summaryrefslogtreecommitdiff
path: root/arch/arm/mach-socfpga/clock_manager_arria10.c
blob: 334a79fd9c0f6daf7c0961e0c5e63af13237bd87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2016-2017 Intel Corporation
 */

#include <common.h>
#include <fdtdec.h>
#include <asm/io.h>
#include <dm.h>
#include <clk.h>
#include <dm/device-internal.h>
#include <asm/arch/clock_manager.h>

#ifdef CONFIG_SPL_BUILD

static u32 eosc1_hz;
static u32 cb_intosc_hz;
static u32 f2s_free_hz;

struct mainpll_cfg {
	u32 vco0_psrc;
	u32 vco1_denom;
	u32 vco1_numer;
	u32 mpuclk;
	u32 mpuclk_cnt;
	u32 mpuclk_src;
	u32 nocclk;
	u32 nocclk_cnt;
	u32 nocclk_src;
	u32 cntr2clk_cnt;
	u32 cntr3clk_cnt;
	u32 cntr4clk_cnt;
	u32 cntr5clk_cnt;
	u32 cntr6clk_cnt;
	u32 cntr7clk_cnt;
	u32 cntr7clk_src;
	u32 cntr8clk_cnt;
	u32 cntr9clk_cnt;
	u32 cntr9clk_src;
	u32 cntr15clk_cnt;
	u32 nocdiv_l4mainclk;
	u32 nocdiv_l4mpclk;
	u32 nocdiv_l4spclk;
	u32 nocdiv_csatclk;
	u32 nocdiv_cstraceclk;
	u32 nocdiv_cspdbclk;
};

struct perpll_cfg {
	u32 vco0_psrc;
	u32 vco1_denom;
	u32 vco1_numer;
	u32 cntr2clk_cnt;
	u32 cntr2clk_src;
	u32 cntr3clk_cnt;
	u32 cntr3clk_src;
	u32 cntr4clk_cnt;
	u32 cntr4clk_src;
	u32 cntr5clk_cnt;
	u32 cntr5clk_src;
	u32 cntr6clk_cnt;
	u32 cntr6clk_src;
	u32 cntr7clk_cnt;
	u32 cntr8clk_cnt;
	u32 cntr8clk_src;
	u32 cntr9clk_cnt;
	u32 cntr9clk_src;
	u32 emacctl_emac0sel;
	u32 emacctl_emac1sel;
	u32 emacctl_emac2sel;
	u32 gpiodiv_gpiodbclk;
};

struct strtou32 {
	const char *str;
	const u32 val;
};

static const struct strtou32 mainpll_cfg_tab[] = {
	{ "vco0-psrc", offsetof(struct mainpll_cfg, vco0_psrc) },
	{ "vco1-denom", offsetof(struct mainpll_cfg, vco1_denom) },
	{ "vco1-numer", offsetof(struct mainpll_cfg, vco1_numer) },
	{ "mpuclk-cnt", offsetof(struct mainpll_cfg, mpuclk_cnt) },
	{ "mpuclk-src", offsetof(struct mainpll_cfg, mpuclk_src) },
	{ "nocclk-cnt", offsetof(struct mainpll_cfg, nocclk_cnt) },
	{ "nocclk-src", offsetof(struct mainpll_cfg, nocclk_src) },
	{ "cntr2clk-cnt", offsetof(struct mainpll_cfg, cntr2clk_cnt) },
	{ "cntr3clk-cnt", offsetof(struct mainpll_cfg, cntr3clk_cnt) },
	{ "cntr4clk-cnt", offsetof(struct mainpll_cfg, cntr4clk_cnt) },
	{ "cntr5clk-cnt", offsetof(struct mainpll_cfg, cntr5clk_cnt) },
	{ "cntr6clk-cnt", offsetof(struct mainpll_cfg, cntr6clk_cnt) },
	{ "cntr7clk-cnt", offsetof(struct mainpll_cfg, cntr7clk_cnt) },
	{ "cntr7clk-src", offsetof(struct mainpll_cfg, cntr7clk_src) },
	{ "cntr8clk-cnt", offsetof(struct mainpll_cfg, cntr8clk_cnt) },
	{ "cntr9clk-cnt", offsetof(struct mainpll_cfg, cntr9clk_cnt) },
	{ "cntr9clk-src", offsetof(struct mainpll_cfg, cntr9clk_src) },
	{ "cntr15clk-cnt", offsetof(struct mainpll_cfg, cntr15clk_cnt) },
	{ "nocdiv-l4mainclk", offsetof(struct mainpll_cfg, nocdiv_l4mainclk) },
	{ "nocdiv-l4mpclk", offsetof(struct mainpll_cfg, nocdiv_l4mpclk) },
	{ "nocdiv-l4spclk", offsetof(struct mainpll_cfg, nocdiv_l4spclk) },
	{ "nocdiv-csatclk", offsetof(struct mainpll_cfg, nocdiv_csatclk) },
	{ "nocdiv-cstraceclk", offsetof(struct mainpll_cfg, nocdiv_cstraceclk) },
	{ "nocdiv-cspdbgclk", offsetof(struct mainpll_cfg, nocdiv_cspdbclk) },
};

static const struct strtou32 perpll_cfg_tab[] = {
	{ "vco0-psrc", offsetof(struct perpll_cfg, vco0_psrc) },
	{ "vco1-denom", offsetof(struct perpll_cfg, vco1_denom) },
	{ "vco1-numer", offsetof(struct perpll_cfg, vco1_numer) },
	{ "cntr2clk-cnt", offsetof(struct perpll_cfg, cntr2clk_cnt) },
	{ "cntr2clk-src", offsetof(struct perpll_cfg, cntr2clk_src) },
	{ "cntr3clk-cnt", offsetof(struct perpll_cfg, cntr3clk_cnt) },
	{ "cntr3clk-src", offsetof(struct perpll_cfg, cntr3clk_src) },
	{ "cntr4clk-cnt", offsetof(struct perpll_cfg, cntr4clk_cnt) },
	{ "cntr4clk-src", offsetof(struct perpll_cfg, cntr4clk_src) },
	{ "cntr5clk-cnt", offsetof(struct perpll_cfg, cntr5clk_cnt) },
	{ "cntr5clk-src", offsetof(struct perpll_cfg, cntr5clk_src) },
	{ "cntr6clk-cnt", offsetof(struct perpll_cfg, cntr6clk_cnt) },
	{ "cntr6clk-src", offsetof(struct perpll_cfg, cntr6clk_src) },
	{ "cntr7clk-cnt", offsetof(struct perpll_cfg, cntr7clk_cnt) },
	{ "cntr8clk-cnt", offsetof(struct perpll_cfg, cntr8clk_cnt) },
	{ "cntr8clk-src", offsetof(struct perpll_cfg, cntr8clk_src) },
	{ "cntr9clk-cnt", offsetof(struct perpll_cfg, cntr9clk_cnt) },
	{ "emacctl-emac0sel", offsetof(struct perpll_cfg, emacctl_emac0sel) },
	{ "emacctl-emac1sel", offsetof(struct perpll_cfg, emacctl_emac1sel) },
	{ "emacctl-emac2sel", offsetof(struct perpll_cfg, emacctl_emac2sel) },
	{ "gpiodiv-gpiodbclk", offsetof(struct perpll_cfg, gpiodiv_gpiodbclk) },
};

static const struct strtou32 alteragrp_cfg_tab[] = {
	{ "nocclk", offsetof(struct mainpll_cfg, nocclk) },
	{ "mpuclk", offsetof(struct mainpll_cfg, mpuclk) },
};

struct strtopu32 {
	const char *str;
	u32 *p;
};

const struct strtopu32 dt_to_val[] = {
	{ "altera_arria10_hps_eosc1", &eosc1_hz },
	{ "altera_arria10_hps_cb_intosc_ls", &cb_intosc_hz },
	{ "altera_arria10_hps_f2h_free", &f2s_free_hz },
};

static int of_to_struct(const void *blob, int node, const struct strtou32 *cfg_tab,
			int cfg_tab_len, void *cfg)
{
	int i;
	u32 val;

	for (i = 0; i < cfg_tab_len; i++) {
		if (fdtdec_get_int_array(blob, node, cfg_tab[i].str, &val, 1)) {
			/* could not find required property */
			return -EINVAL;
		}
		*(u32 *)(cfg + cfg_tab[i].val) = val;
	}

	return 0;
}

static int of_get_input_clks(const void *blob)
{
	struct udevice *dev;
	struct clk clk;
	int i, ret;

	for (i = 0; i < ARRAY_SIZE(dt_to_val); i++) {
		memset(&clk, 0, sizeof(clk));

		ret = uclass_get_device_by_name(UCLASS_CLK, dt_to_val[i].str,
						&dev);
		if (ret)
			return ret;

		ret = clk_request(dev, &clk);
		if (ret)
			return ret;

		*dt_to_val[i].p = clk_get_rate(&clk);
	}

	return 0;
}

static int of_get_clk_cfg(const void *blob, struct mainpll_cfg *main_cfg,
			  struct perpll_cfg *per_cfg)
{
	int ret, node, child, len;
	const char *node_name;

	ret = of_get_input_clks(blob);
	if (ret)
		return ret;

	node = fdtdec_next_compatible(blob, 0, COMPAT_ALTERA_SOCFPGA_CLK_INIT);

	if (node < 0)
		return -EINVAL;

	child = fdt_first_subnode(blob, node);

	if (child < 0)
		return -EINVAL;

	node_name = fdt_get_name(blob, child, &len);

	while (node_name) {
		if (!strcmp(node_name, "mainpll")) {
			if (of_to_struct(blob, child, mainpll_cfg_tab,
					 ARRAY_SIZE(mainpll_cfg_tab), main_cfg))
				return -EINVAL;
		} else if (!strcmp(node_name, "perpll")) {
			if (of_to_struct(blob, child, perpll_cfg_tab,
					 ARRAY_SIZE(perpll_cfg_tab), per_cfg))
				return -EINVAL;
		} else if (!strcmp(node_name, "alteragrp")) {
			if (of_to_struct(blob, child, alteragrp_cfg_tab,
					 ARRAY_SIZE(alteragrp_cfg_tab), main_cfg))
				return -EINVAL;
		}
		child = fdt_next_subnode(blob, child);

		if (child < 0)
			break;

		node_name = fdt_get_name(blob, child, &len);
	}

	return 0;
}

static const struct socfpga_clock_manager *clock_manager_base =
	(struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS;

/* calculate the intended main VCO frequency based on handoff */
static unsigned int cm_calc_handoff_main_vco_clk_hz
					(struct mainpll_cfg *main_cfg)
{
	unsigned int clk_hz;

	/* Check main VCO clock source: eosc, intosc or f2s? */
	switch (main_cfg->vco0_psrc) {
	case CLKMGR_MAINPLL_VCO0_PSRC_EOSC:
		clk_hz = eosc1_hz;
		break;
	case CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC:
		clk_hz = cb_intosc_hz;
		break;
	case CLKMGR_MAINPLL_VCO0_PSRC_F2S:
		clk_hz = f2s_free_hz;
		break;
	default:
		return 0;
	}

	/* calculate the VCO frequency */
	clk_hz /= 1 + main_cfg->vco1_denom;
	clk_hz *= 1 + main_cfg->vco1_numer;

	return clk_hz;
}

/* calculate the intended periph VCO frequency based on handoff */
static unsigned int cm_calc_handoff_periph_vco_clk_hz(
		struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg)
{
	unsigned int clk_hz;

	/* Check periph VCO clock source: eosc, intosc, f2s or mainpll? */
	switch (per_cfg->vco0_psrc) {
	case CLKMGR_PERPLL_VCO0_PSRC_EOSC:
		clk_hz = eosc1_hz;
		break;
	case CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC:
		clk_hz = cb_intosc_hz;
		break;
	case CLKMGR_PERPLL_VCO0_PSRC_F2S:
		clk_hz = f2s_free_hz;
		break;
	case CLKMGR_PERPLL_VCO0_PSRC_MAIN:
		clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
		clk_hz /= main_cfg->cntr15clk_cnt;
		break;
	default:
		return 0;
	}

	/* calculate the VCO frequency */
	clk_hz /= 1 + per_cfg->vco1_denom;
	clk_hz *= 1 + per_cfg->vco1_numer;

	return clk_hz;
}

/* calculate the intended MPU clock frequency based on handoff */
static unsigned int cm_calc_handoff_mpu_clk_hz(struct mainpll_cfg *main_cfg,
					       struct perpll_cfg *per_cfg)
{
	unsigned int clk_hz;

	/* Check MPU clock source: main, periph, osc1, intosc or f2s? */
	switch (main_cfg->mpuclk_src) {
	case CLKMGR_MAINPLL_MPUCLK_SRC_MAIN:
		clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
		clk_hz /= (main_cfg->mpuclk & CLKMGR_MAINPLL_MPUCLK_CNT_MSK)
			   + 1;
		break;
	case CLKMGR_MAINPLL_MPUCLK_SRC_PERI:
		clk_hz = cm_calc_handoff_periph_vco_clk_hz(main_cfg, per_cfg);
		clk_hz /= ((main_cfg->mpuclk >>
			   CLKMGR_MAINPLL_MPUCLK_PERICNT_LSB) &
			   CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1;
		break;
	case CLKMGR_MAINPLL_MPUCLK_SRC_OSC1:
		clk_hz = eosc1_hz;
		break;
	case CLKMGR_MAINPLL_MPUCLK_SRC_INTOSC:
		clk_hz = cb_intosc_hz;
		break;
	case CLKMGR_MAINPLL_MPUCLK_SRC_FPGA:
		clk_hz = f2s_free_hz;
		break;
	default:
		return 0;
	}

	clk_hz /= main_cfg->mpuclk_cnt + 1;
	return clk_hz;
}

/* calculate the intended NOC clock frequency based on handoff */
static unsigned int cm_calc_handoff_noc_clk_hz(struct mainpll_cfg *main_cfg,
					       struct perpll_cfg *per_cfg)
{
	unsigned int clk_hz;

	/* Check MPU clock source: main, periph, osc1, intosc or f2s? */
	switch (main_cfg->nocclk_src) {
	case CLKMGR_MAINPLL_NOCCLK_SRC_MAIN:
		clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
		clk_hz /= (main_cfg->nocclk & CLKMGR_MAINPLL_NOCCLK_CNT_MSK)
			 + 1;
		break;
	case CLKMGR_MAINPLL_NOCCLK_SRC_PERI:
		clk_hz = cm_calc_handoff_periph_vco_clk_hz(main_cfg, per_cfg);
		clk_hz /= ((main_cfg->nocclk >>
			   CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB) &
			   CLKMGR_MAINPLL_NOCCLK_CNT_MSK) + 1;
		break;
	case CLKMGR_MAINPLL_NOCCLK_SRC_OSC1:
		clk_hz = eosc1_hz;
		break;
	case CLKMGR_MAINPLL_NOCCLK_SRC_INTOSC:
		clk_hz = cb_intosc_hz;
		break;
	case CLKMGR_MAINPLL_NOCCLK_SRC_FPGA:
		clk_hz = f2s_free_hz;
		break;
	default:
		return 0;
	}

	clk_hz /= main_cfg->nocclk_cnt + 1;
	return clk_hz;
}

/* return 1 if PLL ramp is required */
static int cm_is_pll_ramp_required(int main0periph1,
				   struct mainpll_cfg *main_cfg,
				   struct perpll_cfg *per_cfg)
{
	/* Check for main PLL */
	if (main0periph1 == 0) {
		/*
		 * PLL ramp is not required if both MPU clock and NOC clock are
		 * not sourced from main PLL
		 */
		if (main_cfg->mpuclk_src != CLKMGR_MAINPLL_MPUCLK_SRC_MAIN &&
		    main_cfg->nocclk_src != CLKMGR_MAINPLL_NOCCLK_SRC_MAIN)
			return 0;

		/*
		 * PLL ramp is required if MPU clock is sourced from main PLL
		 * and MPU clock is over 900MHz (as advised by HW team)
		 */
		if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN &&
		    (cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg) >
		     CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ))
			return 1;

		/*
		 * PLL ramp is required if NOC clock is sourced from main PLL
		 * and NOC clock is over 300MHz (as advised by HW team)
		 */
		if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN &&
		    (cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg) >
		     CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ))
			return 2;

	} else if (main0periph1 == 1) {
		/*
		 * PLL ramp is not required if both MPU clock and NOC clock are
		 * not sourced from periph PLL
		 */
		if (main_cfg->mpuclk_src != CLKMGR_MAINPLL_MPUCLK_SRC_PERI &&
		    main_cfg->nocclk_src != CLKMGR_MAINPLL_NOCCLK_SRC_PERI)
			return 0;

		/*
		 * PLL ramp is required if MPU clock are source from periph PLL
		 * and MPU clock is over 900MHz (as advised by HW team)
		 */
		if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI &&
		    (cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg) >
		     CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ))
			return 1;

		/*
		 * PLL ramp is required if NOC clock are source from periph PLL
		 * and NOC clock is over 300MHz (as advised by HW team)
		 */
		if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI &&
		    (cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg) >
		     CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ))
			return 2;
	}

	return 0;
}

static u32 cm_calculate_numer(struct mainpll_cfg *main_cfg,
			      struct perpll_cfg *per_cfg,
			      u32 safe_hz, u32 clk_hz)
{
	u32 cnt;
	u32 clk;
	u32 shift;
	u32 mask;
	u32 denom;

	if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN) {
		cnt = main_cfg->mpuclk_cnt;
		clk = main_cfg->mpuclk;
		shift = 0;
		mask = CLKMGR_MAINPLL_MPUCLK_CNT_MSK;
		denom = main_cfg->vco1_denom;
	} else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN) {
		cnt = main_cfg->nocclk_cnt;
		clk = main_cfg->nocclk;
		shift = 0;
		mask = CLKMGR_MAINPLL_NOCCLK_CNT_MSK;
		denom = main_cfg->vco1_denom;
	} else if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI) {
		cnt = main_cfg->mpuclk_cnt;
		clk = main_cfg->mpuclk;
		shift = CLKMGR_MAINPLL_MPUCLK_PERICNT_LSB;
		mask = CLKMGR_MAINPLL_MPUCLK_CNT_MSK;
		denom = per_cfg->vco1_denom;
	} else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI) {
		cnt = main_cfg->nocclk_cnt;
		clk = main_cfg->nocclk;
		shift = CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB;
		mask = CLKMGR_MAINPLL_NOCCLK_CNT_MSK;
		denom = per_cfg->vco1_denom;
	} else {
		return 0;
	}

	return (safe_hz / clk_hz) * (cnt + 1) * (((clk >> shift) & mask) + 1) *
		(1 + denom) - 1;
}

/*
 * Calculate the new PLL numerator which is based on existing DTS hand off and
 * intended safe frequency (safe_hz). Note that PLL ramp is only modifying the
 * numerator while maintaining denominator as denominator will influence the
 * jitter condition. Please refer A10 HPS TRM for the jitter guide. Note final
 * value for numerator is minus with 1 to cater our register value
 * representation.
 */
static unsigned int cm_calc_safe_pll_numer(int main0periph1,
					   struct mainpll_cfg *main_cfg,
					   struct perpll_cfg *per_cfg,
					   unsigned int safe_hz)
{
	unsigned int clk_hz = 0;

	/* Check for main PLL */
	if (main0periph1 == 0) {
		/* Check main VCO clock source: eosc, intosc or f2s? */
		switch (main_cfg->vco0_psrc) {
		case CLKMGR_MAINPLL_VCO0_PSRC_EOSC:
			clk_hz = eosc1_hz;
			break;
		case CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC:
			clk_hz = cb_intosc_hz;
			break;
		case CLKMGR_MAINPLL_VCO0_PSRC_F2S:
			clk_hz = f2s_free_hz;
			break;
		default:
			return 0;
		}
	} else if (main0periph1 == 1) {
		/* Check periph VCO clock source: eosc, intosc, f2s, mainpll */
		switch (per_cfg->vco0_psrc) {
		case CLKMGR_PERPLL_VCO0_PSRC_EOSC:
			clk_hz = eosc1_hz;
			break;
		case CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC:
			clk_hz = cb_intosc_hz;
			break;
		case CLKMGR_PERPLL_VCO0_PSRC_F2S:
			clk_hz = f2s_free_hz;
			break;
		case CLKMGR_PERPLL_VCO0_PSRC_MAIN:
			clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
			clk_hz /= main_cfg->cntr15clk_cnt;
			break;
		default:
			return 0;
		}
	} else {
		return 0;
	}

	return cm_calculate_numer(main_cfg, per_cfg, safe_hz, clk_hz);
}

/* ramping the main PLL to final value */
static void cm_pll_ramp_main(struct mainpll_cfg *main_cfg,
			     struct perpll_cfg *per_cfg,
			     unsigned int pll_ramp_main_hz)
{
	unsigned int clk_hz = 0, clk_incr_hz = 0, clk_final_hz = 0;

	/* find out the increment value */
	if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN) {
		clk_incr_hz = CLKMGR_PLL_RAMP_MPUCLK_INCREMENT_HZ;
		clk_final_hz = cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg);
	} else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN) {
		clk_incr_hz = CLKMGR_PLL_RAMP_NOCCLK_INCREMENT_HZ;
		clk_final_hz = cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg);
	}

	/* execute the ramping here */
	for (clk_hz = pll_ramp_main_hz + clk_incr_hz;
	     clk_hz < clk_final_hz; clk_hz += clk_incr_hz) {
		writel((main_cfg->vco1_denom <<
			CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
			cm_calc_safe_pll_numer(0, main_cfg, per_cfg, clk_hz),
			&clock_manager_base->main_pll.vco1);
		mdelay(1);
		cm_wait_for_lock(LOCKED_MASK);
	}
	writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
		main_cfg->vco1_numer, &clock_manager_base->main_pll.vco1);
	mdelay(1);
	cm_wait_for_lock(LOCKED_MASK);
}

/* ramping the periph PLL to final value */
static void cm_pll_ramp_periph(struct mainpll_cfg *main_cfg,
			       struct perpll_cfg *per_cfg,
			       unsigned int pll_ramp_periph_hz)
{
	unsigned int clk_hz = 0, clk_incr_hz = 0, clk_final_hz = 0;

	/* find out the increment value */
	if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI) {
		clk_incr_hz = CLKMGR_PLL_RAMP_MPUCLK_INCREMENT_HZ;
		clk_final_hz = cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg);
	} else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI) {
		clk_incr_hz = CLKMGR_PLL_RAMP_NOCCLK_INCREMENT_HZ;
		clk_final_hz = cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg);
	}
	/* execute the ramping here */
	for (clk_hz = pll_ramp_periph_hz + clk_incr_hz;
	     clk_hz < clk_final_hz; clk_hz += clk_incr_hz) {
		writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
			cm_calc_safe_pll_numer(1, main_cfg, per_cfg, clk_hz),
			&clock_manager_base->per_pll.vco1);
		mdelay(1);
		cm_wait_for_lock(LOCKED_MASK);
	}
	writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
		per_cfg->vco1_numer, &clock_manager_base->per_pll.vco1);
	mdelay(1);
	cm_wait_for_lock(LOCKED_MASK);
}

/*
 * Setup clocks while making no assumptions of the
 * previous state of the clocks.
 *
 * Start by being paranoid and gate all sw managed clocks
 *
 * Put all plls in bypass
 *
 * Put all plls VCO registers back to reset value (bgpwr dwn).
 *
 * Put peripheral and main pll src to reset value to avoid glitch.
 *
 * Delay 5 us.
 *
 * Deassert bg pwr dn and set numerator and denominator
 *
 * Start 7 us timer.
 *
 * set internal dividers
 *
 * Wait for 7 us timer.
 *
 * Enable plls
 *
 * Set external dividers while plls are locking
 *
 * Wait for pll lock
 *
 * Assert/deassert outreset all.
 *
 * Take all pll's out of bypass
 *
 * Clear safe mode
 *
 * set source main and peripheral clocks
 *
 * Ungate clocks
 */

static int cm_full_cfg(struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg)
{
	unsigned int pll_ramp_main_hz = 0, pll_ramp_periph_hz = 0,
		ramp_required;

	/* gate off all mainpll clock excpet HW managed clock */
	writel(CLKMGR_MAINPLL_EN_S2FUSER0CLKEN_SET_MSK |
		CLKMGR_MAINPLL_EN_HMCPLLREFCLKEN_SET_MSK,
		&clock_manager_base->main_pll.enr);

	/* now we can gate off the rest of the peripheral clocks */
	writel(0, &clock_manager_base->per_pll.en);

	/* Put all plls in external bypass */
	writel(CLKMGR_MAINPLL_BYPASS_RESET,
	       &clock_manager_base->main_pll.bypasss);
	writel(CLKMGR_PERPLL_BYPASS_RESET,
	       &clock_manager_base->per_pll.bypasss);

	/*
	 * Put all plls VCO registers back to reset value.
	 * Some code might have messed with them. At same time set the
	 * desired clock source
	 */
	writel(CLKMGR_MAINPLL_VCO0_RESET |
	       CLKMGR_MAINPLL_VCO0_REGEXTSEL_SET_MSK |
	       (main_cfg->vco0_psrc << CLKMGR_MAINPLL_VCO0_PSRC_LSB),
	       &clock_manager_base->main_pll.vco0);

	writel(CLKMGR_PERPLL_VCO0_RESET |
	       CLKMGR_PERPLL_VCO0_REGEXTSEL_SET_MSK |
	       (per_cfg->vco0_psrc << CLKMGR_PERPLL_VCO0_PSRC_LSB),
	       &clock_manager_base->per_pll.vco0);

	writel(CLKMGR_MAINPLL_VCO1_RESET, &clock_manager_base->main_pll.vco1);
	writel(CLKMGR_PERPLL_VCO1_RESET, &clock_manager_base->per_pll.vco1);

	/* clear the interrupt register status register */
	writel(CLKMGR_CLKMGR_INTR_MAINPLLLOST_SET_MSK |
		CLKMGR_CLKMGR_INTR_PERPLLLOST_SET_MSK |
		CLKMGR_CLKMGR_INTR_MAINPLLRFSLIP_SET_MSK |
		CLKMGR_CLKMGR_INTR_PERPLLRFSLIP_SET_MSK |
		CLKMGR_CLKMGR_INTR_MAINPLLFBSLIP_SET_MSK |
		CLKMGR_CLKMGR_INTR_PERPLLFBSLIP_SET_MSK |
		CLKMGR_CLKMGR_INTR_MAINPLLACHIEVED_SET_MSK |
		CLKMGR_CLKMGR_INTR_PERPLLACHIEVED_SET_MSK,
		&clock_manager_base->intr);

	/* Program VCO Numerator and Denominator for main PLL */
	ramp_required = cm_is_pll_ramp_required(0, main_cfg, per_cfg);
	if (ramp_required) {
		/* set main PLL to safe starting threshold frequency */
		if (ramp_required == 1)
			pll_ramp_main_hz = CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ;
		else if (ramp_required == 2)
			pll_ramp_main_hz = CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ;

		writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
			cm_calc_safe_pll_numer(0, main_cfg, per_cfg,
					       pll_ramp_main_hz),
			&clock_manager_base->main_pll.vco1);
	} else
		writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
			main_cfg->vco1_numer,
			&clock_manager_base->main_pll.vco1);

	/* Program VCO Numerator and Denominator for periph PLL */
	ramp_required = cm_is_pll_ramp_required(1, main_cfg, per_cfg);
	if (ramp_required) {
		/* set periph PLL to safe starting threshold frequency */
		if (ramp_required == 1)
			pll_ramp_periph_hz =
				CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ;
		else if (ramp_required == 2)
			pll_ramp_periph_hz =
				CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ;

		writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
			cm_calc_safe_pll_numer(1, main_cfg, per_cfg,
					       pll_ramp_periph_hz),
			&clock_manager_base->per_pll.vco1);
	} else
		writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
			per_cfg->vco1_numer,
			&clock_manager_base->per_pll.vco1);

	/* Wait for at least 5 us */
	udelay(5);

	/* Now deassert BGPWRDN and PWRDN */
	clrbits_le32(&clock_manager_base->main_pll.vco0,
		     CLKMGR_MAINPLL_VCO0_BGPWRDN_SET_MSK |
		     CLKMGR_MAINPLL_VCO0_PWRDN_SET_MSK);
	clrbits_le32(&clock_manager_base->per_pll.vco0,
		     CLKMGR_PERPLL_VCO0_BGPWRDN_SET_MSK |
		     CLKMGR_PERPLL_VCO0_PWRDN_SET_MSK);

	/* Wait for at least 7 us */
	udelay(7);

	/* enable the VCO and disable the external regulator to PLL */
	writel((readl(&clock_manager_base->main_pll.vco0) &
		~CLKMGR_MAINPLL_VCO0_REGEXTSEL_SET_MSK) |
		CLKMGR_MAINPLL_VCO0_EN_SET_MSK,
		&clock_manager_base->main_pll.vco0);
	writel((readl(&clock_manager_base->per_pll.vco0) &
		~CLKMGR_PERPLL_VCO0_REGEXTSEL_SET_MSK) |
		CLKMGR_PERPLL_VCO0_EN_SET_MSK,
		&clock_manager_base->per_pll.vco0);

	/* setup all the main PLL counter and clock source */
	writel(main_cfg->nocclk,
	       SOCFPGA_CLKMGR_ADDRESS + CLKMGR_MAINPLL_NOC_CLK_OFFSET);
	writel(main_cfg->mpuclk,
	       SOCFPGA_CLKMGR_ADDRESS + CLKMGR_ALTERAGRP_MPU_CLK_OFFSET);

	/* main_emaca_clk divider */
	writel(main_cfg->cntr2clk_cnt, &clock_manager_base->main_pll.cntr2clk);
	/* main_emacb_clk divider */
	writel(main_cfg->cntr3clk_cnt, &clock_manager_base->main_pll.cntr3clk);
	/* main_emac_ptp_clk divider */
	writel(main_cfg->cntr4clk_cnt, &clock_manager_base->main_pll.cntr4clk);
	/* main_gpio_db_clk divider */
	writel(main_cfg->cntr5clk_cnt, &clock_manager_base->main_pll.cntr5clk);
	/* main_sdmmc_clk divider */
	writel(main_cfg->cntr6clk_cnt, &clock_manager_base->main_pll.cntr6clk);
	/* main_s2f_user0_clk divider */
	writel(main_cfg->cntr7clk_cnt |
	       (main_cfg->cntr7clk_src << CLKMGR_MAINPLL_CNTR7CLK_SRC_LSB),
	       &clock_manager_base->main_pll.cntr7clk);
	/* main_s2f_user1_clk divider */
	writel(main_cfg->cntr8clk_cnt, &clock_manager_base->main_pll.cntr8clk);
	/* main_hmc_pll_clk divider */
	writel(main_cfg->cntr9clk_cnt |
	       (main_cfg->cntr9clk_src << CLKMGR_MAINPLL_CNTR9CLK_SRC_LSB),
	       &clock_manager_base->main_pll.cntr9clk);
	/* main_periph_ref_clk divider */
	writel(main_cfg->cntr15clk_cnt,
	       &clock_manager_base->main_pll.cntr15clk);

	/* setup all the peripheral PLL counter and clock source */
	/* peri_emaca_clk divider */
	writel(per_cfg->cntr2clk_cnt |
	       (per_cfg->cntr2clk_src << CLKMGR_PERPLL_CNTR2CLK_SRC_LSB),
	       &clock_manager_base->per_pll.cntr2clk);
	/* peri_emacb_clk divider */
	writel(per_cfg->cntr3clk_cnt |
	       (per_cfg->cntr3clk_src << CLKMGR_PERPLL_CNTR3CLK_SRC_LSB),
	       &clock_manager_base->per_pll.cntr3clk);
	/* peri_emac_ptp_clk divider */
	writel(per_cfg->cntr4clk_cnt |
	       (per_cfg->cntr4clk_src << CLKMGR_PERPLL_CNTR4CLK_SRC_LSB),
	       &clock_manager_base->per_pll.cntr4clk);
	/* peri_gpio_db_clk divider */
	writel(per_cfg->cntr5clk_cnt |
	       (per_cfg->cntr5clk_src << CLKMGR_PERPLL_CNTR5CLK_SRC_LSB),
	       &clock_manager_base->per_pll.cntr5clk);
	/* peri_sdmmc_clk divider */
	writel(per_cfg->cntr6clk_cnt |
	       (per_cfg->cntr6clk_src << CLKMGR_PERPLL_CNTR6CLK_SRC_LSB),
	       &clock_manager_base->per_pll.cntr6clk);
	/* peri_s2f_user0_clk divider */
	writel(per_cfg->cntr7clk_cnt, &clock_manager_base->per_pll.cntr7clk);
	/* peri_s2f_user1_clk divider */
	writel(per_cfg->cntr8clk_cnt |
	       (per_cfg->cntr8clk_src << CLKMGR_PERPLL_CNTR8CLK_SRC_LSB),
	       &clock_manager_base->per_pll.cntr8clk);
	/* peri_hmc_pll_clk divider */
	writel(per_cfg->cntr9clk_cnt, &clock_manager_base->per_pll.cntr9clk);

	/* setup all the external PLL counter */
	/* mpu wrapper / external divider */
	writel(main_cfg->mpuclk_cnt |
	       (main_cfg->mpuclk_src << CLKMGR_MAINPLL_MPUCLK_SRC_LSB),
	       &clock_manager_base->main_pll.mpuclk);
	/* NOC wrapper / external divider */
	writel(main_cfg->nocclk_cnt |
	       (main_cfg->nocclk_src << CLKMGR_MAINPLL_NOCCLK_SRC_LSB),
	       &clock_manager_base->main_pll.nocclk);
	/* NOC subclock divider such as l4 */
	writel(main_cfg->nocdiv_l4mainclk |
	       (main_cfg->nocdiv_l4mpclk <<
		CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB) |
	       (main_cfg->nocdiv_l4spclk <<
		CLKMGR_MAINPLL_NOCDIV_L4SPCLK_LSB) |
	       (main_cfg->nocdiv_csatclk <<
		CLKMGR_MAINPLL_NOCDIV_CSATCLK_LSB) |
	       (main_cfg->nocdiv_cstraceclk <<
		CLKMGR_MAINPLL_NOCDIV_CSTRACECLK_LSB) |
	       (main_cfg->nocdiv_cspdbclk <<
		CLKMGR_MAINPLL_NOCDIV_CSPDBGCLK_LSB),
		&clock_manager_base->main_pll.nocdiv);
	/* gpio_db external divider */
	writel(per_cfg->gpiodiv_gpiodbclk,
	       &clock_manager_base->per_pll.gpiodiv);

	/* setup the EMAC clock mux select */
	writel((per_cfg->emacctl_emac0sel <<
		CLKMGR_PERPLL_EMACCTL_EMAC0SEL_LSB) |
	       (per_cfg->emacctl_emac1sel <<
		CLKMGR_PERPLL_EMACCTL_EMAC1SEL_LSB) |
	       (per_cfg->emacctl_emac2sel <<
		CLKMGR_PERPLL_EMACCTL_EMAC2SEL_LSB),
	       &clock_manager_base->per_pll.emacctl);

	/* at this stage, check for PLL lock status */
	cm_wait_for_lock(LOCKED_MASK);

	/*
	 * after locking, but before taking out of bypass,
	 * assert/deassert outresetall
	 */
	/* assert mainpll outresetall */
	setbits_le32(&clock_manager_base->main_pll.vco0,
		     CLKMGR_MAINPLL_VCO0_OUTRSTALL_SET_MSK);
	/* assert perpll outresetall */
	setbits_le32(&clock_manager_base->per_pll.vco0,
		     CLKMGR_PERPLL_VCO0_OUTRSTALL_SET_MSK);
	/* de-assert mainpll outresetall */
	clrbits_le32(&clock_manager_base->main_pll.vco0,
		     CLKMGR_MAINPLL_VCO0_OUTRSTALL_SET_MSK);
	/* de-assert perpll outresetall */
	clrbits_le32(&clock_manager_base->per_pll.vco0,
		     CLKMGR_PERPLL_VCO0_OUTRSTALL_SET_MSK);

	/* Take all PLLs out of bypass when boot mode is cleared. */
	/* release mainpll from bypass */
	writel(CLKMGR_MAINPLL_BYPASS_RESET,
	       &clock_manager_base->main_pll.bypassr);
	/* wait till Clock Manager is not busy */
	cm_wait_for_fsm();

	/* release perpll from bypass */
	writel(CLKMGR_PERPLL_BYPASS_RESET,
	       &clock_manager_base->per_pll.bypassr);
	/* wait till Clock Manager is not busy */
	cm_wait_for_fsm();

	/* clear boot mode */
	clrbits_le32(&clock_manager_base->ctrl,
		     CLKMGR_CLKMGR_CTL_BOOTMOD_SET_MSK);
	/* wait till Clock Manager is not busy */
	cm_wait_for_fsm();

	/* At here, we need to ramp to final value if needed */
	if (pll_ramp_main_hz != 0)
		cm_pll_ramp_main(main_cfg, per_cfg, pll_ramp_main_hz);
	if (pll_ramp_periph_hz != 0)
		cm_pll_ramp_periph(main_cfg, per_cfg, pll_ramp_periph_hz);

	/* Now ungate non-hw-managed clocks */
	writel(CLKMGR_MAINPLL_EN_S2FUSER0CLKEN_SET_MSK |
		CLKMGR_MAINPLL_EN_HMCPLLREFCLKEN_SET_MSK,
		&clock_manager_base->main_pll.ens);
	writel(CLKMGR_PERPLL_EN_RESET, &clock_manager_base->per_pll.ens);

	/* Clear the loss lock and slip bits as they might set during
	clock reconfiguration */
	writel(CLKMGR_CLKMGR_INTR_MAINPLLLOST_SET_MSK |
	       CLKMGR_CLKMGR_INTR_PERPLLLOST_SET_MSK |
	       CLKMGR_CLKMGR_INTR_MAINPLLRFSLIP_SET_MSK |
	       CLKMGR_CLKMGR_INTR_PERPLLRFSLIP_SET_MSK |
	       CLKMGR_CLKMGR_INTR_MAINPLLFBSLIP_SET_MSK |
	       CLKMGR_CLKMGR_INTR_PERPLLFBSLIP_SET_MSK,
	       &clock_manager_base->intr);

	return 0;
}

static void cm_use_intosc(void)
{
	setbits_le32(&clock_manager_base->ctrl,
		     CLKMGR_CLKMGR_CTL_BOOTCLK_INTOSC_SET_MSK);
}

int cm_basic_init(const void *blob)
{
	struct mainpll_cfg main_cfg;
	struct perpll_cfg per_cfg;
	int rval;

	/* initialize to zero for use case of optional node */
	memset(&main_cfg, 0, sizeof(main_cfg));
	memset(&per_cfg, 0, sizeof(per_cfg));

	rval = of_get_clk_cfg(blob, &main_cfg, &per_cfg);
	if (rval)
		return rval;

	cm_use_intosc();

	return cm_full_cfg(&main_cfg, &per_cfg);
}
#endif

static u32 cm_get_rate_dm(char *name)
{
	struct uclass *uc;
	struct udevice *dev = NULL;
	struct clk clk = { 0 };
	ulong rate;
	int ret;

	/* Device addresses start at 1 */
	ret = uclass_get(UCLASS_CLK, &uc);
	if (ret)
		return 0;

	ret = uclass_get_device_by_name(UCLASS_CLK, name, &dev);
	if (ret)
		return 0;

	ret = device_probe(dev);
	if (ret)
		return 0;

	ret = clk_request(dev, &clk);
	if (ret)
		return 0;

	rate = clk_get_rate(&clk);

	clk_free(&clk);

	return rate;
}

static u32 cm_get_rate_dm_khz(char *name)
{
	return cm_get_rate_dm(name) / 1000;
}

unsigned long cm_get_mpu_clk_hz(void)
{
	return cm_get_rate_dm("main_mpu_base_clk");
}

unsigned int cm_get_qspi_controller_clk_hz(void)
{
	return cm_get_rate_dm("qspi_clk");
}

unsigned int cm_get_l4_sp_clk_hz(void)
{
	return cm_get_rate_dm("l4_sp_clk");
}

void cm_print_clock_quick_summary(void)
{
	printf("MPU       %10d kHz\n", cm_get_rate_dm_khz("main_mpu_base_clk"));
	printf("MMC         %8d kHz\n", cm_get_rate_dm_khz("sdmmc_clk"));
	printf("QSPI        %8d kHz\n", cm_get_rate_dm_khz("qspi_clk"));
	printf("SPI         %8d kHz\n", cm_get_rate_dm_khz("spi_m_clk"));
	printf("EOSC1       %8d kHz\n", cm_get_rate_dm_khz("osc1"));
	printf("cb_intosc   %8d kHz\n", cm_get_rate_dm_khz("cb_intosc_ls_clk"));
	printf("f2s_free    %8d kHz\n", cm_get_rate_dm_khz("f2s_free_clk"));
	printf("Main VCO    %8d kHz\n", cm_get_rate_dm_khz("main_pll@40"));
	printf("NOC         %8d kHz\n", cm_get_rate_dm_khz("main_noc_base_clk"));
	printf("L4 Main	    %8d kHz\n", cm_get_rate_dm_khz("l4_main_clk"));
	printf("L4 MP       %8d kHz\n", cm_get_rate_dm_khz("l4_mp_clk"));
	printf("L4 SP       %8d kHz\n", cm_get_rate_dm_khz("l4_sp_clk"));
	printf("L4 sys free %8d kHz\n", cm_get_rate_dm_khz("l4_sys_free_clk"));
}