1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2013 Altera Corporation <www.altera.com>
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/fpga_manager.h>
#include <asm/arch/reset_manager.h>
#include <asm/arch/system_manager.h>
static const struct socfpga_reset_manager *reset_manager_base =
(void *)SOCFPGA_RSTMGR_ADDRESS;
static const struct socfpga_system_manager *sysmgr_regs =
(struct socfpga_system_manager *)SOCFPGA_SYSMGR_ADDRESS;
/* Assert or de-assert SoCFPGA reset manager reset. */
void socfpga_per_reset(u32 reset, int set)
{
const u32 *reg;
u32 rstmgr_bank = RSTMGR_BANK(reset);
switch (rstmgr_bank) {
case 0:
reg = &reset_manager_base->mpu_mod_reset;
break;
case 1:
reg = &reset_manager_base->per_mod_reset;
break;
case 2:
reg = &reset_manager_base->per2_mod_reset;
break;
case 3:
reg = &reset_manager_base->brg_mod_reset;
break;
case 4:
reg = &reset_manager_base->misc_mod_reset;
break;
default:
return;
}
if (set)
setbits_le32(reg, 1 << RSTMGR_RESET(reset));
else
clrbits_le32(reg, 1 << RSTMGR_RESET(reset));
}
/*
* Assert reset on every peripheral but L4WD0.
* Watchdog must be kept intact to prevent glitches
* and/or hangs.
*/
void socfpga_per_reset_all(void)
{
const u32 l4wd0 = 1 << RSTMGR_RESET(SOCFPGA_RESET(L4WD0));
writel(~l4wd0, &reset_manager_base->per_mod_reset);
writel(0xffffffff, &reset_manager_base->per2_mod_reset);
}
/*
* Release peripherals from reset based on handoff
*/
void reset_deassert_peripherals_handoff(void)
{
writel(0, &reset_manager_base->per_mod_reset);
}
#define L3REGS_REMAP_LWHPS2FPGA_MASK 0x10
#define L3REGS_REMAP_HPS2FPGA_MASK 0x08
#define L3REGS_REMAP_OCRAM_MASK 0x01
void socfpga_bridges_set_handoff_regs(bool h2f, bool lwh2f, bool f2h)
{
u32 brgmask = 0x0;
u32 l3rmask = L3REGS_REMAP_OCRAM_MASK;
if (h2f)
brgmask |= BIT(0);
else
l3rmask |= L3REGS_REMAP_HPS2FPGA_MASK;
if (lwh2f)
brgmask |= BIT(1);
else
l3rmask |= L3REGS_REMAP_LWHPS2FPGA_MASK;
if (f2h)
brgmask |= BIT(2);
writel(brgmask, &sysmgr_regs->iswgrp_handoff[0]);
writel(l3rmask, &sysmgr_regs->iswgrp_handoff[1]);
}
void socfpga_bridges_reset(int enable)
{
const u32 l3mask = L3REGS_REMAP_LWHPS2FPGA_MASK |
L3REGS_REMAP_HPS2FPGA_MASK |
L3REGS_REMAP_OCRAM_MASK;
if (enable) {
/* brdmodrst */
writel(0x7, &reset_manager_base->brg_mod_reset);
writel(L3REGS_REMAP_OCRAM_MASK, SOCFPGA_L3REGS_ADDRESS);
} else {
socfpga_bridges_set_handoff_regs(false, false, false);
/* Check signal from FPGA. */
if (!fpgamgr_test_fpga_ready()) {
/* FPGA not ready, do nothing. We allow system to boot
* without FPGA ready. So, return 0 instead of error. */
printf("%s: FPGA not ready, aborting.\n", __func__);
return;
}
/* brdmodrst */
writel(0, &reset_manager_base->brg_mod_reset);
/* Remap the bridges into memory map */
writel(l3mask, SOCFPGA_L3REGS_ADDRESS);
}
return;
}
|