summaryrefslogtreecommitdiff
path: root/arch/arm/mach-rockchip/rk3188/sdram_rk3188.c
blob: 461cfcdc83f00dc5a08b8f012b956fe3eda9b7cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
/*
 * (C) Copyright 2015 Google, Inc
 * Copyright 2014 Rockchip Inc.
 *
 * SPDX-License-Identifier:     GPL-2.0
 *
 * Adapted from the very similar rk3288 ddr init.
 */

#include <common.h>
#include <clk.h>
#include <dm.h>
#include <dt-structs.h>
#include <errno.h>
#include <ram.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/cru_rk3188.h>
#include <asm/arch/ddr_rk3188.h>
#include <asm/arch/grf_rk3188.h>
#include <asm/arch/pmu_rk3188.h>
#include <asm/arch/sdram.h>
#include <linux/err.h>

DECLARE_GLOBAL_DATA_PTR;

struct chan_info {
	struct rk3288_ddr_pctl *pctl;
	struct rk3288_ddr_publ *publ;
	struct rk3188_msch *msch;
};

struct dram_info {
	struct chan_info chan[1];
	struct ram_info info;
	struct clk ddr_clk;
	struct rk3188_cru *cru;
	struct rk3188_grf *grf;
	struct rk3188_sgrf *sgrf;
	struct rk3188_pmu *pmu;
};

struct rk3188_sdram_params {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
	struct dtd_rockchip_rk3188_dmc of_plat;
#endif
	struct rk3288_sdram_channel ch[2];
	struct rk3288_sdram_pctl_timing pctl_timing;
	struct rk3288_sdram_phy_timing phy_timing;
	struct rk3288_base_params base;
	int num_channels;
	struct regmap *map;
};

const int ddrconf_table[] = {
	/*
	 * [5:4] row(13+n)
	 * [1:0] col(9+n), assume bw=2
	 * row	    col,bw
	 */
	0,
	((2 << DDRCONF_ROW_SHIFT) | 1 << DDRCONF_COL_SHIFT),
	((1 << DDRCONF_ROW_SHIFT) | 1 << DDRCONF_COL_SHIFT),
	((0 << DDRCONF_ROW_SHIFT) | 1 << DDRCONF_COL_SHIFT),
	((2 << DDRCONF_ROW_SHIFT) | 2 << DDRCONF_COL_SHIFT),
	((1 << DDRCONF_ROW_SHIFT) | 2 << DDRCONF_COL_SHIFT),
	((0 << DDRCONF_ROW_SHIFT) | 2 << DDRCONF_COL_SHIFT),
	((1 << DDRCONF_ROW_SHIFT) | 0 << DDRCONF_COL_SHIFT),
	((0 << DDRCONF_ROW_SHIFT) | 0 << DDRCONF_COL_SHIFT),
	0,
	0,
	0,
	0,
	0,
	0,
	0,
};

#define TEST_PATTEN	0x5aa5f00f
#define DQS_GATE_TRAINING_ERROR_RANK0	(1 << 4)
#define DQS_GATE_TRAINING_ERROR_RANK1	(2 << 4)

#ifdef CONFIG_SPL_BUILD
static void copy_to_reg(u32 *dest, const u32 *src, u32 n)
{
	int i;

	for (i = 0; i < n / sizeof(u32); i++) {
		writel(*src, dest);
		src++;
		dest++;
	}
}

static void ddr_reset(struct rk3188_cru *cru, u32 ch, u32 ctl, u32 phy)
{
	u32 phy_ctl_srstn_shift = 13;
	u32 ctl_psrstn_shift = 11;
	u32 ctl_srstn_shift = 10;
	u32 phy_psrstn_shift = 9;
	u32 phy_srstn_shift = 8;

	rk_clrsetreg(&cru->cru_softrst_con[5],
		     1 << phy_ctl_srstn_shift | 1 << ctl_psrstn_shift |
		     1 << ctl_srstn_shift | 1 << phy_psrstn_shift |
		     1 << phy_srstn_shift,
		     phy << phy_ctl_srstn_shift | ctl << ctl_psrstn_shift |
		     ctl << ctl_srstn_shift | phy << phy_psrstn_shift |
		     phy << phy_srstn_shift);
}

static void ddr_phy_ctl_reset(struct rk3188_cru *cru, u32 ch, u32 n)
{
	u32 phy_ctl_srstn_shift = 13;

	rk_clrsetreg(&cru->cru_softrst_con[5],
		     1 << phy_ctl_srstn_shift, n << phy_ctl_srstn_shift);
}

static void phy_pctrl_reset(struct rk3188_cru *cru,
			    struct rk3288_ddr_publ *publ,
			    int channel)
{
	int i;

	ddr_reset(cru, channel, 1, 1);
	udelay(1);
	clrbits_le32(&publ->acdllcr, ACDLLCR_DLLSRST);
	for (i = 0; i < 4; i++)
		clrbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLSRST);

	udelay(10);
	setbits_le32(&publ->acdllcr, ACDLLCR_DLLSRST);
	for (i = 0; i < 4; i++)
		setbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLSRST);

	udelay(10);
	ddr_reset(cru, channel, 1, 0);
	udelay(10);
	ddr_reset(cru, channel, 0, 0);
	udelay(10);
}

static void phy_dll_bypass_set(struct rk3288_ddr_publ *publ,
	u32 freq)
{
	int i;

	if (freq <= 250000000) {
		if (freq <= 150000000)
			clrbits_le32(&publ->dllgcr, SBIAS_BYPASS);
		else
			setbits_le32(&publ->dllgcr, SBIAS_BYPASS);
		setbits_le32(&publ->acdllcr, ACDLLCR_DLLDIS);
		for (i = 0; i < 4; i++)
			setbits_le32(&publ->datx8[i].dxdllcr,
				     DXDLLCR_DLLDIS);

		setbits_le32(&publ->pir, PIR_DLLBYP);
	} else {
		clrbits_le32(&publ->dllgcr, SBIAS_BYPASS);
		clrbits_le32(&publ->acdllcr, ACDLLCR_DLLDIS);
		for (i = 0; i < 4; i++) {
			clrbits_le32(&publ->datx8[i].dxdllcr,
				     DXDLLCR_DLLDIS);
		}

		clrbits_le32(&publ->pir, PIR_DLLBYP);
	}
}

static void dfi_cfg(struct rk3288_ddr_pctl *pctl, u32 dramtype)
{
	writel(DFI_INIT_START, &pctl->dfistcfg0);
	writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN,
	       &pctl->dfistcfg1);
	writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2);
	writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN,
	       &pctl->dfilpcfg0);

	writel(2 << TCTRL_DELAY_TIME_SHIFT, &pctl->dfitctrldelay);
	writel(1 << TPHY_WRDATA_TIME_SHIFT, &pctl->dfitphywrdata);
	writel(0xf << TPHY_RDLAT_TIME_SHIFT, &pctl->dfitphyrdlat);
	writel(2 << TDRAM_CLK_DIS_TIME_SHIFT, &pctl->dfitdramclkdis);
	writel(2 << TDRAM_CLK_EN_TIME_SHIFT, &pctl->dfitdramclken);
	writel(1, &pctl->dfitphyupdtype0);

	/* cs0 and cs1 write odt enable */
	writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL),
	       &pctl->dfiodtcfg);
	/* odt write length */
	writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1);
	/* phyupd and ctrlupd disabled */
	writel(0, &pctl->dfiupdcfg);
}

static void ddr_set_enable(struct rk3188_grf *grf, uint channel, bool enable)
{
	uint val = 0;

	if (enable)
		val = 1 << DDR_16BIT_EN_SHIFT;

	rk_clrsetreg(&grf->ddrc_con0, 1 << DDR_16BIT_EN_SHIFT, val);
}

static void ddr_set_ddr3_mode(struct rk3188_grf *grf, uint channel,
			      bool ddr3_mode)
{
	uint mask, val;

	mask = MSCH4_MAINDDR3_MASK << MSCH4_MAINDDR3_SHIFT;
	val = ddr3_mode << MSCH4_MAINDDR3_SHIFT;
	rk_clrsetreg(&grf->soc_con2, mask, val);
}

static void ddr_rank_2_row15en(struct rk3188_grf *grf, bool enable)
{
	uint mask, val;

	mask = RANK_TO_ROW15_EN_MASK << RANK_TO_ROW15_EN_SHIFT;
	val = enable << RANK_TO_ROW15_EN_SHIFT;
	rk_clrsetreg(&grf->soc_con2, mask, val);
}

static void pctl_cfg(int channel, struct rk3288_ddr_pctl *pctl,
		     struct rk3188_sdram_params *sdram_params,
		     struct rk3188_grf *grf)
{
	copy_to_reg(&pctl->togcnt1u, &sdram_params->pctl_timing.togcnt1u,
		    sizeof(sdram_params->pctl_timing));
	switch (sdram_params->base.dramtype) {
	case DDR3:
		if (sdram_params->phy_timing.mr[1] & DDR3_DLL_DISABLE) {
			writel(sdram_params->pctl_timing.tcl - 3,
			       &pctl->dfitrddataen);
		} else {
			writel(sdram_params->pctl_timing.tcl - 2,
			       &pctl->dfitrddataen);
		}
		writel(sdram_params->pctl_timing.tcwl - 1,
		       &pctl->dfitphywrlat);
		writel(0 << MDDR_LPDDR2_CLK_STOP_IDLE_SHIFT | DDR3_EN |
		       DDR2_DDR3_BL_8 | (6 - 4) << TFAW_SHIFT | PD_EXIT_SLOW |
		       1 << PD_TYPE_SHIFT | 0 << PD_IDLE_SHIFT,
		       &pctl->mcfg);
		ddr_set_ddr3_mode(grf, channel, true);
		ddr_set_enable(grf, channel, true);
		break;
	}

	setbits_le32(&pctl->scfg, 1);
}

static void phy_cfg(const struct chan_info *chan, int channel,
		    struct rk3188_sdram_params *sdram_params)
{
	struct rk3288_ddr_publ *publ = chan->publ;
	struct rk3188_msch *msch = chan->msch;
	uint ddr_freq_mhz = sdram_params->base.ddr_freq / 1000000;
	u32 dinit2;
	int i;

	dinit2 = DIV_ROUND_UP(ddr_freq_mhz * 200000, 1000);
	/* DDR PHY Timing */
	copy_to_reg(&publ->dtpr[0], &sdram_params->phy_timing.dtpr0,
		    sizeof(sdram_params->phy_timing));
	writel(sdram_params->base.noc_timing, &msch->ddrtiming);
	writel(0x3f, &msch->readlatency);
	writel(DIV_ROUND_UP(ddr_freq_mhz * 5120, 1000) << PRT_DLLLOCK_SHIFT |
	       DIV_ROUND_UP(ddr_freq_mhz * 50, 1000) << PRT_DLLSRST_SHIFT |
	       8 << PRT_ITMSRST_SHIFT, &publ->ptr[0]);
	writel(DIV_ROUND_UP(ddr_freq_mhz * 500000, 1000) << PRT_DINIT0_SHIFT |
	       DIV_ROUND_UP(ddr_freq_mhz * 400, 1000) << PRT_DINIT1_SHIFT,
	       &publ->ptr[1]);
	writel(min(dinit2, 0x1ffffU) << PRT_DINIT2_SHIFT |
	       DIV_ROUND_UP(ddr_freq_mhz * 1000, 1000) << PRT_DINIT3_SHIFT,
	       &publ->ptr[2]);

	switch (sdram_params->base.dramtype) {
	case DDR3:
		clrbits_le32(&publ->pgcr, 0x1f);
		clrsetbits_le32(&publ->dcr, DDRMD_MASK << DDRMD_SHIFT,
				DDRMD_DDR3 << DDRMD_SHIFT);
		break;
	}
	if (sdram_params->base.odt) {
		/*dynamic RTT enable */
		for (i = 0; i < 4; i++)
			setbits_le32(&publ->datx8[i].dxgcr, DQSRTT | DQRTT);
	} else {
		/*dynamic RTT disable */
		for (i = 0; i < 4; i++)
			clrbits_le32(&publ->datx8[i].dxgcr, DQSRTT | DQRTT);
	}
}

static void phy_init(struct rk3288_ddr_publ *publ)
{
	setbits_le32(&publ->pir, PIR_INIT | PIR_DLLSRST
		| PIR_DLLLOCK | PIR_ZCAL | PIR_ITMSRST | PIR_CLRSR);
	udelay(1);
	while ((readl(&publ->pgsr) &
		(PGSR_IDONE | PGSR_DLDONE | PGSR_ZCDONE)) !=
		(PGSR_IDONE | PGSR_DLDONE | PGSR_ZCDONE))
		;
}

static void send_command(struct rk3288_ddr_pctl *pctl, u32 rank,
			 u32 cmd, u32 arg)
{
	writel((START_CMD | (rank << 20) | arg | cmd), &pctl->mcmd);
	udelay(1);
	while (readl(&pctl->mcmd) & START_CMD)
		;
}

static inline void send_command_op(struct rk3288_ddr_pctl *pctl,
				   u32 rank, u32 cmd, u32 ma, u32 op)
{
	send_command(pctl, rank, cmd, (ma & LPDDR2_MA_MASK) << LPDDR2_MA_SHIFT |
		     (op & LPDDR2_OP_MASK) << LPDDR2_OP_SHIFT);
}

static void memory_init(struct rk3288_ddr_publ *publ,
			u32 dramtype)
{
	setbits_le32(&publ->pir,
		     (PIR_INIT | PIR_DRAMINIT | PIR_LOCKBYP
		      | PIR_ZCALBYP | PIR_CLRSR | PIR_ICPC
		      | (dramtype == DDR3 ? PIR_DRAMRST : 0)));
	udelay(1);
	while ((readl(&publ->pgsr) & (PGSR_IDONE | PGSR_DLDONE))
		!= (PGSR_IDONE | PGSR_DLDONE))
		;
}

static void move_to_config_state(struct rk3288_ddr_publ *publ,
				 struct rk3288_ddr_pctl *pctl)
{
	unsigned int state;

	while (1) {
		state = readl(&pctl->stat) & PCTL_STAT_MSK;

		switch (state) {
		case LOW_POWER:
			writel(WAKEUP_STATE, &pctl->sctl);
			while ((readl(&pctl->stat) & PCTL_STAT_MSK)
				!= ACCESS)
				;
			/* wait DLL lock */
			while ((readl(&publ->pgsr) & PGSR_DLDONE)
				!= PGSR_DLDONE)
				;
			/*
			 * if at low power state,need wakeup first,
			 * and then enter the config, so
			 * fallthrough
			 */
		case ACCESS:
			/* fallthrough */
		case INIT_MEM:
			writel(CFG_STATE, &pctl->sctl);
			while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
				;
			break;
		case CONFIG:
			return;
		default:
			break;
		}
	}
}

static void set_bandwidth_ratio(const struct chan_info *chan, int channel,
				u32 n, struct rk3188_grf *grf)
{
	struct rk3288_ddr_pctl *pctl = chan->pctl;
	struct rk3288_ddr_publ *publ = chan->publ;
	struct rk3188_msch *msch = chan->msch;

	if (n == 1) {
		setbits_le32(&pctl->ppcfg, 1);
		ddr_set_enable(grf, channel, 1);
		setbits_le32(&msch->ddrtiming, 1 << 31);
		/* Data Byte disable*/
		clrbits_le32(&publ->datx8[2].dxgcr, 1);
		clrbits_le32(&publ->datx8[3].dxgcr, 1);
		/* disable DLL */
		setbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLDIS);
		setbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLDIS);
	} else {
		clrbits_le32(&pctl->ppcfg, 1);
		ddr_set_enable(grf, channel, 0);
		clrbits_le32(&msch->ddrtiming, 1 << 31);
		/* Data Byte enable*/
		setbits_le32(&publ->datx8[2].dxgcr, 1);
		setbits_le32(&publ->datx8[3].dxgcr, 1);

		/* enable DLL */
		clrbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLDIS);
		clrbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLDIS);
		/* reset DLL */
		clrbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLSRST);
		clrbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLSRST);
		udelay(10);
		setbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLSRST);
		setbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLSRST);
	}
	setbits_le32(&pctl->dfistcfg0, 1 << 2);
}

static int data_training(const struct chan_info *chan, int channel,
			 struct rk3188_sdram_params *sdram_params)
{
	unsigned int j;
	int ret = 0;
	u32 rank;
	int i;
	u32 step[2] = { PIR_QSTRN, PIR_RVTRN };
	struct rk3288_ddr_publ *publ = chan->publ;
	struct rk3288_ddr_pctl *pctl = chan->pctl;

	/* disable auto refresh */
	writel(0, &pctl->trefi);

	if (sdram_params->base.dramtype != LPDDR3)
		setbits_le32(&publ->pgcr, 1 << PGCR_DQSCFG_SHIFT);
	rank = sdram_params->ch[channel].rank | 1;
	for (j = 0; j < ARRAY_SIZE(step); j++) {
		/*
		 * trigger QSTRN and RVTRN
		 * clear DTDONE status
		 */
		setbits_le32(&publ->pir, PIR_CLRSR);

		/* trigger DTT */
		setbits_le32(&publ->pir,
			     PIR_INIT | step[j] | PIR_LOCKBYP | PIR_ZCALBYP |
			     PIR_CLRSR);
		udelay(1);
		/* wait echo byte DTDONE */
		while ((readl(&publ->datx8[0].dxgsr[0]) & rank)
			!= rank)
			;
		while ((readl(&publ->datx8[1].dxgsr[0]) & rank)
			!= rank)
			;
		if (!(readl(&pctl->ppcfg) & 1)) {
			while ((readl(&publ->datx8[2].dxgsr[0])
				& rank) != rank)
				;
			while ((readl(&publ->datx8[3].dxgsr[0])
				& rank) != rank)
				;
		}
		if (readl(&publ->pgsr) &
		    (PGSR_DTERR | PGSR_RVERR | PGSR_RVEIRR)) {
			ret = -1;
			break;
		}
	}
	/* send some auto refresh to complement the lost while DTT */
	for (i = 0; i < (rank > 1 ? 8 : 4); i++)
		send_command(pctl, rank, REF_CMD, 0);

	if (sdram_params->base.dramtype != LPDDR3)
		clrbits_le32(&publ->pgcr, 1 << PGCR_DQSCFG_SHIFT);

	/* resume auto refresh */
	writel(sdram_params->pctl_timing.trefi, &pctl->trefi);

	return ret;
}

static void move_to_access_state(const struct chan_info *chan)
{
	struct rk3288_ddr_publ *publ = chan->publ;
	struct rk3288_ddr_pctl *pctl = chan->pctl;
	unsigned int state;

	while (1) {
		state = readl(&pctl->stat) & PCTL_STAT_MSK;

		switch (state) {
		case LOW_POWER:
			if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) &
					LP_TRIG_MASK) == 1)
				return;

			writel(WAKEUP_STATE, &pctl->sctl);
			while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
				;
			/* wait DLL lock */
			while ((readl(&publ->pgsr) & PGSR_DLDONE)
				!= PGSR_DLDONE)
				;
			break;
		case INIT_MEM:
			writel(CFG_STATE, &pctl->sctl);
			while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
				;
			/* fallthrough */
		case CONFIG:
			writel(GO_STATE, &pctl->sctl);
			while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG)
				;
			break;
		case ACCESS:
			return;
		default:
			break;
		}
	}
}

static void dram_cfg_rbc(const struct chan_info *chan, u32 chnum,
			 struct rk3188_sdram_params *sdram_params)
{
	struct rk3288_ddr_publ *publ = chan->publ;

	if (sdram_params->ch[chnum].bk == 3)
		clrsetbits_le32(&publ->dcr, PDQ_MASK << PDQ_SHIFT,
				1 << PDQ_SHIFT);
	else
		clrbits_le32(&publ->dcr, PDQ_MASK << PDQ_SHIFT);

	writel(sdram_params->base.ddrconfig, &chan->msch->ddrconf);
}

static void dram_all_config(const struct dram_info *dram,
			    struct rk3188_sdram_params *sdram_params)
{
	unsigned int chan;
	u32 sys_reg = 0;

	sys_reg |= sdram_params->base.dramtype << SYS_REG_DDRTYPE_SHIFT;
	sys_reg |= (sdram_params->num_channels - 1) << SYS_REG_NUM_CH_SHIFT;
	for (chan = 0; chan < sdram_params->num_channels; chan++) {
		const struct rk3288_sdram_channel *info =
			&sdram_params->ch[chan];

		sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan);
		sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan);
		sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan);
		sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan);
		sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan);
		sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan);
		sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan);
		sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan);
		sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan);

		dram_cfg_rbc(&dram->chan[chan], chan, sdram_params);
	}
	if (sdram_params->ch[0].rank == 2)
		ddr_rank_2_row15en(dram->grf, 0);
	else
		ddr_rank_2_row15en(dram->grf, 1);

	writel(sys_reg, &dram->pmu->sys_reg[2]);
}

static int sdram_rank_bw_detect(struct dram_info *dram, int channel,
		struct rk3188_sdram_params *sdram_params)
{
	int reg;
	int need_trainig = 0;
	const struct chan_info *chan = &dram->chan[channel];
	struct rk3288_ddr_publ *publ = chan->publ;

	ddr_rank_2_row15en(dram->grf, 0);

	if (data_training(chan, channel, sdram_params) < 0) {
		printf("first data training fail!\n");
		reg = readl(&publ->datx8[0].dxgsr[0]);
		/* Check the result for rank 0 */
		if ((channel == 0) && (reg & DQS_GATE_TRAINING_ERROR_RANK0)) {
			printf("data training fail!\n");
			return -EIO;
		}

		/* Check the result for rank 1 */
		if (reg & DQS_GATE_TRAINING_ERROR_RANK1) {
			sdram_params->ch[channel].rank = 1;
			clrsetbits_le32(&publ->pgcr, 0xF << 18,
					sdram_params->ch[channel].rank << 18);
			need_trainig = 1;
		}
		reg = readl(&publ->datx8[2].dxgsr[0]);
		if (reg & (1 << 4)) {
			sdram_params->ch[channel].bw = 1;
			set_bandwidth_ratio(chan, channel,
					    sdram_params->ch[channel].bw,
					    dram->grf);
			need_trainig = 1;
		}
	}
	/* Assume the Die bit width are the same with the chip bit width */
	sdram_params->ch[channel].dbw = sdram_params->ch[channel].bw;

	if (need_trainig &&
	    (data_training(chan, channel, sdram_params) < 0)) {
		if (sdram_params->base.dramtype == LPDDR3) {
			ddr_phy_ctl_reset(dram->cru, channel, 1);
			udelay(10);
			ddr_phy_ctl_reset(dram->cru, channel, 0);
			udelay(10);
		}
		printf("2nd data training failed!");
		return -EIO;
	}

	return 0;
}

/*
 * Detect ram columns and rows.
 * @dram: dram info struct
 * @channel: channel number to handle
 * @sdram_params: sdram parameters, function will fill in col and row values
 *
 * Returns 0 or negative on error.
 */
static int sdram_col_row_detect(struct dram_info *dram, int channel,
		struct rk3188_sdram_params *sdram_params)
{
	int row, col;
	unsigned int addr;
	const struct chan_info *chan = &dram->chan[channel];
	struct rk3288_ddr_pctl *pctl = chan->pctl;
	struct rk3288_ddr_publ *publ = chan->publ;
	int ret = 0;

	/* Detect col */
	for (col = 11; col >= 9; col--) {
		writel(0, CONFIG_SYS_SDRAM_BASE);
		addr = CONFIG_SYS_SDRAM_BASE +
			(1 << (col + sdram_params->ch[channel].bw - 1));
		writel(TEST_PATTEN, addr);
		if ((readl(addr) == TEST_PATTEN) &&
		    (readl(CONFIG_SYS_SDRAM_BASE) == 0))
			break;
	}
	if (col == 8) {
		printf("Col detect error\n");
		ret = -EINVAL;
		goto out;
	} else {
		sdram_params->ch[channel].col = col;
	}

	ddr_rank_2_row15en(dram->grf, 1);
	move_to_config_state(publ, pctl);
	writel(1, &chan->msch->ddrconf);
	move_to_access_state(chan);
	/* Detect row, max 15,min13 in rk3188*/
	for (row = 16; row >= 13; row--) {
		writel(0, CONFIG_SYS_SDRAM_BASE);
		addr = CONFIG_SYS_SDRAM_BASE + (1 << (row + 15 - 1));
		writel(TEST_PATTEN, addr);
		if ((readl(addr) == TEST_PATTEN) &&
		    (readl(CONFIG_SYS_SDRAM_BASE) == 0))
			break;
	}
	if (row == 12) {
		printf("Row detect error\n");
		ret = -EINVAL;
	} else {
		sdram_params->ch[channel].cs1_row = row;
		sdram_params->ch[channel].row_3_4 = 0;
		debug("chn %d col %d, row %d\n", channel, col, row);
		sdram_params->ch[channel].cs0_row = row;
	}

out:
	return ret;
}

static int sdram_get_niu_config(struct rk3188_sdram_params *sdram_params)
{
	int i, tmp, size, ret = 0;

	tmp = sdram_params->ch[0].col - 9;
	tmp -= (sdram_params->ch[0].bw == 2) ? 0 : 1;
	tmp |= ((sdram_params->ch[0].cs0_row - 13) << 4);
	size = sizeof(ddrconf_table)/sizeof(ddrconf_table[0]);
	for (i = 0; i < size; i++)
		if (tmp == ddrconf_table[i])
			break;
	if (i >= size) {
		printf("niu config not found\n");
		ret = -EINVAL;
	} else {
		debug("niu config %d\n", i);
		sdram_params->base.ddrconfig = i;
	}

	return ret;
}

static int sdram_init(struct dram_info *dram,
		      struct rk3188_sdram_params *sdram_params)
{
	int channel;
	int zqcr;
	int ret;

	if ((sdram_params->base.dramtype == DDR3 &&
	     sdram_params->base.ddr_freq > 800000000)) {
		printf("SDRAM frequency is too high!");
		return -E2BIG;
	}

	ret = clk_set_rate(&dram->ddr_clk, sdram_params->base.ddr_freq);
	if (ret) {
		printf("Could not set DDR clock\n");
		return ret;
	}

	for (channel = 0; channel < 1; channel++) {
		const struct chan_info *chan = &dram->chan[channel];
		struct rk3288_ddr_pctl *pctl = chan->pctl;
		struct rk3288_ddr_publ *publ = chan->publ;

		phy_pctrl_reset(dram->cru, publ, channel);
		phy_dll_bypass_set(publ, sdram_params->base.ddr_freq);

		dfi_cfg(pctl, sdram_params->base.dramtype);

		pctl_cfg(channel, pctl, sdram_params, dram->grf);

		phy_cfg(chan, channel, sdram_params);

		phy_init(publ);

		writel(POWER_UP_START, &pctl->powctl);
		while (!(readl(&pctl->powstat) & POWER_UP_DONE))
			;

		memory_init(publ, sdram_params->base.dramtype);
		move_to_config_state(publ, pctl);

		/* Using 32bit bus width for detect */
		sdram_params->ch[channel].bw = 2;
		set_bandwidth_ratio(chan, channel,
				    sdram_params->ch[channel].bw, dram->grf);
		/*
		 * set cs, using n=3 for detect
		 * CS0, n=1
		 * CS1, n=2
		 * CS0 & CS1, n = 3
		 */
		sdram_params->ch[channel].rank = 2,
		clrsetbits_le32(&publ->pgcr, 0xF << 18,
				(sdram_params->ch[channel].rank | 1) << 18);

		/* DS=40ohm,ODT=155ohm */
		zqcr = 1 << ZDEN_SHIFT | 2 << PU_ONDIE_SHIFT |
			2 << PD_ONDIE_SHIFT | 0x19 << PU_OUTPUT_SHIFT |
			0x19 << PD_OUTPUT_SHIFT;
		writel(zqcr, &publ->zq1cr[0]);
		writel(zqcr, &publ->zq0cr[0]);

		/* Detect the rank and bit-width with data-training */
		writel(1, &chan->msch->ddrconf);
		sdram_rank_bw_detect(dram, channel, sdram_params);

		if (sdram_params->base.dramtype == LPDDR3) {
			u32 i;
			writel(0, &pctl->mrrcfg0);
			for (i = 0; i < 17; i++)
				send_command_op(pctl, 1, MRR_CMD, i, 0);
		}
		writel(4, &chan->msch->ddrconf);
		move_to_access_state(chan);
		/* DDR3 and LPDDR3 are always 8 bank, no need detect */
		sdram_params->ch[channel].bk = 3;
		/* Detect Col and Row number*/
		ret = sdram_col_row_detect(dram, channel, sdram_params);
		if (ret)
			goto error;
	}
	/* Find NIU DDR configuration */
	ret = sdram_get_niu_config(sdram_params);
	if (ret)
		goto error;

	dram_all_config(dram, sdram_params);
	debug("%s done\n", __func__);

	return 0;
error:
	printf("DRAM init failed!\n");
	hang();
}
#endif /* CONFIG_SPL_BUILD */

size_t sdram_size_mb(struct rk3188_pmu *pmu)
{
	u32 rank, col, bk, cs0_row, cs1_row, bw, row_3_4;
	size_t chipsize_mb = 0;
	size_t size_mb = 0;
	u32 ch;
	u32 sys_reg = readl(&pmu->sys_reg[2]);
	u32 chans;

	chans = 1 + ((sys_reg >> SYS_REG_NUM_CH_SHIFT) & SYS_REG_NUM_CH_MASK);

	for (ch = 0; ch < chans; ch++) {
		rank = 1 + (sys_reg >> SYS_REG_RANK_SHIFT(ch) &
			SYS_REG_RANK_MASK);
		col = 9 + (sys_reg >> SYS_REG_COL_SHIFT(ch) & SYS_REG_COL_MASK);
		bk = 3 - ((sys_reg >> SYS_REG_BK_SHIFT(ch)) & SYS_REG_BK_MASK);
		cs0_row = 13 + (sys_reg >> SYS_REG_CS0_ROW_SHIFT(ch) &
				SYS_REG_CS0_ROW_MASK);
		cs1_row = 13 + (sys_reg >> SYS_REG_CS1_ROW_SHIFT(ch) &
				SYS_REG_CS1_ROW_MASK);
		bw = (2 >> ((sys_reg >> SYS_REG_BW_SHIFT(ch)) &
			SYS_REG_BW_MASK));
		row_3_4 = sys_reg >> SYS_REG_ROW_3_4_SHIFT(ch) &
			SYS_REG_ROW_3_4_MASK;
		chipsize_mb = (1 << (cs0_row + col + bk + bw - 20));

		if (rank > 1)
			chipsize_mb += chipsize_mb >>
				(cs0_row - cs1_row);
		if (row_3_4)
			chipsize_mb = chipsize_mb * 3 / 4;
		size_mb += chipsize_mb;
	}

	/* there can be no more than 2gb of memory */
	size_mb = min(size_mb, 0x80000000 >> 20);

	return size_mb;
}

#ifdef CONFIG_SPL_BUILD
static int setup_sdram(struct udevice *dev)
{
	struct dram_info *priv = dev_get_priv(dev);
	struct rk3188_sdram_params *params = dev_get_platdata(dev);

	return sdram_init(priv, params);
}

static int rk3188_dmc_ofdata_to_platdata(struct udevice *dev)
{
#if !CONFIG_IS_ENABLED(OF_PLATDATA)
	struct rk3188_sdram_params *params = dev_get_platdata(dev);
	const void *blob = gd->fdt_blob;
	int node = dev->of_offset;
	int ret;

	/* rk3188 supports only one-channel */
	params->num_channels = 1;
	ret = fdtdec_get_int_array(blob, node, "rockchip,pctl-timing",
				   (u32 *)&params->pctl_timing,
				   sizeof(params->pctl_timing) / sizeof(u32));
	if (ret) {
		printf("%s: Cannot read rockchip,pctl-timing\n", __func__);
		return -EINVAL;
	}
	ret = fdtdec_get_int_array(blob, node, "rockchip,phy-timing",
				   (u32 *)&params->phy_timing,
				   sizeof(params->phy_timing) / sizeof(u32));
	if (ret) {
		printf("%s: Cannot read rockchip,phy-timing\n", __func__);
		return -EINVAL;
	}
	ret = fdtdec_get_int_array(blob, node, "rockchip,sdram-params",
				   (u32 *)&params->base,
				   sizeof(params->base) / sizeof(u32));
	if (ret) {
		printf("%s: Cannot read rockchip,sdram-params\n", __func__);
		return -EINVAL;
	}
	ret = regmap_init_mem(dev, &params->map);
	if (ret)
		return ret;
#endif

	return 0;
}
#endif /* CONFIG_SPL_BUILD */

#if CONFIG_IS_ENABLED(OF_PLATDATA)
static int conv_of_platdata(struct udevice *dev)
{
	struct rk3188_sdram_params *plat = dev_get_platdata(dev);
	struct dtd_rockchip_rk3188_dmc *of_plat = &plat->of_plat;
	int ret;

	memcpy(&plat->pctl_timing, of_plat->rockchip_pctl_timing,
	       sizeof(plat->pctl_timing));
	memcpy(&plat->phy_timing, of_plat->rockchip_phy_timing,
	       sizeof(plat->phy_timing));
	memcpy(&plat->base, of_plat->rockchip_sdram_params, sizeof(plat->base));
	/* rk3188 supports dual-channel, set default channel num to 2 */
	plat->num_channels = 1;
	ret = regmap_init_mem_platdata(dev, of_plat->reg,
				       ARRAY_SIZE(of_plat->reg) / 2,
				       &plat->map);
	if (ret)
		return ret;

	return 0;
}
#endif

static int rk3188_dmc_probe(struct udevice *dev)
{
#ifdef CONFIG_SPL_BUILD
	struct rk3188_sdram_params *plat = dev_get_platdata(dev);
#endif
	struct dram_info *priv = dev_get_priv(dev);
	struct regmap *map;
	int ret;
	struct udevice *dev_clk;

#if CONFIG_IS_ENABLED(OF_PLATDATA)
	ret = conv_of_platdata(dev);
	if (ret)
		return ret;
#endif
	map = syscon_get_regmap_by_driver_data(ROCKCHIP_SYSCON_NOC);
	if (IS_ERR(map))
		return PTR_ERR(map);
	priv->chan[0].msch = regmap_get_range(map, 0);

	priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
	priv->pmu = syscon_get_first_range(ROCKCHIP_SYSCON_PMU);

#ifdef CONFIG_SPL_BUILD
	priv->chan[0].pctl = regmap_get_range(plat->map, 0);
	priv->chan[0].publ = regmap_get_range(plat->map, 1);
#endif

	ret = rockchip_get_clk(&dev_clk);
	if (ret)
		return ret;
	priv->ddr_clk.id = CLK_DDR;
	ret = clk_request(dev_clk, &priv->ddr_clk);
	if (ret)
		return ret;

	priv->cru = rockchip_get_cru();
	if (IS_ERR(priv->cru))
		return PTR_ERR(priv->cru);
#ifdef CONFIG_SPL_BUILD
	ret = setup_sdram(dev);
	if (ret)
		return ret;
#endif
	priv->info.base = 0;
	priv->info.size = sdram_size_mb(priv->pmu) << 20;

	return 0;
}

static int rk3188_dmc_get_info(struct udevice *dev, struct ram_info *info)
{
	struct dram_info *priv = dev_get_priv(dev);

	*info = priv->info;

	return 0;
}

static struct ram_ops rk3188_dmc_ops = {
	.get_info = rk3188_dmc_get_info,
};

static const struct udevice_id rk3188_dmc_ids[] = {
	{ .compatible = "rockchip,rk3188-dmc" },
	{ }
};

U_BOOT_DRIVER(dmc_rk3188) = {
	.name = "rockchip_rk3188_dmc",
	.id = UCLASS_RAM,
	.of_match = rk3188_dmc_ids,
	.ops = &rk3188_dmc_ops,
#ifdef CONFIG_SPL_BUILD
	.ofdata_to_platdata = rk3188_dmc_ofdata_to_platdata,
#endif
	.probe = rk3188_dmc_probe,
	.priv_auto_alloc_size = sizeof(struct dram_info),
#ifdef CONFIG_SPL_BUILD
	.platdata_auto_alloc_size = sizeof(struct rk3188_sdram_params),
#endif
};