summaryrefslogtreecommitdiff
path: root/arch/arm/mach-omap2/emif-common.c
blob: 4658f67e84d321ea474a637b66144f9dd3605b6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
// SPDX-License-Identifier: GPL-2.0+
/*
 * EMIF programming
 *
 * (C) Copyright 2010
 * Texas Instruments, <www.ti.com>
 *
 * Aneesh V <aneesh@ti.com>
 */

#include <common.h>
#include <hang.h>
#include <init.h>
#include <net.h>
#include <asm/emif.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/omap_common.h>
#include <asm/omap_sec_common.h>
#include <asm/utils.h>
#include <linux/compiler.h>
#include <asm/ti-common/ti-edma3.h>

static int emif1_enabled = -1, emif2_enabled = -1;

void set_lpmode_selfrefresh(u32 base)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
	u32 reg;

	reg = readl(&emif->emif_pwr_mgmt_ctrl);
	reg &= ~EMIF_REG_LP_MODE_MASK;
	reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
	reg &= ~EMIF_REG_SR_TIM_MASK;
	writel(reg, &emif->emif_pwr_mgmt_ctrl);

	/* dummy read for the new SR_TIM to be loaded */
	readl(&emif->emif_pwr_mgmt_ctrl);
}

void force_emif_self_refresh()
{
	set_lpmode_selfrefresh(EMIF1_BASE);
	if (!is_dra72x())
		set_lpmode_selfrefresh(EMIF2_BASE);
}

inline u32 emif_num(u32 base)
{
	if (base == EMIF1_BASE)
		return 1;
	else if (base == EMIF2_BASE)
		return 2;
	else
		return 0;
}

static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
{
	u32 mr;
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	mr_addr |= cs << EMIF_REG_CS_SHIFT;
	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
	if (omap_revision() == OMAP4430_ES2_0)
		mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
	else
		mr = readl(&emif->emif_lpddr2_mode_reg_data);
	debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
	      cs, mr_addr, mr);
	if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
	    ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
	    ((mr & 0xff000000) >> 24) == (mr & 0xff))
		return mr & 0xff;
	else
		return mr;
}

static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	mr_addr |= cs << EMIF_REG_CS_SHIFT;
	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
	writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
}

void emif_reset_phy(u32 base)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
	u32 iodft;

	iodft = readl(&emif->emif_iodft_tlgc);
	iodft |= EMIF_REG_RESET_PHY_MASK;
	writel(iodft, &emif->emif_iodft_tlgc);
}

static void do_lpddr2_init(u32 base, u32 cs)
{
	u32 mr_addr;
	const struct lpddr2_mr_regs *mr_regs;

	get_lpddr2_mr_regs(&mr_regs);
	/* Wait till device auto initialization is complete */
	while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
		;
	set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
	/*
	 * tZQINIT = 1 us
	 * Enough loops assuming a maximum of 2GHz
	 */

	sdelay(2000);

	set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
	set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);

	/*
	 * Enable refresh along with writing MR2
	 * Encoding of RL in MR2 is (RL - 2)
	 */
	mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
	set_mr(base, cs, mr_addr, mr_regs->mr2);

	if (mr_regs->mr3 > 0)
		set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
}

static void lpddr2_init(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	/* Not NVM */
	clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);

	/*
	 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
	 * when EMIF_SDRAM_CONFIG register is written
	 */
	setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);

	/*
	 * Set the SDRAM_CONFIG and PHY_CTRL for the
	 * un-locked frequency & default RL
	 */
	writel(regs->sdram_config_init, &emif->emif_sdram_config);
	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);

	do_ext_phy_settings(base, regs);

	do_lpddr2_init(base, CS0);
	if (regs->sdram_config & EMIF_REG_EBANK_MASK)
		do_lpddr2_init(base, CS1);

	writel(regs->sdram_config, &emif->emif_sdram_config);
	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);

	/* Enable refresh now */
	clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);

	}

__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
{
}

void emif_update_timings(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	if (!is_dra7xx())
		writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
	else
		writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);

	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
	if (omap_revision() == OMAP4430_ES1_0) {
		/* ES1 bug EMIF should be in force idle during freq_update */
		writel(0, &emif->emif_pwr_mgmt_ctrl);
	} else {
		writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
		writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
	}
	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
	writel(regs->zq_config, &emif->emif_zq_config);
	writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);

	if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
			&emif->emif_l3_config);
	} else if (omap_revision() >= OMAP4460_ES1_0) {
		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
			&emif->emif_l3_config);
	} else {
		writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
			&emif->emif_l3_config);
	}
}

#ifndef CONFIG_OMAP44XX
static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	/* keep sdram in self-refresh */
	writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
		& EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
	__udelay(130);

	/*
	 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
	 * Invert clock adds an additional half cycle delay on the
	 * command interface.  The additional half cycle, is usually
	 * meant to enable leveling in the situation that DQS is later
	 * than CK on the board.It also helps provide some additional
	 * margin for leveling.
	 */
	writel(regs->emif_ddr_phy_ctlr_1,
	       &emif->emif_ddr_phy_ctrl_1);

	writel(regs->emif_ddr_phy_ctlr_1,
	       &emif->emif_ddr_phy_ctrl_1_shdw);
	__udelay(130);

	writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
	       & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);

	/* Launch Full leveling */
	writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);

	/* Wait till full leveling is complete */
	readl(&emif->emif_rd_wr_lvl_ctl);
	      __udelay(130);

	/* Read data eye leveling no of samples */
	config_data_eye_leveling_samples(base);

	/*
	 * Launch 8 incremental WR_LVL- to compensate for
	 * PHY limitation.
	 */
	writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
	       &emif->emif_rd_wr_lvl_ctl);

	__udelay(130);

	/* Launch Incremental leveling */
	writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
	       __udelay(130);
}

static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
	u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
	u32 reg, i, phy;

	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
	phy = readl(&emif->emif_ddr_phy_ctrl_1);

	/* Update PHY_REG_RDDQS_RATIO */
	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
	if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
		for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
			reg = readl(emif_phy_status++);
			writel(reg, emif_ext_phy_ctrl_reg++);
			writel(reg, emif_ext_phy_ctrl_reg++);
		}

	/* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
	if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
		for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
			reg = readl(emif_phy_status++);
			writel(reg, emif_ext_phy_ctrl_reg++);
			writel(reg, emif_ext_phy_ctrl_reg++);
		}

	/* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
	if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
		for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
			reg = readl(emif_phy_status++);
			writel(reg, emif_ext_phy_ctrl_reg++);
			writel(reg, emif_ext_phy_ctrl_reg++);
		}

	/* Disable Leveling */
	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
	writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
}

static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	/* Clear Error Status */
	clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);

	clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);

	/* Disable refreshed before leveling */
	clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
			EMIF_REG_INITREF_DIS_MASK);

	/* Start Full leveling */
	writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);

	__udelay(300);

	/* Check for leveling timeout */
	if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
		printf("Leveling timeout on EMIF%d\n", emif_num(base));
		return;
	}

	/* Enable refreshes after leveling */
	clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);

	debug("HW leveling success\n");
	/*
	 * Update slave ratios in EXT_PHY_CTRLx registers
	 * as per HW leveling output
	 */
	update_hwleveling_output(base, regs);
}

static void dra7_reset_ddr_data(u32 base, u32 size)
{
#if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
	enable_edma3_clocks();

	edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);

	disable_edma3_clocks();
#else
	memset((void *)base, 0, size);
#endif
}

static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
	u32 rgn, rgn_start, size, ctrl_reg;

	/* ECC available only on dra76x EMIF1 */
	if ((base != EMIF1_BASE) || !is_dra76x())
		return;

	if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
		/* Disable high-order interleaving */
		clrbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);

#ifdef CONFIG_DRA7XX
		/* Clear the status flags and other history */
		writel(readl(&emif->emif_1b_ecc_err_cnt),
		       &emif->emif_1b_ecc_err_cnt);
		writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
		writel(0x2, &emif->emif_1b_ecc_err_addr_log);
		writel(0x1, &emif->emif_2b_ecc_err_addr_log);
		writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
		       EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
		       EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
		       &emif->emif_irqstatus_sys);
#endif
		writel(regs->emif_ecc_address_range_1,
		       &emif->emif_ecc_address_range_1);
		writel(regs->emif_ecc_address_range_2,
		       &emif->emif_ecc_address_range_2);

		/* Disable RMW and ECC verification for read accesses */
		ctrl_reg = (regs->emif_ecc_ctrl_reg &
			    ~EMIF_ECC_REG_RMW_EN_MASK) |
			   EMIF_ECC_CTRL_REG_ECC_VERIFY_DIS_MASK;
		writel(ctrl_reg, &emif->emif_ecc_ctrl_reg);

		/* Set region1 memory with 0 */
		rgn_start = (regs->emif_ecc_address_range_1 &
			     EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
		rgn = rgn_start + CONFIG_SYS_SDRAM_BASE;
		size = (regs->emif_ecc_address_range_1 &
			EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;

		if (regs->emif_ecc_ctrl_reg &
		    EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
			dra7_reset_ddr_data(rgn, size);

		/* Set region2 memory with 0 */
		rgn_start = (regs->emif_ecc_address_range_2 &
			     EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
		rgn = rgn_start + CONFIG_SYS_SDRAM_BASE;
		size = (regs->emif_ecc_address_range_2 &
			EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;

		if (regs->emif_ecc_ctrl_reg &
		    EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
			dra7_reset_ddr_data(rgn, size);

		/* Default value enables RMW and ECC verification */
		writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
	}
}

static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	if (warm_reset()) {
		emif_reset_phy(base);
		writel(0x0, &emif->emif_pwr_mgmt_ctrl);
	}
	do_ext_phy_settings(base, regs);

	writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
	       &emif->emif_sdram_ref_ctrl);
	/* Update timing registers */
	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);

	writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
	writel(regs->zq_config, &emif->emif_zq_config);
	writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
	writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
	writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);

	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
	writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);

	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);

	writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
	writel(regs->sdram_config_init, &emif->emif_sdram_config);

	__udelay(1000);

	writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);

	if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
		/*
		 * Perform Dummy ECC setup just to allow hardware
		 * leveling of ECC memories
		 */
		if (is_dra76x() && (base == EMIF1_BASE) &&
		    (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
			writel(0, &emif->emif_ecc_address_range_1);
			writel(0, &emif->emif_ecc_address_range_2);
			writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
			       EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
			       &emif->emif_ecc_ctrl_reg);
		}

		dra7_ddr3_leveling(base, regs);

		/* Disable ECC */
		if (is_dra76x())
			writel(0, &emif->emif_ecc_ctrl_reg);
	}

	/* Enable ECC as necessary */
	dra7_enable_ecc(base, regs);
}

static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
	writel(regs->sdram_config_init, &emif->emif_sdram_config);
	/*
	 * Set SDRAM_CONFIG and PHY control registers to locked frequency
	 * and RL =7. As the default values of the Mode Registers are not
	 * defined, contents of mode Registers must be fully initialized.
	 * H/W takes care of this initialization
	 */
	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);

	/* Update timing registers */
	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);

	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);

	writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
	writel(regs->sdram_config_init, &emif->emif_sdram_config);
	do_ext_phy_settings(base, regs);

	writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
	omap5_ddr3_leveling(base, regs);
}

static void ddr3_init(u32 base, const struct emif_regs *regs)
{
	if (is_omap54xx())
		omap5_ddr3_init(base, regs);
	else
		dra7_ddr3_init(base, regs);
}
#endif

#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))

/*
 * Organization and refresh requirements for LPDDR2 devices of different
 * types and densities. Derived from JESD209-2 section 2.4
 */
const struct lpddr2_addressing addressing_table[] = {
	/* Banks tREFIx10     rowx32,rowx16      colx32,colx16	density */
	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
	{BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
	{BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
	{BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
	{BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
};

static const u32 lpddr2_density_2_size_in_mbytes[] = {
	8,			/* 64Mb */
	16,			/* 128Mb */
	32,			/* 256Mb */
	64,			/* 512Mb */
	128,			/* 1Gb   */
	256,			/* 2Gb   */
	512,			/* 4Gb   */
	1024,			/* 8Gb   */
	2048,			/* 16Gb  */
	4096			/* 32Gb  */
};

/*
 * Calculate the period of DDR clock from frequency value and set the
 * denominator and numerator in global variables for easy access later
 */
static void set_ddr_clk_period(u32 freq)
{
	/*
	 * period = 1/freq
	 * period_in_ns = 10^9/freq
	 */
	*T_num = 1000000000;
	*T_den = freq;
	cancel_out(T_num, T_den, 200);

}

/*
 * Convert time in nano seconds to number of cycles of DDR clock
 */
static inline u32 ns_2_cycles(u32 ns)
{
	return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
}

/*
 * ns_2_cycles with the difference that the time passed is 2 times the actual
 * value(to avoid fractions). The cycles returned is for the original value of
 * the timing parameter
 */
static inline u32 ns_x2_2_cycles(u32 ns)
{
	return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
}

/*
 * Find addressing table index based on the device's type(S2 or S4) and
 * density
 */
s8 addressing_table_index(u8 type, u8 density, u8 width)
{
	u8 index;
	if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
		return -1;

	/*
	 * Look at the way ADDR_TABLE_INDEX* values have been defined
	 * in emif.h compared to LPDDR2_DENSITY_* values
	 * The table is layed out in the increasing order of density
	 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
	 * at the end
	 */
	if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
		index = ADDR_TABLE_INDEX1GS2;
	else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
		index = ADDR_TABLE_INDEX2GS2;
	else
		index = density;

	debug("emif: addressing table index %d\n", index);

	return index;
}

/*
 * Find the the right timing table from the array of timing
 * tables of the device using DDR clock frequency
 */
static const struct lpddr2_ac_timings *get_timings_table(const struct
			lpddr2_ac_timings *const *device_timings,
			u32 freq)
{
	u32 i, temp, freq_nearest;
	const struct lpddr2_ac_timings *timings = 0;

	emif_assert(freq <= MAX_LPDDR2_FREQ);
	emif_assert(device_timings);

	/*
	 * Start with the maximum allowed frequency - that is always safe
	 */
	freq_nearest = MAX_LPDDR2_FREQ;
	/*
	 * Find the timings table that has the max frequency value:
	 *   i.  Above or equal to the DDR frequency - safe
	 *   ii. The lowest that satisfies condition (i) - optimal
	 */
	for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
		temp = device_timings[i]->max_freq;
		if ((temp >= freq) && (temp <= freq_nearest)) {
			freq_nearest = temp;
			timings = device_timings[i];
		}
	}
	debug("emif: timings table: %d\n", freq_nearest);
	return timings;
}

/*
 * Finds the value of emif_sdram_config_reg
 * All parameters are programmed based on the device on CS0.
 * If there is a device on CS1, it will be same as that on CS0 or
 * it will be NVM. We don't support NVM yet.
 * If cs1_device pointer is NULL it is assumed that there is no device
 * on CS1
 */
static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
				const struct lpddr2_device_details *cs1_device,
				const struct lpddr2_addressing *addressing,
				u8 RL)
{
	u32 config_reg = 0;

	config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
	config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
			EMIF_REG_IBANK_POS_SHIFT;

	config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;

	config_reg |= RL << EMIF_REG_CL_SHIFT;

	config_reg |= addressing->row_sz[cs0_device->io_width] <<
			EMIF_REG_ROWSIZE_SHIFT;

	config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;

	config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
			EMIF_REG_EBANK_SHIFT;

	config_reg |= addressing->col_sz[cs0_device->io_width] <<
			EMIF_REG_PAGESIZE_SHIFT;

	return config_reg;
}

static u32 get_sdram_ref_ctrl(u32 freq,
			      const struct lpddr2_addressing *addressing)
{
	u32 ref_ctrl = 0, val = 0, freq_khz;
	freq_khz = freq / 1000;
	/*
	 * refresh rate to be set is 'tREFI * freq in MHz
	 * division by 10000 to account for khz and x10 in t_REFI_us_x10
	 */
	val = addressing->t_REFI_us_x10 * freq_khz / 10000;
	ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;

	return ref_ctrl;
}

static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
			       const struct lpddr2_min_tck *min_tck,
			       const struct lpddr2_addressing *addressing)
{
	u32 tim1 = 0, val = 0;
	val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
	tim1 |= val << EMIF_REG_T_WTR_SHIFT;

	if (addressing->num_banks == BANKS8)
		val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
							(4 * (*T_num)) - 1;
	else
		val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;

	tim1 |= val << EMIF_REG_T_RRD_SHIFT;

	val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
	tim1 |= val << EMIF_REG_T_RC_SHIFT;

	val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
	tim1 |= val << EMIF_REG_T_RAS_SHIFT;

	val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
	tim1 |= val << EMIF_REG_T_WR_SHIFT;

	val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
	tim1 |= val << EMIF_REG_T_RCD_SHIFT;

	val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
	tim1 |= val << EMIF_REG_T_RP_SHIFT;

	return tim1;
}

static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
			       const struct lpddr2_min_tck *min_tck)
{
	u32 tim2 = 0, val = 0;
	val = max(min_tck->tCKE, timings->tCKE) - 1;
	tim2 |= val << EMIF_REG_T_CKE_SHIFT;

	val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
	tim2 |= val << EMIF_REG_T_RTP_SHIFT;

	/*
	 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
	 * same value
	 */
	val = ns_2_cycles(timings->tXSR) - 1;
	tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
	tim2 |= val << EMIF_REG_T_XSNR_SHIFT;

	val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
	tim2 |= val << EMIF_REG_T_XP_SHIFT;

	return tim2;
}

static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
			       const struct lpddr2_min_tck *min_tck,
			       const struct lpddr2_addressing *addressing)
{
	u32 tim3 = 0, val = 0;
	val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
	tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;

	val = ns_2_cycles(timings->tRFCab) - 1;
	tim3 |= val << EMIF_REG_T_RFC_SHIFT;

	val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
	tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;

	val = ns_2_cycles(timings->tZQCS) - 1;
	tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;

	val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
	tim3 |= val << EMIF_REG_T_CKESR_SHIFT;

	return tim3;
}

static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
			     const struct lpddr2_addressing *addressing,
			     u8 volt_ramp)
{
	u32 zq = 0, val = 0;
	if (volt_ramp)
		val =
		    EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
		    addressing->t_REFI_us_x10;
	else
		val =
		    EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
		    addressing->t_REFI_us_x10;
	zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;

	zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;

	zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;

	zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;

	/*
	 * Assuming that two chipselects have a single calibration resistor
	 * If there are indeed two calibration resistors, then this flag should
	 * be enabled to take advantage of dual calibration feature.
	 * This data should ideally come from board files. But considering
	 * that none of the boards today have calibration resistors per CS,
	 * it would be an unnecessary overhead.
	 */
	zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;

	zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;

	zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;

	return zq;
}

static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
				 const struct lpddr2_addressing *addressing,
				 u8 is_derated)
{
	u32 alert = 0, interval;
	interval =
	    TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
	if (is_derated)
		interval *= 4;
	alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;

	alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;

	alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;

	alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;

	alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;

	alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;

	return alert;
}

static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
{
	u32 idle = 0, val = 0;
	if (volt_ramp)
		val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
	else
		/*Maximum value in normal conditions - suggested by hw team */
		val = 0x1FF;
	idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;

	idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;

	return idle;
}

static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
{
	u32 phy = 0, val = 0;

	phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;

	if (freq <= 100000000)
		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
	else if (freq <= 200000000)
		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
	else
		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
	phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;

	/* Other fields are constant magic values. Hardcode them together */
	phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
		EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;

	return phy;
}

static u32 get_emif_mem_size(u32 base)
{
	u32 size_mbytes = 0, temp;
	struct emif_device_details dev_details;
	struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
	u32 emif_nr = emif_num(base);

	emif_reset_phy(base);
	dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
						&cs0_dev_details);
	dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
						&cs1_dev_details);
	emif_reset_phy(base);

	if (dev_details.cs0_device_details) {
		temp = dev_details.cs0_device_details->density;
		size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
	}

	if (dev_details.cs1_device_details) {
		temp = dev_details.cs1_device_details->density;
		size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
	}
	/* convert to bytes */
	return size_mbytes << 20;
}

/* Gets the encoding corresponding to a given DMM section size */
u32 get_dmm_section_size_map(u32 section_size)
{
	/*
	 * Section size mapping:
	 * 0x0: 16-MiB section
	 * 0x1: 32-MiB section
	 * 0x2: 64-MiB section
	 * 0x3: 128-MiB section
	 * 0x4: 256-MiB section
	 * 0x5: 512-MiB section
	 * 0x6: 1-GiB section
	 * 0x7: 2-GiB section
	 */
	section_size >>= 24; /* divide by 16 MB */
	return log_2_n_round_down(section_size);
}

static void emif_calculate_regs(
		const struct emif_device_details *emif_dev_details,
		u32 freq, struct emif_regs *regs)
{
	u32 temp, sys_freq;
	const struct lpddr2_addressing *addressing;
	const struct lpddr2_ac_timings *timings;
	const struct lpddr2_min_tck *min_tck;
	const struct lpddr2_device_details *cs0_dev_details =
					emif_dev_details->cs0_device_details;
	const struct lpddr2_device_details *cs1_dev_details =
					emif_dev_details->cs1_device_details;
	const struct lpddr2_device_timings *cs0_dev_timings =
					emif_dev_details->cs0_device_timings;

	emif_assert(emif_dev_details);
	emif_assert(regs);
	/*
	 * You can not have a device on CS1 without one on CS0
	 * So configuring EMIF without a device on CS0 doesn't
	 * make sense
	 */
	emif_assert(cs0_dev_details);
	emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
	/*
	 * If there is a device on CS1 it should be same type as CS0
	 * (or NVM. But NVM is not supported in this driver yet)
	 */
	emif_assert((cs1_dev_details == NULL) ||
		    (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
		    (cs0_dev_details->type == cs1_dev_details->type));
	emif_assert(freq <= MAX_LPDDR2_FREQ);

	set_ddr_clk_period(freq);

	/*
	 * The device on CS0 is used for all timing calculations
	 * There is only one set of registers for timings per EMIF. So, if the
	 * second CS(CS1) has a device, it should have the same timings as the
	 * device on CS0
	 */
	timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
	emif_assert(timings);
	min_tck = cs0_dev_timings->min_tck;

	temp = addressing_table_index(cs0_dev_details->type,
				      cs0_dev_details->density,
				      cs0_dev_details->io_width);

	emif_assert((temp >= 0));
	addressing = &(addressing_table[temp]);
	emif_assert(addressing);

	sys_freq = get_sys_clk_freq();

	regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
							cs1_dev_details,
							addressing, RL_BOOT);

	regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
						cs1_dev_details,
						addressing, RL_FINAL);

	regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);

	regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);

	regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);

	regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);

	regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);

	regs->temp_alert_config =
	    get_temp_alert_config(cs1_dev_details, addressing, 0);

	regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
					    LPDDR2_VOLTAGE_STABLE);

	regs->emif_ddr_phy_ctlr_1_init =
			get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);

	regs->emif_ddr_phy_ctlr_1 =
			get_ddr_phy_ctrl_1(freq, RL_FINAL);

	regs->freq = freq;

	print_timing_reg(regs->sdram_config_init);
	print_timing_reg(regs->sdram_config);
	print_timing_reg(regs->ref_ctrl);
	print_timing_reg(regs->sdram_tim1);
	print_timing_reg(regs->sdram_tim2);
	print_timing_reg(regs->sdram_tim3);
	print_timing_reg(regs->read_idle_ctrl);
	print_timing_reg(regs->temp_alert_config);
	print_timing_reg(regs->zq_config);
	print_timing_reg(regs->emif_ddr_phy_ctlr_1);
	print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
}
#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */

#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
const char *get_lpddr2_type(u8 type_id)
{
	switch (type_id) {
	case LPDDR2_TYPE_S4:
		return "LPDDR2-S4";
	case LPDDR2_TYPE_S2:
		return "LPDDR2-S2";
	default:
		return NULL;
	}
}

const char *get_lpddr2_io_width(u8 width_id)
{
	switch (width_id) {
	case LPDDR2_IO_WIDTH_8:
		return "x8";
	case LPDDR2_IO_WIDTH_16:
		return "x16";
	case LPDDR2_IO_WIDTH_32:
		return "x32";
	default:
		return NULL;
	}
}

const char *get_lpddr2_manufacturer(u32 manufacturer)
{
	switch (manufacturer) {
	case LPDDR2_MANUFACTURER_SAMSUNG:
		return "Samsung";
	case LPDDR2_MANUFACTURER_QIMONDA:
		return "Qimonda";
	case LPDDR2_MANUFACTURER_ELPIDA:
		return "Elpida";
	case LPDDR2_MANUFACTURER_ETRON:
		return "Etron";
	case LPDDR2_MANUFACTURER_NANYA:
		return "Nanya";
	case LPDDR2_MANUFACTURER_HYNIX:
		return "Hynix";
	case LPDDR2_MANUFACTURER_MOSEL:
		return "Mosel";
	case LPDDR2_MANUFACTURER_WINBOND:
		return "Winbond";
	case LPDDR2_MANUFACTURER_ESMT:
		return "ESMT";
	case LPDDR2_MANUFACTURER_SPANSION:
		return "Spansion";
	case LPDDR2_MANUFACTURER_SST:
		return "SST";
	case LPDDR2_MANUFACTURER_ZMOS:
		return "ZMOS";
	case LPDDR2_MANUFACTURER_INTEL:
		return "Intel";
	case LPDDR2_MANUFACTURER_NUMONYX:
		return "Numonyx";
	case LPDDR2_MANUFACTURER_MICRON:
		return "Micron";
	default:
		return NULL;
	}
}

static void display_sdram_details(u32 emif_nr, u32 cs,
				  struct lpddr2_device_details *device)
{
	const char *mfg_str;
	const char *type_str;
	char density_str[10];
	u32 density;

	debug("EMIF%d CS%d\t", emif_nr, cs);

	if (!device) {
		debug("None\n");
		return;
	}

	mfg_str = get_lpddr2_manufacturer(device->manufacturer);
	type_str = get_lpddr2_type(device->type);

	density = lpddr2_density_2_size_in_mbytes[device->density];
	if ((density / 1024 * 1024) == density) {
		density /= 1024;
		sprintf(density_str, "%d GB", density);
	} else
		sprintf(density_str, "%d MB", density);
	if (mfg_str && type_str)
		debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
}

static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
				  struct lpddr2_device_details *lpddr2_device)
{
	u32 mr = 0, temp;

	mr = get_mr(base, cs, LPDDR2_MR0);
	if (mr > 0xFF) {
		/* Mode register value bigger than 8 bit */
		return 0;
	}

	temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
	if (temp) {
		/* Not SDRAM */
		return 0;
	}
	temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;

	if (temp) {
		/* DNV supported - But DNV is only supported for NVM */
		return 0;
	}

	mr = get_mr(base, cs, LPDDR2_MR4);
	if (mr > 0xFF) {
		/* Mode register value bigger than 8 bit */
		return 0;
	}

	mr = get_mr(base, cs, LPDDR2_MR5);
	if (mr > 0xFF) {
		/* Mode register value bigger than 8 bit */
		return 0;
	}

	if (!get_lpddr2_manufacturer(mr)) {
		/* Manufacturer not identified */
		return 0;
	}
	lpddr2_device->manufacturer = mr;

	mr = get_mr(base, cs, LPDDR2_MR6);
	if (mr >= 0xFF) {
		/* Mode register value bigger than 8 bit */
		return 0;
	}

	mr = get_mr(base, cs, LPDDR2_MR7);
	if (mr >= 0xFF) {
		/* Mode register value bigger than 8 bit */
		return 0;
	}

	mr = get_mr(base, cs, LPDDR2_MR8);
	if (mr >= 0xFF) {
		/* Mode register value bigger than 8 bit */
		return 0;
	}

	temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
	if (!get_lpddr2_type(temp)) {
		/* Not SDRAM */
		return 0;
	}
	lpddr2_device->type = temp;

	temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
	if (temp > LPDDR2_DENSITY_32Gb) {
		/* Density not supported */
		return 0;
	}
	lpddr2_device->density = temp;

	temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
	if (!get_lpddr2_io_width(temp)) {
		/* IO width unsupported value */
		return 0;
	}
	lpddr2_device->io_width = temp;

	/*
	 * If all the above tests pass we should
	 * have a device on this chip-select
	 */
	return 1;
}

struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
			struct lpddr2_device_details *lpddr2_dev_details)
{
	u32 phy;
	u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;

	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	if (!lpddr2_dev_details)
		return NULL;

	/* Do the minimum init for mode register accesses */
	if (!(running_from_sdram() || warm_reset())) {
		phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
		writel(phy, &emif->emif_ddr_phy_ctrl_1);
	}

	if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
		return NULL;

	display_sdram_details(emif_num(base), cs, lpddr2_dev_details);

	return lpddr2_dev_details;
}
#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */

static void do_sdram_init(u32 base)
{
	const struct emif_regs *regs;
	u32 in_sdram, emif_nr;

	debug(">>do_sdram_init() %x\n", base);

	in_sdram = running_from_sdram();
	emif_nr = (base == EMIF1_BASE) ? 1 : 2;

#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
	emif_get_reg_dump(emif_nr, &regs);
	if (!regs) {
		debug("EMIF: reg dump not provided\n");
		return;
	}
#else
	/*
	 * The user has not provided the register values. We need to
	 * calculate it based on the timings and the DDR frequency
	 */
	struct emif_device_details dev_details;
	struct emif_regs calculated_regs;

	/*
	 * Get device details:
	 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
	 * - Obtained from user otherwise
	 */
	struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
	emif_reset_phy(base);
	dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
						&cs0_dev_details);
	dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
						&cs1_dev_details);
	emif_reset_phy(base);

	/* Return if no devices on this EMIF */
	if (!dev_details.cs0_device_details &&
	    !dev_details.cs1_device_details) {
		return;
	}

	/*
	 * Get device timings:
	 * - Default timings specified by JESD209-2 if
	 *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
	 * - Obtained from user otherwise
	 */
	emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
				&dev_details.cs1_device_timings);

	/* Calculate the register values */
	emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
	regs = &calculated_regs;
#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */

	/*
	 * Initializing the DDR device can not happen from SDRAM.
	 * Changing the timing registers in EMIF can happen(going from one
	 * OPP to another)
	 */
	if (!in_sdram && (!warm_reset() || is_dra7xx())) {
		if (emif_sdram_type(regs->sdram_config) ==
		    EMIF_SDRAM_TYPE_LPDDR2)
			lpddr2_init(base, regs);
#ifndef CONFIG_OMAP44XX
		else
			ddr3_init(base, regs);
#endif
	}
#ifdef CONFIG_OMAP54XX
	if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
	    EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
		set_lpmode_selfrefresh(base);
		emif_reset_phy(base);
		omap5_ddr3_leveling(base, regs);
	}
#endif

	/* Write to the shadow registers */
	emif_update_timings(base, regs);

	debug("<<do_sdram_init() %x\n", base);
}

void emif_post_init_config(u32 base)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
	u32 omap_rev = omap_revision();

	/* reset phy on ES2.0 */
	if (omap_rev == OMAP4430_ES2_0)
		emif_reset_phy(base);

	/* Put EMIF back in smart idle on ES1.0 */
	if (omap_rev == OMAP4430_ES1_0)
		writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
}

void dmm_init(u32 base)
{
	const struct dmm_lisa_map_regs *lisa_map_regs;
	u32 i, section, valid;

#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
	emif_get_dmm_regs(&lisa_map_regs);
#else
	u32 emif1_size, emif2_size, mapped_size, section_map = 0;
	u32 section_cnt, sys_addr;
	struct dmm_lisa_map_regs lis_map_regs_calculated = {0};

	mapped_size = 0;
	section_cnt = 3;
	sys_addr = CONFIG_SYS_SDRAM_BASE;
	emif1_size = get_emif_mem_size(EMIF1_BASE);
	emif2_size = get_emif_mem_size(EMIF2_BASE);
	debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);

	if (!emif1_size && !emif2_size)
		return;

	/* symmetric interleaved section */
	if (emif1_size && emif2_size) {
		mapped_size = min(emif1_size, emif2_size);
		section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
		section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
		/* only MSB */
		section_map |= (sys_addr >> 24) <<
				EMIF_SYS_ADDR_SHIFT;
		section_map |= get_dmm_section_size_map(mapped_size * 2)
				<< EMIF_SYS_SIZE_SHIFT;
		lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
		emif1_size -= mapped_size;
		emif2_size -= mapped_size;
		sys_addr += (mapped_size * 2);
		section_cnt--;
	}

	/*
	 * Single EMIF section(we can have a maximum of 1 single EMIF
	 * section- either EMIF1 or EMIF2 or none, but not both)
	 */
	if (emif1_size) {
		section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
		section_map |= get_dmm_section_size_map(emif1_size)
				<< EMIF_SYS_SIZE_SHIFT;
		/* only MSB */
		section_map |= (mapped_size >> 24) <<
				EMIF_SDRC_ADDR_SHIFT;
		/* only MSB */
		section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
		section_cnt--;
	}
	if (emif2_size) {
		section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
		section_map |= get_dmm_section_size_map(emif2_size) <<
				EMIF_SYS_SIZE_SHIFT;
		/* only MSB */
		section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
		/* only MSB */
		section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
		section_cnt--;
	}

	if (section_cnt == 2) {
		/* Only 1 section - either symmetric or single EMIF */
		lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
		lis_map_regs_calculated.dmm_lisa_map_2 = 0;
		lis_map_regs_calculated.dmm_lisa_map_1 = 0;
	} else {
		/* 2 sections - 1 symmetric, 1 single EMIF */
		lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
		lis_map_regs_calculated.dmm_lisa_map_1 = 0;
	}

	/* TRAP for invalid TILER mappings in section 0 */
	lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;

	if (omap_revision() >= OMAP4460_ES1_0)
		lis_map_regs_calculated.is_ma_present = 1;

	lisa_map_regs = &lis_map_regs_calculated;
#endif
	struct dmm_lisa_map_regs *hw_lisa_map_regs =
	    (struct dmm_lisa_map_regs *)base;

	writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
	writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
	writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
	writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);

	writel(lisa_map_regs->dmm_lisa_map_3,
		&hw_lisa_map_regs->dmm_lisa_map_3);
	writel(lisa_map_regs->dmm_lisa_map_2,
		&hw_lisa_map_regs->dmm_lisa_map_2);
	writel(lisa_map_regs->dmm_lisa_map_1,
		&hw_lisa_map_regs->dmm_lisa_map_1);
	writel(lisa_map_regs->dmm_lisa_map_0,
		&hw_lisa_map_regs->dmm_lisa_map_0);

	if (lisa_map_regs->is_ma_present) {
		hw_lisa_map_regs =
		    (struct dmm_lisa_map_regs *)MA_BASE;

		writel(lisa_map_regs->dmm_lisa_map_3,
			&hw_lisa_map_regs->dmm_lisa_map_3);
		writel(lisa_map_regs->dmm_lisa_map_2,
			&hw_lisa_map_regs->dmm_lisa_map_2);
		writel(lisa_map_regs->dmm_lisa_map_1,
			&hw_lisa_map_regs->dmm_lisa_map_1);
		writel(lisa_map_regs->dmm_lisa_map_0,
			&hw_lisa_map_regs->dmm_lisa_map_0);

		setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
	}

	/*
	 * EMIF should be configured only when
	 * memory is mapped on it. Using emif1_enabled
	 * and emif2_enabled variables for this.
	 */
	emif1_enabled = 0;
	emif2_enabled = 0;
	for (i = 0; i < 4; i++) {
		section	= __raw_readl(DMM_BASE + i*4);
		valid = (section & EMIF_SDRC_MAP_MASK) >>
			(EMIF_SDRC_MAP_SHIFT);
		if (valid == 3) {
			emif1_enabled = 1;
			emif2_enabled = 1;
			break;
		}

		if (valid == 1)
			emif1_enabled = 1;

		if (valid == 2)
			emif2_enabled = 1;
	}
}

static void do_bug0039_workaround(u32 base)
{
	u32 val, i, clkctrl;
	struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
	const struct read_write_regs *bug_00339_regs;
	u32 iterations;
	u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
	u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;

	if (is_dra7xx())
		phy_status_base++;

	bug_00339_regs = get_bug_regs(&iterations);

	/* Put EMIF in to idle */
	clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
	__raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);

	/* Copy the phy status registers in to phy ctrl shadow registers */
	for (i = 0; i < iterations; i++) {
		val = __raw_readl(phy_status_base +
				  bug_00339_regs[i].read_reg - 1);

		__raw_writel(val, phy_ctrl_base +
			     ((bug_00339_regs[i].write_reg - 1) << 1));

		__raw_writel(val, phy_ctrl_base +
			     (bug_00339_regs[i].write_reg << 1) - 1);
	}

	/* Disable leveling */
	writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);

	__raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
}

/*
 * SDRAM initialization:
 * SDRAM initialization has two parts:
 * 1. Configuring the SDRAM device
 * 2. Update the AC timings related parameters in the EMIF module
 * (1) should be done only once and should not be done while we are
 * running from SDRAM.
 * (2) can and should be done more than once if OPP changes.
 * Particularly, this may be needed when we boot without SPL and
 * and using Configuration Header(CH). ROM code supports only at 50% OPP
 * at boot (low power boot). So u-boot has to switch to OPP100 and update
 * the frequency. So,
 * Doing (1) and (2) makes sense - first time initialization
 * Doing (2) and not (1) makes sense - OPP change (when using CH)
 * Doing (1) and not (2) doen't make sense
 * See do_sdram_init() for the details
 */
void sdram_init(void)
{
	u32 in_sdram, size_prog, size_detect;
	struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
	u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);

	debug(">>sdram_init()\n");

	if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
		return;

	in_sdram = running_from_sdram();
	debug("in_sdram = %d\n", in_sdram);

	if (!in_sdram) {
		if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
			bypass_dpll((*prcm)->cm_clkmode_dpll_core);
		else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
			writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
	}

	if (!in_sdram)
		dmm_init(DMM_BASE);

	if (emif1_enabled)
		do_sdram_init(EMIF1_BASE);

	if (emif2_enabled)
		do_sdram_init(EMIF2_BASE);

	if (!(in_sdram || warm_reset())) {
		if (emif1_enabled)
			emif_post_init_config(EMIF1_BASE);
		if (emif2_enabled)
			emif_post_init_config(EMIF2_BASE);
	}

	/* for the shadow registers to take effect */
	if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
		freq_update_core();

	/* Do some testing after the init */
	if (!in_sdram) {
		size_prog = omap_sdram_size();
		size_prog = log_2_n_round_down(size_prog);
		size_prog = (1 << size_prog);

		size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
						size_prog);
		/* Compare with the size programmed */
		if (size_detect != size_prog) {
			printf("SDRAM: identified size not same as expected"
				" size identified: %x expected: %x\n",
				size_detect,
				size_prog);
		} else
			debug("get_ram_size() successful");
	}

#if defined(CONFIG_TI_SECURE_DEVICE)
	/*
	 * On HS devices, do static EMIF firewall configuration
	 * but only do it if not already running in SDRAM
	 */
	if (!in_sdram)
		if (0 != secure_emif_reserve())
			hang();

	/* On HS devices, ensure static EMIF firewall APIs are locked */
	if (0 != secure_emif_firewall_lock())
		hang();
#endif

	if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
	    (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
		if (emif1_enabled)
			do_bug0039_workaround(EMIF1_BASE);
		if (emif2_enabled)
			do_bug0039_workaround(EMIF2_BASE);
	}

	debug("<<sdram_init()\n");
}