1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
/*
* Copyright 2008-2012 Freescale Semiconductor, Inc.
* Dave Liu <daveliu@freescale.com>
*
* calculate the organization and timing parameter
* from ddr3 spd, please refer to the spec
* JEDEC standard No.21-C 4_01_02_11R18.pdf
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
#include <common.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
/*
* Calculate the Density of each Physical Rank.
* Returned size is in bytes.
*
* each rank size =
* sdram capacity(bit) / 8 * primary bus width / sdram width
*
* where: sdram capacity = spd byte4[3:0]
* primary bus width = spd byte8[2:0]
* sdram width = spd byte7[2:0]
*
* SPD byte4 - sdram density and banks
* bit[3:0] size(bit) size(byte)
* 0000 256Mb 32MB
* 0001 512Mb 64MB
* 0010 1Gb 128MB
* 0011 2Gb 256MB
* 0100 4Gb 512MB
* 0101 8Gb 1GB
* 0110 16Gb 2GB
*
* SPD byte8 - module memory bus width
* bit[2:0] primary bus width
* 000 8bits
* 001 16bits
* 010 32bits
* 011 64bits
*
* SPD byte7 - module organiztion
* bit[2:0] sdram device width
* 000 4bits
* 001 8bits
* 010 16bits
* 011 32bits
*
*/
static unsigned long long
compute_ranksize(const ddr3_spd_eeprom_t *spd)
{
unsigned long long bsize;
int nbit_sdram_cap_bsize = 0;
int nbit_primary_bus_width = 0;
int nbit_sdram_width = 0;
if ((spd->density_banks & 0xf) < 7)
nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
if ((spd->bus_width & 0x7) < 4)
nbit_primary_bus_width = (spd->bus_width & 0x7) + 3;
if ((spd->organization & 0x7) < 4)
nbit_sdram_width = (spd->organization & 0x7) + 2;
bsize = 1ULL << (nbit_sdram_cap_bsize - 3
+ nbit_primary_bus_width - nbit_sdram_width);
debug("DDR: DDR III rank density = 0x%16llx\n", bsize);
return bsize;
}
/*
* ddr_compute_dimm_parameters for DDR3 SPD
*
* Compute DIMM parameters based upon the SPD information in spd.
* Writes the results to the dimm_params_t structure pointed by pdimm.
*
*/
unsigned int
ddr_compute_dimm_parameters(const ddr3_spd_eeprom_t *spd,
dimm_params_t *pdimm,
unsigned int dimm_number)
{
unsigned int retval;
unsigned int mtb_ps;
int ftb_10th_ps;
int i;
if (spd->mem_type) {
if (spd->mem_type != SPD_MEMTYPE_DDR3) {
printf("DIMM %u: is not a DDR3 SPD.\n", dimm_number);
return 1;
}
} else {
memset(pdimm, 0, sizeof(dimm_params_t));
return 1;
}
retval = ddr3_spd_check(spd);
if (retval) {
printf("DIMM %u: failed checksum\n", dimm_number);
return 2;
}
/*
* The part name in ASCII in the SPD EEPROM is not null terminated.
* Guarantee null termination here by presetting all bytes to 0
* and copying the part name in ASCII from the SPD onto it
*/
memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
if ((spd->info_size_crc & 0xF) > 1)
memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
/* DIMM organization parameters */
pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
pdimm->rank_density = compute_ranksize(spd);
pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
if ((spd->bus_width >> 3) & 0x3)
pdimm->ec_sdram_width = 8;
else
pdimm->ec_sdram_width = 0;
pdimm->data_width = pdimm->primary_sdram_width
+ pdimm->ec_sdram_width;
pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
/* These are the types defined by the JEDEC DDR3 SPD spec */
pdimm->mirrored_dimm = 0;
pdimm->registered_dimm = 0;
switch (spd->module_type & DDR3_SPD_MODULETYPE_MASK) {
case DDR3_SPD_MODULETYPE_RDIMM:
case DDR3_SPD_MODULETYPE_MINI_RDIMM:
case DDR3_SPD_MODULETYPE_72B_SO_RDIMM:
/* Registered/buffered DIMMs */
pdimm->registered_dimm = 1;
for (i = 0; i < 16; i += 2) {
u8 rcw = spd->mod_section.registered.rcw[i/2];
pdimm->rcw[i] = (rcw >> 0) & 0x0F;
pdimm->rcw[i+1] = (rcw >> 4) & 0x0F;
}
break;
case DDR3_SPD_MODULETYPE_UDIMM:
case DDR3_SPD_MODULETYPE_SO_DIMM:
case DDR3_SPD_MODULETYPE_MICRO_DIMM:
case DDR3_SPD_MODULETYPE_MINI_UDIMM:
case DDR3_SPD_MODULETYPE_MINI_CDIMM:
case DDR3_SPD_MODULETYPE_72B_SO_UDIMM:
case DDR3_SPD_MODULETYPE_72B_SO_CDIMM:
case DDR3_SPD_MODULETYPE_LRDIMM:
case DDR3_SPD_MODULETYPE_16B_SO_DIMM:
case DDR3_SPD_MODULETYPE_32B_SO_DIMM:
/* Unbuffered DIMMs */
if (spd->mod_section.unbuffered.addr_mapping & 0x1)
pdimm->mirrored_dimm = 1;
break;
default:
printf("unknown module_type 0x%02X\n", spd->module_type);
return 1;
}
/* SDRAM device parameters */
pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
pdimm->n_banks_per_sdram_device = 8 << ((spd->density_banks >> 4) & 0x7);
/*
* The SPD spec has not the ECC bit,
* We consider the DIMM as ECC capability
* when the extension bus exist
*/
if (pdimm->ec_sdram_width)
pdimm->edc_config = 0x02;
else
pdimm->edc_config = 0x00;
/*
* The SPD spec has not the burst length byte
* but DDR3 spec has nature BL8 and BC4,
* BL8 -bit3, BC4 -bit2
*/
pdimm->burst_lengths_bitmask = 0x0c;
pdimm->row_density = __ilog2(pdimm->rank_density);
/* MTB - medium timebase
* The unit in the SPD spec is ns,
* We convert it to ps.
* eg: MTB = 0.125ns (125ps)
*/
mtb_ps = (spd->mtb_dividend * 1000) /spd->mtb_divisor;
pdimm->mtb_ps = mtb_ps;
/*
* FTB - fine timebase
* use 1/10th of ps as our unit to avoid floating point
* eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps
*/
ftb_10th_ps =
((spd->ftb_div & 0xf0) >> 4) * 10 / (spd->ftb_div & 0x0f);
pdimm->ftb_10th_ps = ftb_10th_ps;
/*
* sdram minimum cycle time
* we assume the MTB is 0.125ns
* eg:
* tck_min=15 MTB (1.875ns) ->DDR3-1066
* =12 MTB (1.5ns) ->DDR3-1333
* =10 MTB (1.25ns) ->DDR3-1600
*/
pdimm->tckmin_x_ps = spd->tck_min * mtb_ps +
(spd->fine_tck_min * ftb_10th_ps) / 10;
/*
* CAS latency supported
* bit4 - CL4
* bit5 - CL5
* bit18 - CL18
*/
pdimm->caslat_x = ((spd->caslat_msb << 8) | spd->caslat_lsb) << 4;
/*
* min CAS latency time
* eg: taa_min =
* DDR3-800D 100 MTB (12.5ns)
* DDR3-1066F 105 MTB (13.125ns)
* DDR3-1333H 108 MTB (13.5ns)
* DDR3-1600H 90 MTB (11.25ns)
*/
pdimm->taa_ps = spd->taa_min * mtb_ps +
(spd->fine_taa_min * ftb_10th_ps) / 10;
/*
* min write recovery time
* eg:
* twr_min = 120 MTB (15ns) -> all speed grades.
*/
pdimm->twr_ps = spd->twr_min * mtb_ps;
/*
* min RAS to CAS delay time
* eg: trcd_min =
* DDR3-800 100 MTB (12.5ns)
* DDR3-1066F 105 MTB (13.125ns)
* DDR3-1333H 108 MTB (13.5ns)
* DDR3-1600H 90 MTB (11.25)
*/
pdimm->trcd_ps = spd->trcd_min * mtb_ps +
(spd->fine_trcd_min * ftb_10th_ps) / 10;
/*
* min row active to row active delay time
* eg: trrd_min =
* DDR3-800(1KB page) 80 MTB (10ns)
* DDR3-1333(1KB page) 48 MTB (6ns)
*/
pdimm->trrd_ps = spd->trrd_min * mtb_ps;
/*
* min row precharge delay time
* eg: trp_min =
* DDR3-800D 100 MTB (12.5ns)
* DDR3-1066F 105 MTB (13.125ns)
* DDR3-1333H 108 MTB (13.5ns)
* DDR3-1600H 90 MTB (11.25ns)
*/
pdimm->trp_ps = spd->trp_min * mtb_ps +
(spd->fine_trp_min * ftb_10th_ps) / 10;
/* min active to precharge delay time
* eg: tRAS_min =
* DDR3-800D 300 MTB (37.5ns)
* DDR3-1066F 300 MTB (37.5ns)
* DDR3-1333H 288 MTB (36ns)
* DDR3-1600H 280 MTB (35ns)
*/
pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) | spd->tras_min_lsb)
* mtb_ps;
/*
* min active to actice/refresh delay time
* eg: tRC_min =
* DDR3-800D 400 MTB (50ns)
* DDR3-1066F 405 MTB (50.625ns)
* DDR3-1333H 396 MTB (49.5ns)
* DDR3-1600H 370 MTB (46.25ns)
*/
pdimm->trc_ps = (((spd->tras_trc_ext & 0xf0) << 4) | spd->trc_min_lsb)
* mtb_ps + (spd->fine_trc_min * ftb_10th_ps) / 10;
/*
* min refresh recovery delay time
* eg: tRFC_min =
* 512Mb 720 MTB (90ns)
* 1Gb 880 MTB (110ns)
* 2Gb 1280 MTB (160ns)
*/
pdimm->trfc_ps = ((spd->trfc_min_msb << 8) | spd->trfc_min_lsb)
* mtb_ps;
/*
* min internal write to read command delay time
* eg: twtr_min = 40 MTB (7.5ns) - all speed bins.
* tWRT is at least 4 mclk independent of operating freq.
*/
pdimm->twtr_ps = spd->twtr_min * mtb_ps;
/*
* min internal read to precharge command delay time
* eg: trtp_min = 40 MTB (7.5ns) - all speed bins.
* tRTP is at least 4 mclk independent of operating freq.
*/
pdimm->trtp_ps = spd->trtp_min * mtb_ps;
/*
* Average periodic refresh interval
* tREFI = 7.8 us at normal temperature range
* = 3.9 us at ext temperature range
*/
pdimm->refresh_rate_ps = 7800000;
if ((spd->therm_ref_opt & 0x1) && !(spd->therm_ref_opt & 0x2)) {
pdimm->refresh_rate_ps = 3900000;
pdimm->extended_op_srt = 1;
}
/*
* min four active window delay time
* eg: tfaw_min =
* DDR3-800(1KB page) 320 MTB (40ns)
* DDR3-1066(1KB page) 300 MTB (37.5ns)
* DDR3-1333(1KB page) 240 MTB (30ns)
* DDR3-1600(1KB page) 240 MTB (30ns)
*/
pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min)
* mtb_ps;
return 0;
}
|