1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
/*
* Copyright 2008 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
#include <common.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
/*
* Calculate the Density of each Physical Rank.
* Returned size is in bytes.
*
* Study these table from Byte 31 of JEDEC SPD Spec.
*
* DDR I DDR II
* Bit Size Size
* --- ----- ------
* 7 high 512MB 512MB
* 6 256MB 256MB
* 5 128MB 128MB
* 4 64MB 16GB
* 3 32MB 8GB
* 2 16MB 4GB
* 1 2GB 2GB
* 0 low 1GB 1GB
*
* Reorder Table to be linear by stripping the bottom
* 2 or 5 bits off and shifting them up to the top.
*
*/
static unsigned long long
compute_ranksize(unsigned int mem_type, unsigned char row_dens)
{
unsigned long long bsize;
/* Bottom 5 bits up to the top. */
bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
bsize <<= 27ULL;
debug("DDR: DDR II rank density = 0x%16llx\n", bsize);
return bsize;
}
/*
* Convert a two-nibble BCD value into a cycle time.
* While the spec calls for nano-seconds, picos are returned.
*
* This implements the tables for bytes 9, 23 and 25 for both
* DDR I and II. No allowance for distinguishing the invalid
* fields absent for DDR I yet present in DDR II is made.
* (That is, cycle times of .25, .33, .66 and .75 ns are
* allowed for both DDR II and I.)
*/
static unsigned int
convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
{
/* Table look up the lower nibble, allow DDR I & II. */
unsigned int tenths_ps[16] = {
0,
100,
200,
300,
400,
500,
600,
700,
800,
900,
250, /* This and the next 3 entries valid ... */
330, /* ... only for tCK calculations. */
660,
750,
0, /* undefined */
0 /* undefined */
};
unsigned int whole_ns = (spd_val & 0xF0) >> 4;
unsigned int tenth_ns = spd_val & 0x0F;
unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
return ps;
}
static unsigned int
convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
{
unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
unsigned int hundredth_ns = spd_val & 0x0F;
unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
return ps;
}
static unsigned int byte40_table_ps[8] = {
0,
250,
330,
500,
660,
750,
0, /* supposed to be RFC, but not sure what that means */
0 /* Undefined */
};
static unsigned int
compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
{
unsigned int trfc_ps;
trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
+ byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
return trfc_ps;
}
static unsigned int
compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
{
unsigned int trc_ps;
trc_ps = trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
return trc_ps;
}
/*
* Determine Refresh Rate. Ignore self refresh bit on DDR I.
* Table from SPD Spec, Byte 12, converted to picoseconds and
* filled in with "default" normal values.
*/
static unsigned int
determine_refresh_rate_ps(const unsigned int spd_refresh)
{
unsigned int refresh_time_ps[8] = {
15625000, /* 0 Normal 1.00x */
3900000, /* 1 Reduced .25x */
7800000, /* 2 Extended .50x */
31300000, /* 3 Extended 2.00x */
62500000, /* 4 Extended 4.00x */
125000000, /* 5 Extended 8.00x */
15625000, /* 6 Normal 1.00x filler */
15625000, /* 7 Normal 1.00x filler */
};
return refresh_time_ps[spd_refresh & 0x7];
}
/*
* The purpose of this function is to compute a suitable
* CAS latency given the DRAM clock period. The SPD only
* defines at most 3 CAS latencies. Typically the slower in
* frequency the DIMM runs at, the shorter its CAS latency can.
* be. If the DIMM is operating at a sufficiently low frequency,
* it may be able to run at a CAS latency shorter than the
* shortest SPD-defined CAS latency.
*
* If a CAS latency is not found, 0 is returned.
*
* Do this by finding in the standard speed bin table the longest
* tCKmin that doesn't exceed the value of mclk_ps (tCK).
*
* An assumption made is that the SDRAM device allows the
* CL to be programmed for a value that is lower than those
* advertised by the SPD. This is not always the case,
* as those modes not defined in the SPD are optional.
*
* CAS latency de-rating based upon values JEDEC Standard No. 79-2C
* Table 40, "DDR2 SDRAM stanadard speed bins and tCK, tRCD, tRP, tRAS,
* and tRC for corresponding bin"
*
* ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
* Not certain if any good value exists for CL=2
*/
/* CL2 CL3 CL4 CL5 CL6 CL7*/
unsigned short ddr2_speed_bins[] = { 0, 5000, 3750, 3000, 2500, 1875 };
unsigned int
compute_derated_DDR2_CAS_latency(unsigned int mclk_ps)
{
const unsigned int num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
unsigned int lowest_tCKmin_found = 0;
unsigned int lowest_tCKmin_CL = 0;
unsigned int i;
debug("mclk_ps = %u\n", mclk_ps);
for (i = 0; i < num_speed_bins; i++) {
unsigned int x = ddr2_speed_bins[i];
debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
i, x, lowest_tCKmin_found);
if (x && x <= mclk_ps && x >= lowest_tCKmin_found ) {
lowest_tCKmin_found = x;
lowest_tCKmin_CL = i + 2;
}
}
debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
return lowest_tCKmin_CL;
}
/*
* ddr_compute_dimm_parameters for DDR2 SPD
*
* Compute DIMM parameters based upon the SPD information in spd.
* Writes the results to the dimm_params_t structure pointed by pdimm.
*
* FIXME: use #define for the retvals
*/
unsigned int
ddr_compute_dimm_parameters(const ddr2_spd_eeprom_t *spd,
dimm_params_t *pdimm,
unsigned int dimm_number)
{
unsigned int retval;
if (spd->mem_type) {
if (spd->mem_type != SPD_MEMTYPE_DDR2) {
printf("DIMM %u: is not a DDR2 SPD.\n", dimm_number);
return 1;
}
} else {
memset(pdimm, 0, sizeof(dimm_params_t));
return 1;
}
retval = ddr2_spd_check(spd);
if (retval) {
printf("DIMM %u: failed checksum\n", dimm_number);
return 2;
}
/*
* The part name in ASCII in the SPD EEPROM is not null terminated.
* Guarantee null termination here by presetting all bytes to 0
* and copying the part name in ASCII from the SPD onto it
*/
memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
/* DIMM organization parameters */
pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
pdimm->data_width = spd->dataw;
pdimm->primary_sdram_width = spd->primw;
pdimm->ec_sdram_width = spd->ecw;
/* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
switch (spd->dimm_type) {
case DDR2_SPD_DIMMTYPE_RDIMM:
case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
/* Registered/buffered DIMMs */
pdimm->registered_dimm = 1;
break;
case DDR2_SPD_DIMMTYPE_UDIMM:
case DDR2_SPD_DIMMTYPE_SO_DIMM:
case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
/* Unbuffered DIMMs */
pdimm->registered_dimm = 0;
break;
case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
default:
printf("unknown dimm_type 0x%02X\n", spd->dimm_type);
return 1;
}
/* SDRAM device parameters */
pdimm->n_row_addr = spd->nrow_addr;
pdimm->n_col_addr = spd->ncol_addr;
pdimm->n_banks_per_sdram_device = spd->nbanks;
pdimm->edc_config = spd->config;
pdimm->burst_lengths_bitmask = spd->burstl;
pdimm->row_density = spd->rank_dens;
/*
* Calculate the Maximum Data Rate based on the Minimum Cycle time.
* The SPD clk_cycle field (tCKmin) is measured in tenths of
* nanoseconds and represented as BCD.
*/
pdimm->tckmin_x_ps
= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
pdimm->tckmin_x_minus_1_ps
= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
pdimm->tckmin_x_minus_2_ps
= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
pdimm->tckmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
/*
* Compute CAS latencies defined by SPD
* The SPD caslat_x should have at least 1 and at most 3 bits set.
*
* If cas_lat after masking is 0, the __ilog2 function returns
* 255 into the variable. This behavior is abused once.
*/
pdimm->caslat_x = __ilog2(spd->cas_lat);
pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
& ~(1 << pdimm->caslat_x));
pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
& ~(1 << pdimm->caslat_x)
& ~(1 << pdimm->caslat_x_minus_1));
/* Compute CAS latencies below that defined by SPD */
pdimm->caslat_lowest_derated
= compute_derated_DDR2_CAS_latency(get_memory_clk_period_ps());
/* Compute timing parameters */
pdimm->trcd_ps = spd->trcd * 250;
pdimm->trp_ps = spd->trp * 250;
pdimm->tras_ps = spd->tras * 1000;
pdimm->twr_ps = spd->twr * 250;
pdimm->twtr_ps = spd->twtr * 250;
pdimm->trfc_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
pdimm->trrd_ps = spd->trrd * 250;
pdimm->trc_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
pdimm->tds_ps
= convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
pdimm->tdh_ps
= convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
pdimm->trtp_ps = spd->trtp * 250;
pdimm->tdqsq_max_ps = spd->tdqsq * 10;
pdimm->tqhs_ps = spd->tqhs * 10;
return 0;
}
|