summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/board.c
blob: 40de72dc575fd1a84d097461edeb251fa04c12b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*
 *  (C) Copyright 2010-2015
 *  NVIDIA Corporation <www.nvidia.com>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <spl.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/funcmux.h>
#include <asm/arch/mc.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/ap.h>
#include <asm/arch-tegra/board.h>
#include <asm/arch-tegra/pmc.h>
#include <asm/arch-tegra/sys_proto.h>
#include <asm/arch-tegra/warmboot.h>

void save_boot_params_ret(void);

DECLARE_GLOBAL_DATA_PTR;

enum {
	/* UARTs which we can enable */
	UARTA	= 1 << 0,
	UARTB	= 1 << 1,
	UARTC	= 1 << 2,
	UARTD	= 1 << 3,
	UARTE	= 1 << 4,
	UART_COUNT = 5,
};

static bool from_spl __attribute__ ((section(".data")));

#ifndef CONFIG_SPL_BUILD
void save_boot_params(u32 r0, u32 r1, u32 r2, u32 r3)
{
	from_spl = r0 != UBOOT_NOT_LOADED_FROM_SPL;
	save_boot_params_ret();
}
#endif

bool spl_was_boot_source(void)
{
	return from_spl;
}

#if defined(CONFIG_TEGRA_SUPPORT_NON_SECURE)
#if !defined(CONFIG_TEGRA124)
#error tegra_cpu_is_non_secure has only been validated on Tegra124
#endif
bool tegra_cpu_is_non_secure(void)
{
	/*
	 * This register reads 0xffffffff in non-secure mode. This register
	 * only implements bits 31:20, so the lower bits will always read 0 in
	 * secure mode. Thus, the lower bits are an indicator for secure vs.
	 * non-secure mode.
	 */
	struct mc_ctlr *mc = (struct mc_ctlr *)NV_PA_MC_BASE;
	uint32_t mc_s_cfg0 = readl(&mc->mc_security_cfg0);
	return (mc_s_cfg0 & 1) == 1;
}
#endif

/* Read the RAM size directly from the memory controller */
unsigned int query_sdram_size(void)
{
	struct mc_ctlr *const mc = (struct mc_ctlr *)NV_PA_MC_BASE;
	u32 emem_cfg, size_bytes;

	emem_cfg = readl(&mc->mc_emem_cfg);
#if defined(CONFIG_TEGRA20)
	debug("mc->mc_emem_cfg (MEM_SIZE_KB) = 0x%08x\n", emem_cfg);
	size_bytes = get_ram_size((void *)PHYS_SDRAM_1, emem_cfg * 1024);
#else
	debug("mc->mc_emem_cfg (MEM_SIZE_MB) = 0x%08x\n", emem_cfg);
	/*
	 * If >=4GB RAM is present, the byte RAM size won't fit into 32-bits
	 * and will wrap. Clip the reported size to the maximum that a 32-bit
	 * variable can represent (rounded to a page).
	 */
	if (emem_cfg >= 4096) {
		size_bytes = U32_MAX & ~(0x1000 - 1);
	} else {
		/* RAM size EMC is programmed to. */
		size_bytes = emem_cfg * 1024 * 1024;
		/*
		 * If all RAM fits within 32-bits, it can be accessed without
		 * LPAE, so go test the RAM size. Otherwise, we can't access
		 * all the RAM, and get_ram_size() would get confused, so
		 * avoid using it. There's no reason we should need this
		 * validation step anyway.
		 */
		if (emem_cfg <= (0 - PHYS_SDRAM_1) / (1024 * 1024))
			size_bytes = get_ram_size((void *)PHYS_SDRAM_1,
						  size_bytes);
	}
#endif

#if defined(CONFIG_TEGRA30) || defined(CONFIG_TEGRA114)
	/* External memory limited to 2047 MB due to IROM/HI-VEC */
	if (size_bytes == SZ_2G)
		size_bytes -= SZ_1M;
#endif

	return size_bytes;
}

int dram_init(void)
{
	/* We do not initialise DRAM here. We just query the size */
	gd->ram_size = query_sdram_size();
	return 0;
}

static int uart_configs[] = {
#if defined(CONFIG_TEGRA20)
 #if defined(CONFIG_TEGRA_UARTA_UAA_UAB)
	FUNCMUX_UART1_UAA_UAB,
 #elif defined(CONFIG_TEGRA_UARTA_GPU)
	FUNCMUX_UART1_GPU,
 #elif defined(CONFIG_TEGRA_UARTA_SDIO1)
	FUNCMUX_UART1_SDIO1,
 #else
	FUNCMUX_UART1_IRRX_IRTX,
#endif
	FUNCMUX_UART2_UAD,
	-1,
	FUNCMUX_UART4_GMC,
	-1,
#elif defined(CONFIG_TEGRA30)
	FUNCMUX_UART1_ULPI,	/* UARTA */
	-1,
	-1,
	-1,
	-1,
#elif defined(CONFIG_TEGRA114)
	-1,
	-1,
	-1,
	FUNCMUX_UART4_GMI,	/* UARTD */
	-1,
#elif defined(CONFIG_TEGRA124)
	FUNCMUX_UART1_KBC,	/* UARTA */
	-1,
	-1,
	FUNCMUX_UART4_GPIO,	/* UARTD */
	-1,
#else	/* Tegra210 */
	FUNCMUX_UART1_UART1,	/* UARTA */
	-1,
	-1,
	FUNCMUX_UART4_UART4,	/* UARTD */
	-1,
#endif
};

/**
 * Set up the specified uarts
 *
 * @param uarts_ids	Mask containing UARTs to init (UARTx)
 */
static void setup_uarts(int uart_ids)
{
	static enum periph_id id_for_uart[] = {
		PERIPH_ID_UART1,
		PERIPH_ID_UART2,
		PERIPH_ID_UART3,
		PERIPH_ID_UART4,
		PERIPH_ID_UART5,
	};
	size_t i;

	for (i = 0; i < UART_COUNT; i++) {
		if (uart_ids & (1 << i)) {
			enum periph_id id = id_for_uart[i];

			funcmux_select(id, uart_configs[i]);
			clock_ll_start_uart(id);
		}
	}
}

void board_init_uart_f(void)
{
	int uart_ids = 0;	/* bit mask of which UART ids to enable */

#ifdef CONFIG_TEGRA_ENABLE_UARTA
	uart_ids |= UARTA;
#endif
#ifdef CONFIG_TEGRA_ENABLE_UARTB
	uart_ids |= UARTB;
#endif
#ifdef CONFIG_TEGRA_ENABLE_UARTC
	uart_ids |= UARTC;
#endif
#ifdef CONFIG_TEGRA_ENABLE_UARTD
	uart_ids |= UARTD;
#endif
#ifdef CONFIG_TEGRA_ENABLE_UARTE
	uart_ids |= UARTE;
#endif
	setup_uarts(uart_ids);
}

#if !defined(CONFIG_SYS_DCACHE_OFF) && !defined(CONFIG_ARM64)
void enable_caches(void)
{
	/* Enable D-cache. I-cache is already enabled in start.S */
	dcache_enable();
}
#endif