summaryrefslogtreecommitdiff
path: root/arch/arm/mach-uniphier/dram/umc-pxs2.c
blob: 9aeda64ef179151de9dcbfa1c5943f0280c61a12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
/*
 * Copyright (C) 2015-2017 Socionext Inc.
 *   Author: Masahiro Yamada <yamada.masahiro@socionext.com>
 *
 * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by:
 * Copyright (C) 2015 Socionext Inc.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <asm/processor.h>

#include "../init.h"
#include "../soc-info.h"
#include "ddrmphy-regs.h"
#include "umc-regs.h"

#define DRAM_CH_NR	3

enum dram_freq {
	DRAM_FREQ_1866M,
	DRAM_FREQ_2133M,
	DRAM_FREQ_NR,
};

enum dram_size {
	DRAM_SZ_256M,
	DRAM_SZ_512M,
	DRAM_SZ_NR,
};

static u32 ddrphy_pgcr2[DRAM_FREQ_NR] = {0x00FC7E5D, 0x00FC90AB};
static u32 ddrphy_ptr0[DRAM_FREQ_NR] = {0x0EA09205, 0x10C0A6C6};
static u32 ddrphy_ptr1[DRAM_FREQ_NR] = {0x0DAC041B, 0x0FA104B1};
static u32 ddrphy_ptr3[DRAM_FREQ_NR] = {0x15171e45, 0x18182357};
static u32 ddrphy_ptr4[DRAM_FREQ_NR] = {0x0e9ad8e9, 0x10b34157};
static u32 ddrphy_dtpr0[DRAM_FREQ_NR] = {0x35a00d88, 0x39e40e88};
static u32 ddrphy_dtpr1[DRAM_FREQ_NR] = {0x2288cc2c, 0x228a04d0};
static u32 ddrphy_dtpr2[DRAM_FREQ_NR] = {0x50005e00, 0x50006a00};
static u32 ddrphy_dtpr3[DRAM_FREQ_NR] = {0x0010cb49, 0x0010ec89};
static u32 ddrphy_mr0[DRAM_FREQ_NR] = {0x00000115, 0x00000125};
static u32 ddrphy_mr2[DRAM_FREQ_NR] = {0x000002a0, 0x000002a8};

/* dependent on package and board design */
static u32 ddrphy_acbdlr0[DRAM_CH_NR] = {0x0000000c, 0x0000000c, 0x00000009};

static u32 umc_cmdctla[DRAM_FREQ_NR] = {0x66DD131D, 0x77EE1722};
/*
 * The ch2 is a different generation UMC core.
 * The register spec is different, unfortunately.
 */
static u32 umc_cmdctlb_ch01[DRAM_FREQ_NR] = {0x13E87C44, 0x18F88C44};
static u32 umc_cmdctlb_ch2[DRAM_FREQ_NR] = {0x19E8DC44, 0x1EF8EC44};
static u32 umc_spcctla[DRAM_FREQ_NR][DRAM_SZ_NR] = {
	{0x004A071D, 0x0078071D},
	{0x0055081E, 0x0089081E},
};

static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B};
/* The ch2 is different for some reason only hardware guys know... */
static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022};
static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E};

/* DDR multiPHY */
static inline int ddrphy_get_rank(int dx)
{
	return dx / 2;
}

static void ddrphy_fifo_reset(void __iomem *phy_base)
{
	u32 tmp;

	tmp = readl(phy_base + DMPHY_PGCR0);
	tmp &= ~DMPHY_PGCR0_PHYFRST;
	writel(tmp, phy_base + DMPHY_PGCR0);

	udelay(1);

	tmp |= DMPHY_PGCR0_PHYFRST;
	writel(tmp, phy_base + DMPHY_PGCR0);

	udelay(1);
}

static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable)
{
	u32 tmp;

	tmp = readl(phy_base + DMPHY_PGCR1);

	if (enable)
		tmp &= ~DMPHY_PGCR1_INHVT;
	else
		tmp |= DMPHY_PGCR1_INHVT;

	writel(tmp, phy_base + DMPHY_PGCR1);

	if (!enable) {
		while (!(readl(phy_base + DMPHY_PGSR1) & DMPHY_PGSR1_VTSTOP))
			cpu_relax();
	}
}

static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step)
{
	int dx;
	u32 lcdlr1, rdqsd;
	void __iomem *dx_base = phy_base + DMPHY_DX_BASE;

	ddrphy_vt_ctrl(phy_base, 0);

	for (dx = 0; dx < nr_dx; dx++) {
		lcdlr1 = readl(dx_base + DMPHY_DX_LCDLR1);
		rdqsd = (lcdlr1 >> 8) & 0xff;
		rdqsd = clamp(rdqsd + step, 0U, 0xffU);
		lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8);
		writel(lcdlr1, dx_base + DMPHY_DX_LCDLR1);
		readl(dx_base + DMPHY_DX_LCDLR1); /* relax */
		dx_base += DMPHY_DX_STRIDE;
	}

	ddrphy_vt_ctrl(phy_base, 1);
}

static int ddrphy_get_system_latency(void __iomem *phy_base, int width)
{
	void __iomem *dx_base = phy_base + DMPHY_DX_BASE;
	const int nr_dx = width / 8;
	int dx, rank;
	u32 gtr;
	int dgsl, dgsl_min = INT_MAX, dgsl_max = 0;

	for (dx = 0; dx < nr_dx; dx++) {
		gtr = readl(dx_base + DMPHY_DX_GTR);
		for (rank = 0; rank < 4; rank++) {
			dgsl = gtr & 0x7;
			/* if dgsl is zero, this rank was not trained. skip. */
			if (dgsl) {
				dgsl_min = min(dgsl_min, dgsl);
				dgsl_max = max(dgsl_max, dgsl);
			}
			gtr >>= 3;
		}
		dx_base += DMPHY_DX_STRIDE;
	}

	if (dgsl_min != dgsl_max)
		printf("DQS Gateing System Latencies are not all leveled.\n");

	return dgsl_max;
}

static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width,
			int ch)
{
	u32 tmp;
	void __iomem *zq_base, *dx_base;
	int zq, dx;
	int nr_dx;

	nr_dx = width / 8;

	writel(DMPHY_PIR_ZCALBYP,        phy_base + DMPHY_PIR);
	/*
	 * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation)
	 * to avoid read error issue.
	 */
	writel(0x07d81e37,         phy_base + DMPHY_PGCR0);
	writel(0x0200c4e0,         phy_base + DMPHY_PGCR1);

	tmp = ddrphy_pgcr2[freq];
	if (width >= 32)
		tmp |= DMPHY_PGCR2_DUALCHN | DMPHY_PGCR2_ACPDDC;
	writel(tmp, phy_base + DMPHY_PGCR2);

	writel(ddrphy_ptr0[freq],  phy_base + DMPHY_PTR0);
	writel(ddrphy_ptr1[freq],  phy_base + DMPHY_PTR1);
	writel(0x00083def,         phy_base + DMPHY_PTR2);
	writel(ddrphy_ptr3[freq],  phy_base + DMPHY_PTR3);
	writel(ddrphy_ptr4[freq],  phy_base + DMPHY_PTR4);

	writel(ddrphy_acbdlr0[ch], phy_base + DMPHY_ACBDLR0);

	writel(0x55555555, phy_base + DMPHY_ACIOCR1);
	writel(0x00000000, phy_base + DMPHY_ACIOCR2);
	writel(0x55555555, phy_base + DMPHY_ACIOCR3);
	writel(0x00000000, phy_base + DMPHY_ACIOCR4);
	writel(0x00000055, phy_base + DMPHY_ACIOCR5);
	writel(0x00181aa4, phy_base + DMPHY_DXCCR);

	writel(0x0024641e, phy_base + DMPHY_DSGCR);
	writel(0x0000040b, phy_base + DMPHY_DCR);
	writel(ddrphy_dtpr0[freq], phy_base + DMPHY_DTPR0);
	writel(ddrphy_dtpr1[freq], phy_base + DMPHY_DTPR1);
	writel(ddrphy_dtpr2[freq], phy_base + DMPHY_DTPR2);
	writel(ddrphy_dtpr3[freq], phy_base + DMPHY_DTPR3);
	writel(ddrphy_mr0[freq], phy_base + DMPHY_MR0);
	writel(0x00000006,       phy_base + DMPHY_MR1);
	writel(ddrphy_mr2[freq], phy_base + DMPHY_MR2);
	writel(0x00000000,       phy_base + DMPHY_MR3);

	tmp = 0;
	for (dx = 0; dx < nr_dx; dx++)
		tmp |= BIT(DMPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx));
	writel(0x90003087 | tmp, phy_base + DMPHY_DTCR);

	writel(0x00000000, phy_base + DMPHY_DTAR0);
	writel(0x00000008, phy_base + DMPHY_DTAR1);
	writel(0x00000010, phy_base + DMPHY_DTAR2);
	writel(0x00000018, phy_base + DMPHY_DTAR3);
	writel(0xdd22ee11, phy_base + DMPHY_DTDR0);
	writel(0x7788bb44, phy_base + DMPHY_DTDR1);

	/* impedance control settings */
	writel(0x04048900, phy_base + DMPHY_ZQCR);

	zq_base = phy_base + DMPHY_ZQ_BASE;
	for (zq = 0; zq < 4; zq++) {
		/*
		 * board-dependent
		 * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D
		 */
		writel(0x0007BB5D, zq_base + DMPHY_ZQ_PR);
		zq_base += DMPHY_ZQ_STRIDE;
	}

	/* DATX8 settings */
	dx_base = phy_base + DMPHY_DX_BASE;
	for (dx = 0; dx < 4; dx++) {
		tmp = readl(dx_base + DMPHY_DX_GCR0);
		tmp &= ~DMPHY_DX_GCR0_WLRKEN_MASK;
		tmp |= BIT(DMPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) &
						DMPHY_DX_GCR0_WLRKEN_MASK;
		writel(tmp, dx_base + DMPHY_DX_GCR0);

		writel(0x00000000, dx_base + DMPHY_DX_GCR1);
		writel(0x00000000, dx_base + DMPHY_DX_GCR2);
		writel(0x00000000, dx_base + DMPHY_DX_GCR3);
		dx_base += DMPHY_DX_STRIDE;
	}

	while (!(readl(phy_base + DMPHY_PGSR0) & DMPHY_PGSR0_IDONE))
		cpu_relax();

	ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4);
}

struct ddrphy_init_sequence {
	char *description;
	u32 init_flag;
	u32 done_flag;
	u32 err_flag;
};

static const struct ddrphy_init_sequence impedance_calibration_sequence[] = {
	{
		"Impedance Calibration",
		DMPHY_PIR_ZCAL,
		DMPHY_PGSR0_ZCDONE,
		DMPHY_PGSR0_ZCERR,
	},
	{ /* sentinel */ }
};

static const struct ddrphy_init_sequence dram_init_sequence[] = {
	{
		"DRAM Initialization",
		DMPHY_PIR_DRAMRST | DMPHY_PIR_DRAMINIT,
		DMPHY_PGSR0_DIDONE,
		0,
	},
	{ /* sentinel */ }
};

static const struct ddrphy_init_sequence training_sequence[] = {
	{
		"Write Leveling",
		DMPHY_PIR_WL,
		DMPHY_PGSR0_WLDONE,
		DMPHY_PGSR0_WLERR,
	},
	{
		"Read DQS Gate Training",
		DMPHY_PIR_QSGATE,
		DMPHY_PGSR0_QSGDONE,
		DMPHY_PGSR0_QSGERR,
	},
	{
		"Write Leveling Adjustment",
		DMPHY_PIR_WLADJ,
		DMPHY_PGSR0_WLADONE,
		DMPHY_PGSR0_WLAERR,
	},
	{
		"Read Bit Deskew",
		DMPHY_PIR_RDDSKW,
		DMPHY_PGSR0_RDDONE,
		DMPHY_PGSR0_RDERR,
	},
	{
		"Write Bit Deskew",
		DMPHY_PIR_WRDSKW,
		DMPHY_PGSR0_WDDONE,
		DMPHY_PGSR0_WDERR,
	},
	{
		"Read Eye Training",
		DMPHY_PIR_RDEYE,
		DMPHY_PGSR0_REDONE,
		DMPHY_PGSR0_REERR,
	},
	{
		"Write Eye Training",
		DMPHY_PIR_WREYE,
		DMPHY_PGSR0_WEDONE,
		DMPHY_PGSR0_WEERR,
	},
	{ /* sentinel */ }
};

static int __ddrphy_training(void __iomem *phy_base,
			     const struct ddrphy_init_sequence *seq)
{
	const struct ddrphy_init_sequence *s;
	u32 pgsr0;
	u32 init_flag = DMPHY_PIR_INIT;
	u32 done_flag = DMPHY_PGSR0_IDONE;
	int timeout = 50000; /* 50 msec is long enough */
#ifdef DISPLAY_ELAPSED_TIME
	ulong start = get_timer(0);
#endif

	for (s = seq; s->description; s++) {
		init_flag |= s->init_flag;
		done_flag |= s->done_flag;
	}

	writel(init_flag, phy_base + DMPHY_PIR);

	do {
		if (--timeout < 0) {
			pr_err("%s: error: timeout during DDR training\n",
			       __func__);
			return -ETIMEDOUT;
		}
		udelay(1);
		pgsr0 = readl(phy_base + DMPHY_PGSR0);
	} while ((pgsr0 & done_flag) != done_flag);

	for (s = seq; s->description; s++) {
		if (pgsr0 & s->err_flag) {
			pr_err("%s: error: %s failed\n", __func__,
			       s->description);
			return -EIO;
		}
	}

#ifdef DISPLAY_ELAPSED_TIME
	printf("%s: info: elapsed time %ld msec\n", get_timer(start));
#endif

	return 0;
}

static int ddrphy_impedance_calibration(void __iomem *phy_base)
{
	int ret;
	u32 tmp;

	ret = __ddrphy_training(phy_base, impedance_calibration_sequence);
	if (ret)
		return ret;

	/*
	 * Because of a hardware bug, IDONE flag is set when the first ZQ block
	 * is calibrated.  The flag does not guarantee the completion for all
	 * the ZQ blocks.  Wait a little more just in case.
	 */
	udelay(1);

	/* reflect ZQ settings and enable average algorithm*/
	tmp = readl(phy_base + DMPHY_ZQCR);
	tmp |= DMPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
	writel(tmp, phy_base + DMPHY_ZQCR);
	tmp &= ~DMPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
	tmp |= DMPHY_ZQCR_AVGEN;
	writel(tmp, phy_base + DMPHY_ZQCR);

	return 0;
}

static int ddrphy_dram_init(void __iomem *phy_base)
{
	return __ddrphy_training(phy_base, dram_init_sequence);
}

static int ddrphy_training(void __iomem *phy_base)
{
	return __ddrphy_training(phy_base, training_sequence);
}

/* UMC */
static void umc_set_system_latency(void __iomem *dc_base, int phy_latency)
{
	u32 val;
	int latency;

	val = readl(dc_base + UMC_RDATACTL_D0);
	latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT;
	latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >>
						UMC_RDATACTL_RAD2LTY_SHIFT;
	/*
	 * UMC works at the half clock rate of the PHY.
	 * The LSB of latency is ignored
	 */
	latency += phy_latency & ~1;

	val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK);
	if (latency > 0xf) {
		val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
		val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
	} else {
		val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
	}

	writel(val, dc_base + UMC_RDATACTL_D0);
	writel(val, dc_base + UMC_RDATACTL_D1);

	readl(dc_base + UMC_RDATACTL_D1); /* relax */
}

/* enable/disable auto refresh */
void umc_refresh_ctrl(void __iomem *dc_base, int enable)
{
	u32 tmp;

	tmp = readl(dc_base + UMC_SPCSETB);
	tmp &= ~UMC_SPCSETB_AREFMD_MASK;

	if (enable)
		tmp |= UMC_SPCSETB_AREFMD_ARB;
	else
		tmp |= UMC_SPCSETB_AREFMD_REG;

	writel(tmp, dc_base + UMC_SPCSETB);
	udelay(1);
}

static void umc_ud_init(void __iomem *umc_base, int ch)
{
	writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0);

	if (ch == 2)
		writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0);
}

static int umc_dc_init(void __iomem *dc_base, enum dram_freq freq,
		       unsigned long size, int width, int ch)
{
	enum dram_size size_e;
	int latency;
	u32 val;

	switch (size) {
	case 0:
		return 0;
	case SZ_256M:
		size_e = DRAM_SZ_256M;
		break;
	case SZ_512M:
		size_e = DRAM_SZ_512M;
		break;
	default:
		pr_err("unsupported DRAM size 0x%08lx (per 16bit) for ch%d\n",
		       size, ch);
		return -EINVAL;
	}

	writel(umc_cmdctla[freq], dc_base + UMC_CMDCTLA);

	writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq],
	       dc_base + UMC_CMDCTLB);

	writel(umc_spcctla[freq][size_e], dc_base + UMC_SPCCTLA);
	writel(umc_spcctlb[freq], dc_base + UMC_SPCCTLB);

	val = 0x000e000e;
	latency = 12;
	/* ES2 inserted one more FF to the logic. */
	if (uniphier_get_soc_model() >= 2)
		latency += 2;

	if (latency > 0xf) {
		val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
		val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
	} else {
		val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
	}

	writel(val, dc_base + UMC_RDATACTL_D0);
	if (width >= 32)
		writel(val, dc_base + UMC_RDATACTL_D1);

	writel(0x04060A02, dc_base + UMC_WDATACTL_D0);
	if (width >= 32)
		writel(0x04060A02, dc_base + UMC_WDATACTL_D1);
	writel(0x04000000, dc_base + UMC_DATASET);
	writel(0x00400020, dc_base + UMC_DCCGCTL);
	writel(0x00000084, dc_base + UMC_FLOWCTLG);
	writel(0x00000000, dc_base + UMC_ACSSETA);

	writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq],
	       dc_base + UMC_FLOWCTLA);

	writel(0x00004400, dc_base + UMC_FLOWCTLC);
	writel(0x200A0A00, dc_base + UMC_SPCSETB);
	writel(0x00000520, dc_base + UMC_DFICUPDCTLA);
	writel(0x0000000D, dc_base + UMC_RESPCTL);

	if (ch != 2) {
		writel(0x00202000, dc_base + UMC_FLOWCTLB);
		writel(0xFDBFFFFF, dc_base + UMC_FLOWCTLOB0);
		writel(0xFFFFFFFF, dc_base + UMC_FLOWCTLOB1);
		writel(0x00080700, dc_base + UMC_BSICMAPSET);
	} else {
		writel(0x00200000, dc_base + UMC_FLOWCTLB);
		writel(0x00000000, dc_base + UMC_BSICMAPSET);
	}

	writel(0x00000000, dc_base + UMC_ERRMASKA);
	writel(0x00000000, dc_base + UMC_ERRMASKB);

	return 0;
}

static int umc_ch_init(void __iomem *umc_ch_base, enum dram_freq freq,
		       unsigned long size, unsigned int width, int ch)
{
	void __iomem *dc_base = umc_ch_base + 0x00011000;
	void __iomem *phy_base = umc_ch_base + 0x00030000;
	int ret;

	writel(0x00000002, dc_base + UMC_INITSET);
	while (readl(dc_base + UMC_INITSTAT) & BIT(2))
		cpu_relax();

	/* deassert PHY reset signals */
	writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST,
	       dc_base + UMC_DIOCTLA);

	ddrphy_init(phy_base, freq, width, ch);

	ret = ddrphy_impedance_calibration(phy_base);
	if (ret)
		return ret;

	ddrphy_dram_init(phy_base);
	if (ret)
		return ret;

	ret = umc_dc_init(dc_base, freq, size, width, ch);
	if (ret)
		return ret;

	umc_ud_init(umc_ch_base, ch);

	ret = ddrphy_training(phy_base);
	if (ret)
		return ret;

	udelay(1);

	/* match the system latency between UMC and PHY */
	umc_set_system_latency(dc_base,
			       ddrphy_get_system_latency(phy_base, width));

	udelay(1);

	/* stop auto refresh before clearing FIFO in PHY */
	umc_refresh_ctrl(dc_base, 0);
	ddrphy_fifo_reset(phy_base);
	umc_refresh_ctrl(dc_base, 1);

	udelay(10);

	return 0;
}

static void um_init(void __iomem *um_base)
{
	writel(0x000000ff, um_base + UMC_MBUS0);
	writel(0x000000ff, um_base + UMC_MBUS1);
	writel(0x000000ff, um_base + UMC_MBUS2);
	writel(0x000000ff, um_base + UMC_MBUS3);
}

int uniphier_pxs2_umc_init(const struct uniphier_board_data *bd)
{
	void __iomem *um_base = (void __iomem *)0x5b600000;
	void __iomem *umc_ch_base = (void __iomem *)0x5b800000;
	enum dram_freq freq;
	int ch, ret;

	switch (bd->dram_freq) {
	case 1866:
		freq = DRAM_FREQ_1866M;
		break;
	case 2133:
		freq = DRAM_FREQ_2133M;
		break;
	default:
		pr_err("unsupported DRAM frequency %d MHz\n", bd->dram_freq);
		return -EINVAL;
	}

	for (ch = 0; ch < bd->dram_nr_ch; ch++) {
		unsigned long size = bd->dram_ch[ch].size;
		unsigned int width = bd->dram_ch[ch].width;

		ret = umc_ch_init(umc_ch_base, freq, size / (width / 16),
				  width, ch);
		if (ret) {
			pr_err("failed to initialize UMC ch%d\n", ch);
			return ret;
		}

		umc_ch_base += 0x00200000;
	}

	um_init(um_base);

	return 0;
}