m2, &dpll_regs->cm_div_m2_dpll);
if (params->m3 >= 0)
writel(params->m3, &dpll_regs->cm_div_m3_dpll);
if (params->m4_h11 >= 0)
writel(params->m4_h11, &dpll_regs->cm_div_m4_h11_dpll);
if (params->m5_h12 >= 0)
writel(params->m5_h12, &dpll_regs->cm_div_m5_h12_dpll);
if (params->m6_h13 >= 0)
writel(params->m6_h13, &dpll_regs->cm_div_m6_h13_dpll);
if (params->m7_h14 >= 0)
writel(params->m7_h14, &dpll_regs->cm_div_m7_h14_dpll);
if (params->h21 >= 0)
writel(params->h21, &dpll_regs->cm_div_h21_dpll);
if (params->h22 >= 0)
writel(params->h22, &dpll_regs->cm_div_h22_dpll);
if (params->h23 >= 0)
writel(params->h23, &dpll_regs->cm_div_h23_dpll);
if (params->h24 >= 0)
writel(params->h24, &dpll_regs->cm_div_h24_dpll);
}
static inline void do_bypass_dpll(u32 const base)
{
struct dpll_regs *dpll_regs = (struct dpll_regs *)base;
clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
CM_CLKMODE_DPLL_DPLL_EN_MASK,
DPLL_EN_FAST_RELOCK_BYPASS <<
CM_CLKMODE_DPLL_EN_SHIFT);
}
static inline void wait_for_bypass(u32 const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll,
LDELAY)) {
printf("Bypassing DPLL failed %x\n", base);
}
}
static inline void do_lock_dpll(u32 const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
CM_CLKMODE_DPLL_DPLL_EN_MASK,
DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT);
}
static inline void wait_for_lock(u32 const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK,
&dpll_regs->cm_idlest_dpll, LDELAY)) {
printf("DPLL locking failed for %x\n", base);
hang();
}
}
inline u32 check_for_lock(u32 const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK;
return lock;
}
const struct dpll_params *get_mpu_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->mpu[sysclk_ind];
}
const struct dpll_params *get_core_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->core[sysclk_ind];
}
const struct dpll_params *get_per_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->per[sysclk_ind];
}
const struct dpll_params *get_iva_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->iva[sysclk_ind];
}
const struct dpll_params *get_usb_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->usb[sysclk_ind];
}
const struct dpll_params *get_abe_dpll_params(struct dplls const *dpll_data)
{
#ifdef CONFIG_SYS_OMAP_ABE_SYSCK
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->abe[sysclk_ind];
#else
return dpll_data->abe;
#endif
}
static const struct dpll_params *get_ddr_dpll_params
(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
if (!dpll_data->ddr)
return NULL;
return &dpll_data->ddr[sysclk_ind];
}
#ifdef CONFIG_DRIVER_TI_CPSW
static const struct dpll_params *get_gmac_dpll_params
(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
if (!dpll_data->gmac)
return NULL;
return &dpll_data->gmac[sysclk_ind];
}
#endif
static void do_setup_dpll(u32 const base, const struct dpll_params *params,
u8 lock, char *dpll)
{
u32 temp, M, N;
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
if (!params)
return;
temp = readl(&dpll_regs->cm_clksel_dpll);
if (check_for_lock(base)) {
/*
* The Dpll has already been locked by rom code using CH.
* Check if M,N are matching with Ideal nominal opp values.
* If matches, skip the rest otherwise relock.
*/
M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT;
N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT;
if ((M != (params->m)) || (N != (params->n))) {
debug("\n %s Dpll locked, but not for ideal M = %d,"
"N = %d values, current values are M = %d,"
"N= %d" , dpll, params->m, params->n,
M, N);
} else {
/* Dpll locked with ideal values for nominal opps. */
debug("\n %s Dpll already locked with ideal"
"nominal opp values", dpll);
bypass_dpll(base);
goto setup_post_dividers;
}
}
bypass_dpll(base);
/* Set M & N */
temp &= ~CM_CLKSEL_DPLL_M_MASK;
temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK;
temp &= ~CM_CLKSEL_DPLL_N_MASK;
temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK;
writel(temp, &dpll_regs->cm_clksel_dpll);
setup_post_dividers:
setup_post_dividers(base, params);
/* Lock */
if (lock)
do_lock_dpll(base);
/* Wait till the DPLL locks */
if (lock)
wait_for_lock(base);
}
u32 omap_ddr_clk(void)
{
u32 ddr_clk, sys_clk_khz, omap_rev, divider;
const struct dpll_params *core_dpll_params;
omap_rev = omap_revision();
sys_clk_khz = get_sys_clk_freq() / 1000;
core_dpll_params = get_core_dpll_params(*dplls_data);
debug("sys_clk %d\n ", sys_clk_khz * 1000);
/* Find Core DPLL locked frequency first */
ddr_clk = sys_clk_khz * 2 * core_dpll_params->m /
(core_dpll_params->n + 1);
if (omap_rev < OMAP5430_ES1_0) {
/*
* DDR frequency is PHY_ROOT_CLK/2
* PHY_ROOT_CLK = Fdpll/2/M2
*/
divider = 4;
} else {
/*
* DDR frequency is PHY_ROOT_CLK
* PHY_ROOT_CLK = Fdpll/2/M2
*/
divider = 2;
}
ddr_clk = ddr_clk / divider / core_dpll_params->m2;
ddr_clk *= 1000; /* convert to Hz */
debug("ddr_clk %d\n ", ddr_clk);
return ddr_clk;
}
/*
* Lock MPU dpll
*
* Resulting MPU frequencies:
* 4430 ES1.0 : 600 MHz
* 4430 ES2.x : 792 MHz (OPP Turbo)
* 4460 : 920 MHz (OPP Turbo) - DCC disabled
*/
void configure_mpu_dpll(void)
{
const struct dpll_params *params;
struct dpll_regs *mpu_dpll_regs;
u32 omap_rev;
omap_rev = omap_revision();
/*
* DCC and clock divider settings for 4460.
* DCC is required, if more than a certain frequency is required.
* For, 4460 > 1GHZ.
* 5430 > 1.4GHZ.
*/
if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) {
mpu_dpll_regs =
(struct dpll_regs *)((*prcm)->cm_clkmode_dpll_mpu);
bypass_dpll((*prcm)->cm_clkmode_dpll_mpu);
clrbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK);
setbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK);
clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll,
CM_CLKSEL_DCC_EN_MASK);
}
params = get_mpu_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu");
debug("MPU DPLL locked\n");
}
#if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \
defined(CONFIG_USB_MUSB_OMAP2PLUS)
static void setup_usb_dpll(void)
{
const struct dpll_params *params;
u32 sys_clk_khz, sd_div, num, den;
sys_clk_khz = get_sys_clk_freq() / 1000;
/*
* USB:
* USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction
* DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250)
* - where CLKINP is sys_clk in MHz
* Use CLKINP in KHz and adjust the denominator accordingly so
* that we have enough accuracy and at the same time no overflow
*/
params = get_usb_dpll_params(*dplls_data);
num = params->m * sys_clk_khz;
den = (params->n + 1) * 250 * 1000;
num += den - 1;
sd_div = num / den;
clrsetbits_le32((*prcm)->cm_clksel_dpll_usb,
CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK,
sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT);
/* Now setup the dpll with the regular function */
do_setup_dpll((*prcm)->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb");
}
#endif
static void setup_dplls(void)
{
u32 temp;
const struct dpll_params *params;
struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
debug("setup_dplls\n");
/* CORE dpll */
params = get_core_dpll_params(*dplls_data); /* default - safest */
/*
* Do not lock the core DPLL now. Just set it up.
* Core DPLL will be locked after setting up EMIF
* using the FREQ_UPDATE method(freq_update_core())
*/
if (emif_sdram_type(readl(&emif->emif_sdram_config)) ==
EMIF_SDRAM_TYPE_LPDDR2)
do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
DPLL_NO_LOCK, "core");
else
do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
DPLL_LOCK, "core");
/* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */
temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) |
(CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) |
(CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT);
writel(temp, (*prcm)->cm_clksel_core);
debug("Core DPLL configured\n");
/* lock PER dpll */
params = get_per_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_per,
params, DPLL_LOCK, "per");
debug("PER DPLL locked\n");
/* MPU dpll */
configure_mpu_dpll();
#if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \
defined(CONFIG_USB_MUSB_OMAP2PLUS)
setup_usb_dpll();
#endif
params = get_ddr_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_ddrphy,
params, DPLL_LOCK, "ddr");
#ifdef CONFIG_DRIVER_TI_CPSW
params = get_gmac_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_gmac, params,
DPLL_LOCK, "gmac");
#endif
}
u32 get_offset_code(u32 volt_offset, struct pmic_data *pmic)
{
u32 offset_code;
volt_offset -= pmic->base_offset;
offset_code = (volt_offset + pmic->step - 1) / pmic->step;
/*
* Offset codes 1-6 all give the base voltage in Palmas
* Offset code 0 switches OFF the SMPS
*/
return offset_code + pmic->start_code;
}
void do_scale_vcore(u32 vcore_reg, u32 volt_mv, struct pmic_data *pmic)
{
u32 offset_code;
u32 offset = volt_mv;
int ret = 0;
if (!volt_mv)
return;
pmic->pmic_bus_init();
/* See if we can first get the GPIO if needed */
if (pmic->gpio_en)
ret = gpio_request(pmic->gpio, "PMIC_GPIO");
if (ret < 0) {
printf("%s: gpio %d request failed %d\n", __func__,
pmic->gpio, ret);
return;
}
/* Pull the GPIO low to select SET0 register, while we program SET1 */
if (pmic->gpio_en)
gpio_direction_output(pmic->gpio, 0);
/* convert to uV for better accuracy in the calculations */
offset *= 1000;
offset_code = get_offset_code(offset, pmic);
debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv,
offset_code);
if (pmic->pmic_write(pmic->i2c_slave_addr, vcore_reg, offset_code))
printf("Scaling voltage failed for 0x%x\n", vcore_reg);
if (pmic->gpio_en)
gpio_direction_output(pmic->gpio, 1);
}
int __weak get_voltrail_opp(int rail_offset)
{
/*
* By default return OPP_NOM for all voltage rails.
*/
return OPP_NOM;
}
static u32 optimize_vcore_voltage(struct volts const *v, int opp)
{
u32 val;
if (!v->value[opp])
return 0;
if (!v->efuse.reg[opp])
return v->value[opp];
switch (v->efuse.reg_bits) {
case 16:
val = readw(v->efuse.reg[opp]);
break;
case 32:
val = readl(v->efuse.reg[opp]);
break;
default:
printf("Error: efuse 0x%08x bits=%d unknown\n",
v->efuse.reg[opp], v->efuse.reg_bits);
return v->value[opp];
}
if (!val) {
printf("Error: efuse 0x%08x bits=%d val=0, using %d\n",
v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp]);
return v->value[opp];
}
debug("%s:efuse 0x%08x bits=%d Vnom=%d, using efuse value %d\n",
__func__, v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp],
val);
return val;
}
#ifdef CONFIG_IODELAY_RECALIBRATION
void __weak recalibrate_iodelay(void)
{
}
#endif
/*
* Setup the voltages for the main SoC core power domains.
* We start with the maximum voltages allowed here, as set in the corresponding
* vcores_data struct, and then scale (usually down) to the fused values that
* are retrieved from the SoC. The scaling happens only if the efuse.reg fields
* are initialised.
* Rail grouping is supported for the DRA7xx SoCs only, therefore the code is
* compiled conditionally. Note that the new code writes the scaled (or zeroed)
* values back to the vcores_data struct for eventual reuse. Zero values mean
* that the corresponding rails are not controlled separately, and are not sent
* to the PMIC.
*/
void scale_vcores(struct vcores_data const *vcores)
{
int i, opp, j, ol;
struct volts *pv = (struct volts *)vcores;
struct volts *px;
for (i=0; i<(sizeof(struct vcores_data)/sizeof(struct volts)); i++) {
opp = get_voltrail_opp(i);
debug("%d -> ", pv->value[opp]);
if (pv->value[opp]) {
/* Handle non-empty members only */
pv->value[opp] = optimize_vcore_voltage(pv, opp);
px = (struct volts *)vcores;
j = 0;
while (px < pv) {
/*
* Scan already handled non-empty members to see
* if we have a group and find the max voltage,
* which is set to the first occurance of the
* particular SMPS; the other group voltages are
* zeroed.
*/
ol = get_voltrail_opp(j);
if (px->value[ol] &&
(pv->pmic->i2c_slave_addr ==
px->pmic->i2c_slave_addr) &&
(pv->addr == px->addr)) {
/* Same PMIC, same SMPS */
if (pv->value[opp] > px->value[ol])
px->value[ol] = pv->value[opp];
pv->value[opp] = 0;
}
px++;
j++;
}
}
debug("%d\n", pv->value[opp]);
pv++;
}
opp = get_voltrail_opp(VOLT_CORE);
debug("cor: %d\n", vcores->core.value[opp]);
do_scale_vcore(vcores->core.addr, vcores->core.value[opp],
vcores->core.pmic);
/*
* IO delay recalibration should be done immediately after
* adjusting AVS voltages for VDD_CORE_L.
* Respective boards should call __recalibrate_iodelay()
* with proper mux, virtual and manual mode configurations.
*/
#ifdef CONFIG_IODELAY_RECALIBRATION
recalibrate_iodelay();
#endif
opp = get_voltrail_opp(VOLT_MPU);
debug("mpu: %d\n", vcores->mpu.value[opp]);
do_scale_vcore(vcores->mpu.addr, vcores->mpu.value[opp],
vcores->mpu.pmic);
/* Configure MPU ABB LDO after scale */
abb_setup(vcores->mpu.efuse.reg[opp],
(*ctrl)->control_wkup_ldovbb_mpu_voltage_ctrl,
(*prcm)->prm_abbldo_mpu_setup,
(*prcm)->prm_abbldo_mpu_ctrl,
(*prcm)->prm_irqstatus_mpu_2,
vcores->mpu.abb_tx_done_mask,
OMAP_ABB_FAST_OPP);
opp = get_voltrail_opp(VOLT_MM);
debug("mm: %d\n", vcores->mm.value[opp]);
do_scale_vcore(vcores->mm.addr, vcores->mm.value[opp],
vcores->mm.pmic);
/* Configure MM ABB LDO after scale */
abb_setup(vcores->mm.efuse.reg[opp],
(*ctrl)->control_wkup_ldovbb_mm_voltage_ctrl,
(*prcm)->prm_abbldo_mm_setup,
(*prcm)->prm_abbldo_mm_ctrl,
(*prcm)->prm_irqstatus_mpu,
vcores->mm.abb_tx_done_mask,
OMAP_ABB_FAST_OPP);
opp = get_voltrail_opp(VOLT_GPU);
debug("gpu: %d\n", vcores->gpu.value[opp]);
do_scale_vcore(vcores->gpu.addr, vcores->gpu.value[opp],
vcores->gpu.pmic);
/* Configure GPU ABB LDO after scale */
abb_setup(vcores->gpu.efuse.reg[opp],
(*ctrl)->control_wkup_ldovbb_gpu_voltage_ctrl,
(*prcm)->prm_abbldo_gpu_setup,
(*prcm)->prm_abbldo_gpu_ctrl,
(*prcm)->prm_irqstatus_mpu,
vcores->gpu.abb_tx_done_mask,
OMAP_ABB_FAST_OPP);
opp = get_voltrail_opp(VOLT_EVE);
debug("eve: %d\n", vcores->eve.value[opp]);
do_scale_vcore(vcores->eve.addr, vcores->eve.value[opp],
vcores->eve.pmic);
/* Configure EVE ABB LDO after scale */
abb_setup(vcores->eve.efuse.reg[opp],
(*ctrl)->control_wkup_ldovbb_eve_voltage_ctrl,
(*prcm)->prm_abbldo_eve_setup,
(*prcm)->prm_abbldo_eve_ctrl,
(*prcm)->prm_irqstatus_mpu,
vcores->eve.abb_tx_done_mask,
OMAP_ABB_FAST_OPP);
opp = get_voltrail_opp(VOLT_IVA);
debug("iva: %d\n", vcores->iva.value[opp]);
do_scale_vcore(vcores->iva.addr, vcores->iva.value[opp],
vcores->iva.pmic);
/* Configure IVA ABB LDO after scale */
abb_setup(vcores->iva.efuse.reg[opp],
(*ctrl)->control_wkup_ldovbb_iva_voltage_ctrl,
(*prcm)->prm_abbldo_iva_setup,
(*prcm)->prm_abbldo_iva_ctrl,
(*prcm)->prm_irqstatus_mpu,
vcores->iva.abb_tx_done_mask,
OMAP_ABB_FAST_OPP);
}
static inline void enable_clock_domain(u32 const clkctrl_reg, u32 enable_mode)
{
clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT);
debug("Enable clock domain - %x\n", clkctrl_reg);
}
static inline void disable_clock_domain(u32 const clkctrl_reg)
{
clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
CD_CLKCTRL_CLKTRCTRL_SW_SLEEP <<
CD_CLKCTRL_CLKTRCTRL_SHIFT);
debug("Disable clock domain - %x\n", clkctrl_reg);
}
static inline void wait_for_clk_enable(u32 clkctrl_addr)
{
u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED;
u32 bound = LDELAY;
while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) ||
(idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) {
clkctrl = readl(clkctrl_addr);
idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
MODULE_CLKCTRL_IDLEST_SHIFT;
if (--bound == 0) {
printf("Clock enable failed for 0x%x idlest 0x%x\n",
clkctrl_addr, clkctrl);
return;
}
}
}
static inline void enable_clock_module(u32 const clkctrl_addr, u32 enable_mode,
u32 wait_for_enable)
{
clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT);
debug("Enable clock module - %x\n", clkctrl_addr);
if (wait_for_enable)
wait_for_clk_enable(clkctrl_addr);
}
static inline void wait_for_clk_disable(u32 clkctrl_addr)
{
u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_FULLY_FUNCTIONAL;
u32 bound = LDELAY;
while ((idlest != MODULE_CLKCTRL_IDLEST_DISABLED)) {
clkctrl = readl(clkctrl_addr);
idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
MODULE_CLKCTRL_IDLEST_SHIFT;
if (--bound == 0) {
printf("Clock disable failed for 0x%x idlest 0x%x\n",
clkctrl_addr, clkctrl);
return;
}
}
}
static inline void disable_clock_module(u32 const clkctrl_addr,
u32 wait_for_disable)
{
clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_DISABLE <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
debug("Disable clock module - %x\n", clkctrl_addr);
if (wait_for_disable)
wait_for_clk_disable(clkctrl_addr);
}
void freq_update_core(void)
{
u32 freq_config1 = 0;
const struct dpll_params *core_dpll_params;
u32 omap_rev = omap_revision();
core_dpll_params = get_core_dpll_params(*dplls_data);
/* Put EMIF clock domain in sw wakeup mode */
enable_clock_domain((*prcm)->cm_memif_clkstctrl,
CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK |
SHADOW_FREQ_CONFIG1_DLL_RESET_MASK;
freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) &
SHADOW_FREQ_CONFIG1_DPLL_EN_MASK;
freq_config1 |= (core_dpll_params->m2 <<
SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) &
SHADOW_FREQ_CONFIG1_M2_DIV_MASK;
writel(freq_config1, (*prcm)->cm_shadow_freq_config1);
if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0,
(u32 *) (*prcm)->cm_shadow_freq_config1, LDELAY)) {
puts("FREQ UPDATE procedure failed!!");
hang();
}
/*
* Putting EMIF in HW_AUTO is seen to be causing issues with
* EMIF clocks and the master DLL. Keep EMIF in SW_WKUP
* in OMAP5430 ES1.0 silicon
*/
if (omap_rev != OMAP5430_ES1_0) {
/* Put EMIF clock domain back in hw auto mode */
enable_clock_domain((*prcm)->cm_memif_clkstctrl,
CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
}
}
void bypass_dpll(u32 const base)
{
do_bypass_dpll(base);
wait_for_bypass(base);
}
void lock_dpll(u32 const base)
{
do_lock_dpll(base);
wait_for_lock(base);
}
static void setup_clocks_for_console(void)
{
/* Do not add any spl_debug prints in this function */
clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
CD_CLKCTRL_CLKTRCTRL_SHIFT);
/* Enable all UARTs - console will be on one of them */
clrsetbits_le32((*prcm)->cm_l4per_uart1_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32((*prcm)->cm_l4per_uart2_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32((*prcm)->cm_l4per_uart3_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32((*prcm)->cm_l4per_uart4_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
CD_CLKCTRL_CLKTRCTRL_HW_AUTO <<
CD_CLKCTRL_CLKTRCTRL_SHIFT);
}
void do_enable_clocks(u32 const *clk_domains,
u32 const *clk_modules_hw_auto,
u32 const *clk_modules_explicit_en,
u8 wait_for_enable)
{
u32 i, max = 100;
/* Put the clock domains in SW_WKUP mode */
for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) {
enable_clock_domain(clk_domains[i],
CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
}
/* Clock modules that need to be put in HW_AUTO */
for (i = 0; (i < max) && clk_modules_hw_auto &&
clk_modules_hw_auto[i]; i++) {
enable_clock_module(clk_modules_hw_auto[i],
MODULE_CLKCTRL_MODULEMODE_HW_AUTO,
wait_for_enable);
};
/* Clock modules that need to be put in SW_EXPLICIT_EN mode */
for (i = 0; (i < max) && clk_modules_explicit_en &&
clk_modules_explicit_en[i]; i++) {
enable_clock_module(clk_modules_explicit_en[i],
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN,
wait_for_enable);
};
/* Put the clock domains in HW_AUTO mode now */
for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) {
enable_clock_domain(clk_domains[i],
CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
}
}
void do_disable_clocks(u32 const *clk_domains,
u32 const *clk_modules_disable,
u8 wait_for_disable)
{
u32 i, max = 100;
/* Clock modules that need to be put in SW_DISABLE */
for (i = 0; (i < max) && clk_modules_disable[i]; i++)
disable_clock_module(clk_modules_disable[i],
wait_for_disable);
/* Put the clock domains in SW_SLEEP mode */
for (i = 0; (i < max) && clk_domains[i]; i++)
disable_clock_domain(clk_domains[i]);
}
/**
* setup_early_clocks() - Setup early clocks needed for SoC
*
* Setup clocks for console, SPL basic initialization clocks and initialize
* the timer. This is invoked prior prcm_init.
*/
void setup_early_clocks(void)
{
switch (omap_hw_init_context()) {
case OMAP_INIT_CONTEXT_SPL:
case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
setup_clocks_for_console();
enable_basic_clocks();
timer_init();
/* Fall through */
}
}
void prcm_init(void)
{
switch (omap_hw_init_context()) {
case OMAP_INIT_CONTEXT_SPL:
case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
scale_vcores(*omap_vcores);
setup_dplls();
setup_warmreset_time();
break;
default:
break;
}
if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context())
enable_basic_uboot_clocks();
}
#if !defined(CONFIG_DM_I2C)
void gpi2c_init(void)
{
static int gpi2c = 1;
if (gpi2c) {
i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED,
CONFIG_SYS_OMAP24_I2C_SLAVE);
gpi2c = 0;
}
}
#endif
|