1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
/*
* Copyright (C) 2017 Socionext Inc.
* Author: Masahiro Yamada <yamada.masahiro@socionext.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <spl.h>
#include <linux/bitops.h>
#include <linux/compat.h>
#include <linux/io.h>
#include <asm/processor.h>
#include "../soc-info.h"
#define MMC_CMD_SWITCH 6
#define MMC_CMD_SELECT_CARD 7
#define MMC_CMD_SEND_CSD 9
#define MMC_CMD_READ_MULTIPLE_BLOCK 18
#define EXT_CSD_PART_CONF 179 /* R/W */
#define MMC_RSP_PRESENT BIT(0)
#define MMC_RSP_136 BIT(1) /* 136 bit response */
#define MMC_RSP_CRC BIT(2) /* expect valid crc */
#define MMC_RSP_BUSY BIT(3) /* card may send busy */
#define MMC_RSP_OPCODE BIT(4) /* response contains opcode */
#define MMC_RSP_NONE (0)
#define MMC_RSP_R1 (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE)
#define MMC_RSP_R1b (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE | \
MMC_RSP_BUSY)
#define MMC_RSP_R2 (MMC_RSP_PRESENT | MMC_RSP_136 | MMC_RSP_CRC)
#define MMC_RSP_R3 (MMC_RSP_PRESENT)
#define MMC_RSP_R4 (MMC_RSP_PRESENT)
#define MMC_RSP_R5 (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE)
#define MMC_RSP_R6 (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE)
#define MMC_RSP_R7 (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE)
#define SDHCI_DMA_ADDRESS 0x00
#define SDHCI_BLOCK_SIZE 0x04
#define SDHCI_MAKE_BLKSZ(dma, blksz) ((((dma) & 0x7) << 12) | ((blksz) & 0xFFF))
#define SDHCI_BLOCK_COUNT 0x06
#define SDHCI_ARGUMENT 0x08
#define SDHCI_TRANSFER_MODE 0x0C
#define SDHCI_TRNS_DMA BIT(0)
#define SDHCI_TRNS_BLK_CNT_EN BIT(1)
#define SDHCI_TRNS_ACMD12 BIT(2)
#define SDHCI_TRNS_READ BIT(4)
#define SDHCI_TRNS_MULTI BIT(5)
#define SDHCI_COMMAND 0x0E
#define SDHCI_CMD_RESP_MASK 0x03
#define SDHCI_CMD_CRC 0x08
#define SDHCI_CMD_INDEX 0x10
#define SDHCI_CMD_DATA 0x20
#define SDHCI_CMD_ABORTCMD 0xC0
#define SDHCI_CMD_RESP_NONE 0x00
#define SDHCI_CMD_RESP_LONG 0x01
#define SDHCI_CMD_RESP_SHORT 0x02
#define SDHCI_CMD_RESP_SHORT_BUSY 0x03
#define SDHCI_MAKE_CMD(c, f) ((((c) & 0xff) << 8) | ((f) & 0xff))
#define SDHCI_RESPONSE 0x10
#define SDHCI_HOST_CONTROL 0x28
#define SDHCI_CTRL_DMA_MASK 0x18
#define SDHCI_CTRL_SDMA 0x00
#define SDHCI_BLOCK_GAP_CONTROL 0x2A
#define SDHCI_SOFTWARE_RESET 0x2F
#define SDHCI_RESET_CMD 0x02
#define SDHCI_RESET_DATA 0x04
#define SDHCI_INT_STATUS 0x30
#define SDHCI_INT_RESPONSE BIT(0)
#define SDHCI_INT_DATA_END BIT(1)
#define SDHCI_INT_ERROR BIT(15)
#define SDHCI_SIGNAL_ENABLE 0x38
/* RCA assigned by Boot ROM */
#define UNIPHIER_EMMC_RCA 0x1000
struct uniphier_mmc_cmd {
unsigned int cmdidx;
unsigned int resp_type;
unsigned int cmdarg;
unsigned int is_data;
};
static int uniphier_emmc_send_cmd(void __iomem *host_base,
struct uniphier_mmc_cmd *cmd)
{
u32 mode = 0;
u32 mask = SDHCI_INT_RESPONSE;
u32 stat, flags;
writel(U32_MAX, host_base + SDHCI_INT_STATUS);
writel(0, host_base + SDHCI_SIGNAL_ENABLE);
writel(cmd->cmdarg, host_base + SDHCI_ARGUMENT);
if (cmd->is_data)
mode = SDHCI_TRNS_DMA | SDHCI_TRNS_BLK_CNT_EN |
SDHCI_TRNS_ACMD12 | SDHCI_TRNS_READ |
SDHCI_TRNS_MULTI;
writew(mode, host_base + SDHCI_TRANSFER_MODE);
if (!(cmd->resp_type & MMC_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->resp_type & MMC_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->resp_type & MMC_RSP_BUSY)
flags = SDHCI_CMD_RESP_SHORT_BUSY;
else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->resp_type & MMC_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->resp_type & MMC_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
if (cmd->is_data)
flags |= SDHCI_CMD_DATA;
if (cmd->resp_type & MMC_RSP_BUSY || cmd->is_data)
mask |= SDHCI_INT_DATA_END;
writew(SDHCI_MAKE_CMD(cmd->cmdidx, flags), host_base + SDHCI_COMMAND);
do {
stat = readl(host_base + SDHCI_INT_STATUS);
if (stat & SDHCI_INT_ERROR)
return -EIO;
} while ((stat & mask) != mask);
return 0;
}
static int uniphier_emmc_switch_part(void __iomem *host_base, int part_num)
{
struct uniphier_mmc_cmd cmd = {};
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (EXT_CSD_PART_CONF << 16) | (part_num << 8) | (3 << 24);
return uniphier_emmc_send_cmd(host_base, &cmd);
}
static int uniphier_emmc_is_over_2gb(void __iomem *host_base)
{
struct uniphier_mmc_cmd cmd = {};
u32 csd40, csd72; /* CSD[71:40], CSD[103:72] */
int ret;
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = UNIPHIER_EMMC_RCA << 16;
ret = uniphier_emmc_send_cmd(host_base, &cmd);
if (ret)
return ret;
csd40 = readl(host_base + SDHCI_RESPONSE + 4);
csd72 = readl(host_base + SDHCI_RESPONSE + 8);
return !(~csd40 & 0xffc00380) && !(~csd72 & 0x3);
}
static int uniphier_emmc_load_image(void __iomem *host_base, u32 dev_addr,
unsigned long load_addr, u32 block_cnt)
{
struct uniphier_mmc_cmd cmd = {};
u8 tmp;
WARN_ON(load_addr >> 32);
writel(load_addr, host_base + SDHCI_DMA_ADDRESS);
writew(SDHCI_MAKE_BLKSZ(7, 512), host_base + SDHCI_BLOCK_SIZE);
writew(block_cnt, host_base + SDHCI_BLOCK_COUNT);
tmp = readb(host_base + SDHCI_HOST_CONTROL);
tmp &= ~SDHCI_CTRL_DMA_MASK;
tmp |= SDHCI_CTRL_SDMA;
writeb(tmp, host_base + SDHCI_HOST_CONTROL);
tmp = readb(host_base + SDHCI_BLOCK_GAP_CONTROL);
tmp &= ~1; /* clear Stop At Block Gap Request */
writeb(tmp, host_base + SDHCI_BLOCK_GAP_CONTROL);
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = dev_addr;
cmd.is_data = 1;
return uniphier_emmc_send_cmd(host_base, &cmd);
}
static int spl_board_load_image(struct spl_image_info *spl_image,
struct spl_boot_device *bootdev)
{
u32 dev_addr = CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR;
void __iomem *host_base = (void __iomem *)0x5a000200;
struct uniphier_mmc_cmd cmd = {};
int ret;
/*
* deselect card before SEND_CSD command.
* Do not check the return code. It fails, but it is OK.
*/
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.resp_type = MMC_RSP_R1;
uniphier_emmc_send_cmd(host_base, &cmd); /* CMD7 (arg=0) */
/* reset CMD Line */
writeb(SDHCI_RESET_CMD | SDHCI_RESET_DATA,
host_base + SDHCI_SOFTWARE_RESET);
while (readb(host_base + SDHCI_SOFTWARE_RESET))
cpu_relax();
ret = uniphier_emmc_is_over_2gb(host_base);
if (ret < 0)
return ret;
if (ret) {
debug("card is block addressing\n");
} else {
debug("card is byte addressing\n");
dev_addr *= 512;
}
cmd.cmdarg = UNIPHIER_EMMC_RCA << 16;
/* select card again */
ret = uniphier_emmc_send_cmd(host_base, &cmd);
if (ret)
printf("failed to select card\n");
/* Switch to Boot Partition 1 */
ret = uniphier_emmc_switch_part(host_base, 1);
if (ret)
printf("failed to switch partition\n");
ret = uniphier_emmc_load_image(host_base, dev_addr,
CONFIG_SYS_TEXT_BASE, 1);
if (ret) {
printf("failed to load image\n");
return ret;
}
ret = spl_parse_image_header(spl_image, (void *)CONFIG_SYS_TEXT_BASE);
if (ret)
return ret;
ret = uniphier_emmc_load_image(host_base, dev_addr,
spl_image->load_addr,
spl_image->size / 512);
if (ret) {
printf("failed to load image\n");
return ret;
}
return 0;
}
SPL_LOAD_IMAGE_METHOD("eMMC", 0, BOOT_DEVICE_BOARD, spl_board_load_image);
|