summaryrefslogtreecommitdiff
path: root/arch/arm/mach-sunxi/dram_sun50i_h6.c
blob: 5da90a2835da02af177fed1916f55dd4f9ae786c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
/*
 * sun50i H6 platform dram controller init
 *
 * (C) Copyright 2017      Icenowy Zheng <icenowy@aosc.io>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/dram.h>
#include <asm/arch/cpu.h>
#include <linux/bitops.h>
#include <linux/kconfig.h>

/*
 * The DRAM controller structure on H6 is similar to the ones on A23/A80:
 * they all contains 3 parts, COM, CTL and PHY. (As a note on A33/A83T/H3/A64
 * /H5/R40 CTL and PHY is composed).
 *
 * COM is allwinner-specific. On H6, the address mapping function is moved
 * from COM to CTL (with the standard ADDRMAP registers on DesignWare memory
 * controller).
 *
 * CTL (controller) and PHY is from DesignWare.
 *
 * The CTL part is a bit similar to the one on A23/A80 (because they all
 * originate from DesignWare), but gets more registers added.
 *
 * The PHY part is quite new, not seen in any previous Allwinner SoCs, and
 * not seen on other SoCs in U-Boot. The only SoC that is also known to have
 * similar PHY is ZynqMP.
 */

/*
 * The delay parameters below allow to allegedly specify delay times of some
 * unknown unit for each individual bit trace in each of the four data bytes
 * the 32-bit wide access consists of. Also three control signals can be
 * adjusted individually.
 */
#define NR_OF_BYTE_LANES	(32 / BITS_PER_BYTE)
/* The eight data lines (DQn) plus DM, DQS, DQS/DM/DQ Output Enable and DQSN */
#define WR_LINES_PER_BYTE_LANE	(BITS_PER_BYTE + 4)
/*
 * The eight data lines (DQn) plus DM, DQS, DQS/DM/DQ Output Enable, DQSN,
 * Termination and Power down
 */
#define RD_LINES_PER_BYTE_LANE	(BITS_PER_BYTE + 6)
struct dram_para {
	u32 clk;
	enum sunxi_dram_type type;
	u8 cols;
	u8 rows;
	u8 ranks;
	const u8 dx_read_delays[NR_OF_BYTE_LANES][RD_LINES_PER_BYTE_LANE];
	const u8 dx_write_delays[NR_OF_BYTE_LANES][WR_LINES_PER_BYTE_LANE];
};

static void mctl_sys_init(struct dram_para *para);
static void mctl_com_init(struct dram_para *para);
static void mctl_set_timing_lpddr3(struct dram_para *para);
static void mctl_channel_init(struct dram_para *para);

static void mctl_core_init(struct dram_para *para)
{
	mctl_sys_init(para);
	mctl_com_init(para);
	switch (para->type) {
	case SUNXI_DRAM_TYPE_LPDDR3:
		mctl_set_timing_lpddr3(para);
		break;
	default:
		panic("Unsupported DRAM type!");
	};
	mctl_channel_init(para);
}

static void mctl_phy_pir_init(u32 val)
{
	struct sunxi_mctl_phy_reg * const mctl_phy =
			(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;

	writel(val | BIT(0), &mctl_phy->pir);
	mctl_await_completion(&mctl_phy->pgsr[0], BIT(0), BIT(0));
}

enum {
	MBUS_PORT_CPU           = 0,
	MBUS_PORT_GPU           = 1,
	MBUS_PORT_MAHB          = 2,
	MBUS_PORT_DMA           = 3,
	MBUS_PORT_VE            = 4,
	MBUS_PORT_CE            = 5,
	MBUS_PORT_TSC0          = 6,
	MBUS_PORT_NDFC0         = 8,
	MBUS_PORT_CSI0          = 11,
	MBUS_PORT_DI0           = 14,
	MBUS_PORT_DI1           = 15,
	MBUS_PORT_DE300         = 16,
	MBUS_PORT_IOMMU         = 25,
	MBUS_PORT_VE2           = 26,
	MBUS_PORT_USB3        = 37,
	MBUS_PORT_PCIE          = 38,
	MBUS_PORT_VP9           = 39,
	MBUS_PORT_HDCP2       = 40,
};

enum {
	MBUS_QOS_LOWEST = 0,
	MBUS_QOS_LOW,
	MBUS_QOS_HIGH,
	MBUS_QOS_HIGHEST
};
inline void mbus_configure_port(u8 port,
				bool bwlimit,
				bool priority,
				u8 qos,
				u8 waittime,
				u8 acs,
				u16 bwl0,
				u16 bwl1,
				u16 bwl2)
{
	struct sunxi_mctl_com_reg * const mctl_com =
			(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;

	const u32 cfg0 = ( (bwlimit ? (1 << 0) : 0)
			   | (priority ? (1 << 1) : 0)
			   | ((qos & 0x3) << 2)
			   | ((waittime & 0xf) << 4)
			   | ((acs & 0xff) << 8)
			   | (bwl0 << 16) );
	const u32 cfg1 = ((u32)bwl2 << 16) | (bwl1 & 0xffff);

	debug("MBUS port %d cfg0 %08x cfg1 %08x\n", port, cfg0, cfg1);
	writel(cfg0, &mctl_com->master[port].cfg0);
	writel(cfg1, &mctl_com->master[port].cfg1);
}

#define MBUS_CONF(port, bwlimit, qos, acs, bwl0, bwl1, bwl2)	\
	mbus_configure_port(MBUS_PORT_ ## port, bwlimit, false, \
			    MBUS_QOS_ ## qos, 0, acs, bwl0, bwl1, bwl2)

static void mctl_set_master_priority(void)
{
	struct sunxi_mctl_com_reg * const mctl_com =
			(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;

	/* enable bandwidth limit windows and set windows size 1us */
	writel(399, &mctl_com->tmr);
	writel(BIT(16), &mctl_com->bwcr);

	MBUS_CONF(  CPU,  true, HIGHEST, 0,  256,  128,  100);
	MBUS_CONF(  GPU,  true,    HIGH, 0, 1536, 1400,  256);
	MBUS_CONF( MAHB,  true, HIGHEST, 0,  512,  256,   96);
	MBUS_CONF(  DMA,  true,    HIGH, 0,  256,  100,   80);
	MBUS_CONF(   VE,  true,    HIGH, 2, 8192, 5500, 5000);
	MBUS_CONF(   CE,  true,    HIGH, 2,  100,   64,   32);
	MBUS_CONF( TSC0,  true,    HIGH, 2,  100,   64,   32);
	MBUS_CONF(NDFC0,  true,    HIGH, 0,  256,  128,   64);
	MBUS_CONF( CSI0,  true,    HIGH, 0,  256,  128,  100);
	MBUS_CONF(  DI0,  true,    HIGH, 0, 1024,  256,   64);
	MBUS_CONF(DE300,  true, HIGHEST, 6, 8192, 2800, 2400);
	MBUS_CONF(IOMMU,  true, HIGHEST, 0,  100,   64,   32);
	MBUS_CONF(  VE2,  true,    HIGH, 2, 8192, 5500, 5000);
	MBUS_CONF( USB3,  true,    HIGH, 0,  256,  128,   64);
	MBUS_CONF( PCIE,  true,    HIGH, 2,  100,   64,   32);
	MBUS_CONF(  VP9,  true,    HIGH, 2, 8192, 5500, 5000);
	MBUS_CONF(HDCP2,  true,    HIGH, 2,  100,   64,   32);
}

static u32 mr_lpddr3[12] = {
	0x00000000, 0x00000043, 0x0000001a, 0x00000001,
	0x00000000, 0x00000000, 0x00000048, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000003,
};

/* TODO: flexible timing */
static void mctl_set_timing_lpddr3(struct dram_para *para)
{
	struct sunxi_mctl_ctl_reg * const mctl_ctl =
			(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
	struct sunxi_mctl_phy_reg * const mctl_phy =
			(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;

	u8 tccd		= 2;
	u8 tfaw		= max(ns_to_t(50), 4);
	u8 trrd		= max(ns_to_t(10), 2);
	u8 trcd		= max(ns_to_t(24), 2);
	u8 trc		= ns_to_t(70);
	u8 txp		= max(ns_to_t(8), 2);
	u8 twtr		= max(ns_to_t(8), 2);
	u8 trtp		= max(ns_to_t(8), 2);
	u8 twr		= max(ns_to_t(15), 2);
	u8 trp		= ns_to_t(18);
	u8 tras		= ns_to_t(42);
	u8 twtr_sa	= ns_to_t(5);
	u8 tcksrea	= ns_to_t(11);
	u16 trefi	= ns_to_t(3900) / 32;
	u16 trfc	= ns_to_t(210);
	u16 txsr	= ns_to_t(220);

	if (CONFIG_DRAM_CLK % 400 == 0) {
		/* Round up these parameters */
		twtr_sa++;
		tcksrea++;
	}

	u8 tmrw		= 5;
	u8 tmrd		= 5;
	u8 tmod		= 12;
	u8 tcke		= 3;
	u8 tcksrx	= 5;
	u8 tcksre	= 5;
	u8 tckesr	= 5;
	u8 trasmax	= CONFIG_DRAM_CLK / 60;
	u8 txs		= 4;
	u8 txsdll	= 4;
	u8 txsabort	= 4;
	u8 txsfast	= 4;

	u8 tcl		= 5; /* CL 10 */
	u8 tcwl		= 3; /* CWL 6 */
	u8 t_rdata_en	= twtr_sa + 8;

	u32 tdinit0	= (200 * CONFIG_DRAM_CLK) + 1;		/* 200us */
	u32 tdinit1	= (100 * CONFIG_DRAM_CLK) / 1000 + 1;	/* 100ns */
	u32 tdinit2	= (11 * CONFIG_DRAM_CLK) + 1;		/* 11us */
	u32 tdinit3	= (1 * CONFIG_DRAM_CLK) + 1;		/* 1us */

	u8 twtp		= tcwl + 4 + twr + 1;
	/*
	 * The code below for twr2rd and trd2wr follows the IP core's
	 * document from ZynqMP and i.MX7. The BSP has both number
	 * substracted by 2.
	 */
	u8 twr2rd	= tcwl + 4 + 1 + twtr;
	u8 trd2wr	= tcl + 4 + (tcksrea >> 1) - tcwl + 1;

	/* set mode register */
	memcpy(mctl_phy->mr, mr_lpddr3, sizeof(mr_lpddr3));

	/* set DRAM timing */
	writel((twtp << 24) | (tfaw << 16) | (trasmax << 8) | tras,
	       &mctl_ctl->dramtmg[0]);
	writel((txp << 16) | (trtp << 8) | trc, &mctl_ctl->dramtmg[1]);
	writel((tcwl << 24) | (tcl << 16) | (trd2wr << 8) | twr2rd,
	       &mctl_ctl->dramtmg[2]);
	writel((tmrw << 20) | (tmrd << 12) | tmod, &mctl_ctl->dramtmg[3]);
	writel((trcd << 24) | (tccd << 16) | (trrd << 8) | trp,
	       &mctl_ctl->dramtmg[4]);
	writel((tcksrx << 24) | (tcksre << 16) | (tckesr << 8) | tcke,
	       &mctl_ctl->dramtmg[5]);
	/* Value suggested by ZynqMP manual and used by libdram */
	writel((txp + 2) | 0x02020000, &mctl_ctl->dramtmg[6]);
	writel((txsfast << 24) | (txsabort << 16) | (txsdll << 8) | txs,
	       &mctl_ctl->dramtmg[8]);
	writel(txsr, &mctl_ctl->dramtmg[14]);

	clrsetbits_le32(&mctl_ctl->init[0], (3 << 30), (1 << 30));
	writel(0, &mctl_ctl->dfimisc);
	clrsetbits_le32(&mctl_ctl->rankctl, 0xff0, 0x660);

	/*
	 * Set timing registers of the PHY.
	 * Note: the PHY is clocked 2x from the DRAM frequency.
	 */
	writel((trrd << 25) | (tras << 17) | (trp << 9) | (trtp << 1),
	       &mctl_phy->dtpr[0]);
	writel((tfaw << 17) | 0x28000400 | (tmrd << 1), &mctl_phy->dtpr[1]);
	writel(((txs << 6) - 1) | (tcke << 17), &mctl_phy->dtpr[2]);
	writel(((txsdll << 22) - (0x1 << 16)) | twtr_sa | (tcksrea << 8),
	       &mctl_phy->dtpr[3]);
	writel((txp << 1) | (trfc << 17) | 0x800, &mctl_phy->dtpr[4]);
	writel((trc << 17) | (trcd << 9) | (twtr << 1), &mctl_phy->dtpr[5]);
	writel(0x0505, &mctl_phy->dtpr[6]);

	/* Configure DFI timing */
	writel(tcl | 0x2000200 | (t_rdata_en << 16) | 0x808000,
	       &mctl_ctl->dfitmg0);
	writel(0x040201, &mctl_ctl->dfitmg1);

	/* Configure PHY timing */
	writel(tdinit0 | (tdinit1 << 20), &mctl_phy->ptr[3]);
	writel(tdinit2 | (tdinit3 << 18), &mctl_phy->ptr[4]);

	/* set refresh timing */
	writel((trefi << 16) | trfc, &mctl_ctl->rfshtmg);
}

static void mctl_sys_init(struct dram_para *para)
{
	struct sunxi_ccm_reg * const ccm =
			(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
	struct sunxi_mctl_com_reg * const mctl_com =
			(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
	struct sunxi_mctl_ctl_reg * const mctl_ctl =
			(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;

	/* Put all DRAM-related blocks to reset state */
	clrbits_le32(&ccm->mbus_cfg, MBUS_ENABLE | MBUS_RESET);
	clrbits_le32(&ccm->dram_gate_reset, BIT(0));
	udelay(5);
	writel(0, &ccm->dram_gate_reset);
	clrbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_EN);
	clrbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);

	udelay(5);

	/* Set PLL5 rate to doubled DRAM clock rate */
	writel(CCM_PLL5_CTRL_EN | CCM_PLL5_LOCK_EN |
	       CCM_PLL5_CTRL_N(para->clk * 2 / 24 - 1), &ccm->pll5_cfg);
	mctl_await_completion(&ccm->pll5_cfg, CCM_PLL5_LOCK, CCM_PLL5_LOCK);

	/* Configure DRAM mod clock */
	writel(DRAM_CLK_SRC_PLL5, &ccm->dram_clk_cfg);
	setbits_le32(&ccm->dram_clk_cfg, DRAM_CLK_UPDATE);
	writel(BIT(RESET_SHIFT), &ccm->dram_gate_reset);
	udelay(5);
	setbits_le32(&ccm->dram_gate_reset, BIT(0));

	/* Disable all channels */
	writel(0, &mctl_com->maer0);
	writel(0, &mctl_com->maer1);
	writel(0, &mctl_com->maer2);

	/* Configure MBUS and enable DRAM mod reset */
	setbits_le32(&ccm->mbus_cfg, MBUS_RESET);
	setbits_le32(&ccm->mbus_cfg, MBUS_ENABLE);
	setbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
	udelay(5);

	/* Unknown hack from the BSP, which enables access of mctl_ctl regs */
	writel(0x8000, &mctl_ctl->unk_0x00c);
}

static void mctl_set_addrmap(struct dram_para *para)
{
	struct sunxi_mctl_ctl_reg * const mctl_ctl =
			(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
	u8 cols = para->cols;
	u8 rows = para->rows;
	u8 ranks = para->ranks;

	/* Ranks */
	if (ranks == 2)
		mctl_ctl->addrmap[0] = rows + cols - 3;
	else
		mctl_ctl->addrmap[0] = 0x1F;

	/* Banks, hardcoded to 8 banks now */
	mctl_ctl->addrmap[1] = (cols - 2) | (cols - 2) << 8 | (cols - 2) << 16;

	/* Columns */
	mctl_ctl->addrmap[2] = 0;
	switch (cols) {
	case 8:
		mctl_ctl->addrmap[3] = 0x1F1F0000;
		mctl_ctl->addrmap[4] = 0x1F1F;
		break;
	case 9:
		mctl_ctl->addrmap[3] = 0x1F000000;
		mctl_ctl->addrmap[4] = 0x1F1F;
		break;
	case 10:
		mctl_ctl->addrmap[3] = 0;
		mctl_ctl->addrmap[4] = 0x1F1F;
		break;
	case 11:
		mctl_ctl->addrmap[3] = 0;
		mctl_ctl->addrmap[4] = 0x1F00;
		break;
	case 12:
		mctl_ctl->addrmap[3] = 0;
		mctl_ctl->addrmap[4] = 0;
		break;
	default:
		panic("Unsupported DRAM configuration: column number invalid\n");
	}

	/* Rows */
	mctl_ctl->addrmap[5] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
	switch (rows) {
	case 13:
		mctl_ctl->addrmap[6] = (cols - 3) | 0x0F0F0F00;
		mctl_ctl->addrmap[7] = 0x0F0F;
		break;
	case 14:
		mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | 0x0F0F0000;
		mctl_ctl->addrmap[7] = 0x0F0F;
		break;
	case 15:
		mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | 0x0F000000;
		mctl_ctl->addrmap[7] = 0x0F0F;
		break;
	case 16:
		mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
		mctl_ctl->addrmap[7] = 0x0F0F;
		break;
	case 17:
		mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
		mctl_ctl->addrmap[7] = (cols - 3) | 0x0F00;
		break;
	case 18:
		mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
		mctl_ctl->addrmap[7] = (cols - 3) | ((cols - 3) << 8);
		break;
	default:
		panic("Unsupported DRAM configuration: row number invalid\n");
	}

	/* Bank groups, DDR4 only */
	mctl_ctl->addrmap[8] = 0x3F3F;
}

static void mctl_com_init(struct dram_para *para)
{
	struct sunxi_mctl_com_reg * const mctl_com =
			(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
	struct sunxi_mctl_ctl_reg * const mctl_ctl =
			(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
	struct sunxi_mctl_phy_reg * const mctl_phy =
			(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
	u32 reg_val, tmp;

	mctl_set_addrmap(para);

	setbits_le32(&mctl_com->cr, BIT(31));
	/*
	 * This address is magic; it's in SID memory area, but there's no
	 * known definition of it.
	 * On my Pine H64 board it has content 7.
	 */
	if (readl(0x03006100) == 7)
		clrbits_le32(&mctl_com->cr, BIT(27));
	else if (readl(0x03006100) == 3)
		setbits_le32(&mctl_com->cr, BIT(27));

	if (para->clk > 408)
		reg_val = 0xf00;
	else if (para->clk > 246)
		reg_val = 0x1f00;
	else
		reg_val = 0x3f00;
	clrsetbits_le32(&mctl_com->unk_0x008, 0x3f00, reg_val);

	/* TODO: half DQ, non-LPDDR3 types */
	writel(MSTR_DEVICETYPE_LPDDR3 | MSTR_BUSWIDTH_FULL |
	       MSTR_BURST_LENGTH(8) | MSTR_ACTIVE_RANKS(para->ranks) |
	       0x80000000, &mctl_ctl->mstr);
	writel(DCR_LPDDR3 | DCR_DDR8BANK | 0x400, &mctl_phy->dcr);

	if (para->ranks == 2)
		writel(0x0303, &mctl_ctl->odtmap);
	else
		writel(0x0201, &mctl_ctl->odtmap);

	/* TODO: non-LPDDR3 types */
	tmp = para->clk * 7 / 2000;
	reg_val = 0x0400;
	reg_val |= (tmp + 7) << 24;
	reg_val |= (((para->clk < 400) ? 3 : 4) - tmp) << 16;
	writel(reg_val, &mctl_ctl->odtcfg);

	/* TODO: half DQ */
}

static void mctl_bit_delay_set(struct dram_para *para)
{
	struct sunxi_mctl_phy_reg * const mctl_phy =
			(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
	int i, j;
	u32 val;

	for (i = 0; i < 4; i++) {
		val = readl(&mctl_phy->dx[i].bdlr0);
		for (j = 0; j < 4; j++)
			val += para->dx_write_delays[i][j] << (j * 8);
		writel(val, &mctl_phy->dx[i].bdlr0);

		val = readl(&mctl_phy->dx[i].bdlr1);
		for (j = 0; j < 4; j++)
			val += para->dx_write_delays[i][j + 4] << (j * 8);
		writel(val, &mctl_phy->dx[i].bdlr1);

		val = readl(&mctl_phy->dx[i].bdlr2);
		for (j = 0; j < 4; j++)
			val += para->dx_write_delays[i][j + 8] << (j * 8);
		writel(val, &mctl_phy->dx[i].bdlr2);
	}
	clrbits_le32(&mctl_phy->pgcr[0], BIT(26));

	for (i = 0; i < 4; i++) {
		val = readl(&mctl_phy->dx[i].bdlr3);
		for (j = 0; j < 4; j++)
			val += para->dx_read_delays[i][j] << (j * 8);
		writel(val, &mctl_phy->dx[i].bdlr3);

		val = readl(&mctl_phy->dx[i].bdlr4);
		for (j = 0; j < 4; j++)
			val += para->dx_read_delays[i][j + 4] << (j * 8);
		writel(val, &mctl_phy->dx[i].bdlr4);

		val = readl(&mctl_phy->dx[i].bdlr5);
		for (j = 0; j < 4; j++)
			val += para->dx_read_delays[i][j + 8] << (j * 8);
		writel(val, &mctl_phy->dx[i].bdlr5);

		val = readl(&mctl_phy->dx[i].bdlr6);
		val += (para->dx_read_delays[i][12] << 8) |
		       (para->dx_read_delays[i][13] << 16);
		writel(val, &mctl_phy->dx[i].bdlr6);
	}
	setbits_le32(&mctl_phy->pgcr[0], BIT(26));
	udelay(1);

	for (i = 1; i < 14; i++) {
		val = readl(&mctl_phy->acbdlr[i]);
		val += 0x0a0a0a0a;
		writel(val, &mctl_phy->acbdlr[i]);
	}
}

static void mctl_channel_init(struct dram_para *para)
{
	struct sunxi_mctl_com_reg * const mctl_com =
			(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
	struct sunxi_mctl_ctl_reg * const mctl_ctl =
			(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
	struct sunxi_mctl_phy_reg * const mctl_phy =
			(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
	int i;
	u32 val;

	setbits_le32(&mctl_ctl->dfiupd[0], BIT(31) | BIT(30));
	setbits_le32(&mctl_ctl->zqctl[0], BIT(31) | BIT(30));
	writel(0x2f05, &mctl_ctl->sched[0]);
	setbits_le32(&mctl_ctl->rfshctl3, BIT(0));
	setbits_le32(&mctl_ctl->dfimisc, BIT(0));
	setbits_le32(&mctl_ctl->unk_0x00c, BIT(8));
	clrsetbits_le32(&mctl_phy->pgcr[1], 0x180, 0xc0);
	/* TODO: non-LPDDR3 types */
	clrsetbits_le32(&mctl_phy->pgcr[2], GENMASK(17, 0), ns_to_t(7800));
	clrbits_le32(&mctl_phy->pgcr[6], BIT(0));
	clrsetbits_le32(&mctl_phy->dxccr, 0xee0, 0x220);
	/* TODO: VT compensation */
	clrsetbits_le32(&mctl_phy->dsgcr, BIT(0), 0x440060);
	clrbits_le32(&mctl_phy->vtcr[1], BIT(1));

	for (i = 0; i < 4; i++)
		clrsetbits_le32(&mctl_phy->dx[i].gcr[0], 0xe00, 0x800);
	for (i = 0; i < 4; i++)
		clrsetbits_le32(&mctl_phy->dx[i].gcr[2], 0xffff, 0x5555);
	for (i = 0; i < 4; i++)
		clrsetbits_le32(&mctl_phy->dx[i].gcr[3], 0x3030, 0x1010);

	udelay(100);

	if (para->ranks == 2)
		setbits_le32(&mctl_phy->dtcr[1], 0x30000);
	else
		clrsetbits_le32(&mctl_phy->dtcr[1], 0x30000, 0x10000);

	clrbits_le32(&mctl_phy->dtcr[1], BIT(1));
	if (para->ranks == 2) {
		writel(0x00010001, &mctl_phy->rankidr);
		writel(0x20000, &mctl_phy->odtcr);
	} else {
		writel(0x0, &mctl_phy->rankidr);
		writel(0x10000, &mctl_phy->odtcr);
	}

	/* TODO: non-LPDDR3 types */
	clrsetbits_le32(&mctl_phy->dtcr[0], 0xF0000000, 0x10000040);
	if (para->clk <= 792) {
		if (para->clk <= 672) {
			if (para->clk <= 600)
				val = 0x300;
			else
				val = 0x400;
		} else {
			val = 0x500;
		}
	} else {
		val = 0x600;
	}
	/* FIXME: NOT REVIEWED YET */
	clrsetbits_le32(&mctl_phy->zq[0].zqcr, 0x700, val);
	clrsetbits_le32(&mctl_phy->zq[0].zqpr[0], 0xff,
			CONFIG_DRAM_ZQ & 0xff);
	clrbits_le32(&mctl_phy->zq[0].zqor[0], 0xfffff);
	setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ >> 8) & 0xff);
	setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ & 0xf00) - 0x100);
	setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ & 0xff00) << 4);
	clrbits_le32(&mctl_phy->zq[1].zqpr[0], 0xfffff);
	setbits_le32(&mctl_phy->zq[1].zqpr[0], (CONFIG_DRAM_ZQ >> 16) & 0xff);
	setbits_le32(&mctl_phy->zq[1].zqpr[0], ((CONFIG_DRAM_ZQ >> 8) & 0xf00) - 0x100);
	setbits_le32(&mctl_phy->zq[1].zqpr[0], (CONFIG_DRAM_ZQ & 0xff0000) >> 4);
	if (para->type == SUNXI_DRAM_TYPE_LPDDR3) {
		for (i = 1; i < 14; i++)
			writel(0x06060606, &mctl_phy->acbdlr[i]);
	}

	/* TODO: non-LPDDR3 types */
	mctl_phy_pir_init(PIR_ZCAL | PIR_DCAL | PIR_PHYRST | PIR_DRAMINIT |
			  PIR_QSGATE | PIR_RDDSKW | PIR_WRDSKW | PIR_RDEYE |
			  PIR_WREYE);

	/* TODO: non-LPDDR3 types */
	for (i = 0; i < 4; i++)
		writel(0x00000909, &mctl_phy->dx[i].gcr[5]);

	for (i = 0; i < 4; i++) {
		if (IS_ENABLED(CONFIG_DRAM_ODT_EN))
			val = 0x0;
		else
			val = 0xaaaa;
		clrsetbits_le32(&mctl_phy->dx[i].gcr[2], 0xffff, val);

		if (IS_ENABLED(CONFIG_DRAM_ODT_EN))
			val = 0x0;
		else
			val = 0x2020;
		clrsetbits_le32(&mctl_phy->dx[i].gcr[3], 0x3030, val);
	}

	mctl_bit_delay_set(para);
	udelay(1);

	setbits_le32(&mctl_phy->pgcr[6], BIT(0));
	clrbits_le32(&mctl_phy->pgcr[6], 0xfff8);
	for (i = 0; i < 4; i++)
		clrbits_le32(&mctl_phy->dx[i].gcr[3], ~0x3ffff);
	udelay(10);

	if (readl(&mctl_phy->pgsr[0]) & 0x400000)
	{
		/*
		 * Detect single rank.
		 * TODO: also detect half DQ.
		 */
		if ((readl(&mctl_phy->dx[0].rsr[0]) & 0x3) == 2 &&
		    (readl(&mctl_phy->dx[1].rsr[0]) & 0x3) == 2 &&
		    (readl(&mctl_phy->dx[2].rsr[0]) & 0x3) == 2 &&
		    (readl(&mctl_phy->dx[3].rsr[0]) & 0x3) == 2) {
			para->ranks = 1;
			/* Restart DRAM initialization from scratch. */
			mctl_core_init(para);
			return;
		}
		else {
			panic("This DRAM setup is currently not supported.\n");
		}
	}

	if (readl(&mctl_phy->pgsr[0]) & 0xff00000) {
		/* Oops! There's something wrong! */
		debug("PLL = %x\n", readl(0x3001010));
		debug("DRAM PHY PGSR0 = %x\n", readl(&mctl_phy->pgsr[0]));
		for (i = 0; i < 4; i++)
			debug("DRAM PHY DX%dRSR0 = %x\n", i, readl(&mctl_phy->dx[i].rsr[0]));
		panic("Error while initializing DRAM PHY!\n");
	}

	clrsetbits_le32(&mctl_phy->dsgcr, 0xc0, 0x40);
	clrbits_le32(&mctl_phy->pgcr[1], 0x40);
	clrbits_le32(&mctl_ctl->dfimisc, BIT(0));
	writel(1, &mctl_ctl->swctl);
	mctl_await_completion(&mctl_ctl->swstat, 1, 1);
	clrbits_le32(&mctl_ctl->rfshctl3, BIT(0));

	setbits_le32(&mctl_com->unk_0x014, BIT(31));
	writel(0xffffffff, &mctl_com->maer0);
	writel(0x7ff, &mctl_com->maer1);
	writel(0xffff, &mctl_com->maer2);
}

static void mctl_auto_detect_dram_size(struct dram_para *para)
{
	/* TODO: non-LPDDR3, half DQ */
	/*
	 * Detect rank number by the code in mctl_channel_init. Furtherly
	 * when DQ detection is available it will also be executed there.
	 */
	mctl_core_init(para);

	/* detect row address bits */
	para->cols = 8;
	para->rows = 18;
	mctl_core_init(para);

	for (para->rows = 13; para->rows < 18; para->rows++) {
		/* 8 banks, 8 bit per byte and 32 bit width */
		if (mctl_mem_matches((1 << (para->rows + para->cols + 5))))
			break;
	}

	/* detect column address bits */
	para->cols = 11;
	mctl_core_init(para);

	for (para->cols = 8; para->cols < 11; para->cols++) {
		/* 8 bits per byte and 32 bit width */
		if (mctl_mem_matches(1 << (para->cols + 2)))
			break;
	}
}

unsigned long mctl_calc_size(struct dram_para *para)
{
	/* TODO: non-LPDDR3, half DQ */

	/* 8 banks, 32-bit (4 byte) data width */
	return (1ULL << (para->cols + para->rows + 3)) * 4 * para->ranks;
}

#define SUN50I_H6_DX_WRITE_DELAYS				\
	{{  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0 },	\
	 {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0 },	\
	 {  0,  0,  0,  0,  0,  0,  0,  0,  0,  4,  4,  0 },	\
	 {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0 }}
#define SUN50I_H6_DX_READ_DELAYS					\
	{{  4,  4,  4,  4,  4,  4,  4,  4,  4,  0,  0,  0,  0,  0 },	\
	 {  4,  4,  4,  4,  4,  4,  4,  4,  4,  0,  0,  0,  0,  0 },	\
	 {  4,  4,  4,  4,  4,  4,  4,  4,  4,  0,  0,  0,  0,  0 },	\
	 {  4,  4,  4,  4,  4,  4,  4,  4,  4,  0,  0,  0,  0,  0 }}

unsigned long sunxi_dram_init(void)
{
	struct sunxi_mctl_com_reg * const mctl_com =
			(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
	struct dram_para para = {
		.clk = CONFIG_DRAM_CLK,
		.type = SUNXI_DRAM_TYPE_LPDDR3,
		.ranks = 2,
		.cols = 11,
		.rows = 14,
		.dx_read_delays  = SUN50I_H6_DX_READ_DELAYS,
		.dx_write_delays = SUN50I_H6_DX_WRITE_DELAYS,
	};

	unsigned long size;

	/* RES_CAL_CTRL_REG in BSP U-boot*/
	setbits_le32(0x7010310, BIT(8));
	clrbits_le32(0x7010318, 0x3f);

	mctl_auto_detect_dram_size(&para);

	mctl_core_init(&para);

	size = mctl_calc_size(&para);

	clrsetbits_le32(&mctl_com->cr, 0xf0, (size >> (10 + 10 + 4)) & 0xf0);

	mctl_set_master_priority();

	return size;
};