1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
/*
* Copyright 2008-2012 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
#include <common.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
#if defined(CONFIG_FSL_DDR3)
static unsigned int
compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
common_timing_params_t *outpdimm,
unsigned int number_of_dimms)
{
unsigned int i;
unsigned int tAAmin_ps = 0;
unsigned int tCKmin_X_ps = 0;
unsigned int common_caslat;
unsigned int caslat_actual;
unsigned int retry = 16;
unsigned int tmp;
const unsigned int mclk_ps = get_memory_clk_period_ps();
/* compute the common CAS latency supported between slots */
tmp = dimm_params[0].caslat_X;
for (i = 1; i < number_of_dimms; i++) {
if (dimm_params[i].n_ranks)
tmp &= dimm_params[i].caslat_X;
}
common_caslat = tmp;
/* compute the max tAAmin tCKmin between slots */
for (i = 0; i < number_of_dimms; i++) {
tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps);
tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
}
/* validate if the memory clk is in the range of dimms */
if (mclk_ps < tCKmin_X_ps) {
printf("DDR clock (MCLK cycle %u ps) is faster than "
"the slowest DIMM(s) (tCKmin %u ps) can support.\n",
mclk_ps, tCKmin_X_ps);
}
/* determine the acutal cas latency */
caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps;
/* check if the dimms support the CAS latency */
while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
caslat_actual++;
retry--;
}
/* once the caculation of caslat_actual is completed
* we must verify that this CAS latency value does not
* exceed tAAmax, which is 20 ns for all DDR3 speed grades
*/
if (caslat_actual * mclk_ps > 20000) {
printf("The choosen cas latency %d is too large\n",
caslat_actual);
}
outpdimm->lowest_common_SPD_caslat = caslat_actual;
return 0;
}
#endif
/*
* compute_lowest_common_dimm_parameters()
*
* Determine the worst-case DIMM timing parameters from the set of DIMMs
* whose parameters have been computed into the array pointed to
* by dimm_params.
*/
unsigned int
compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
common_timing_params_t *outpdimm,
const unsigned int number_of_dimms)
{
unsigned int i, j;
unsigned int tCKmin_X_ps = 0;
unsigned int tCKmax_ps = 0xFFFFFFFF;
unsigned int tCKmax_max_ps = 0;
unsigned int tRCD_ps = 0;
unsigned int tRP_ps = 0;
unsigned int tRAS_ps = 0;
unsigned int tWR_ps = 0;
unsigned int tWTR_ps = 0;
unsigned int tRFC_ps = 0;
unsigned int tRRD_ps = 0;
unsigned int tRC_ps = 0;
unsigned int refresh_rate_ps = 0;
unsigned int tIS_ps = 0;
unsigned int tIH_ps = 0;
unsigned int tDS_ps = 0;
unsigned int tDH_ps = 0;
unsigned int tRTP_ps = 0;
unsigned int tDQSQ_max_ps = 0;
unsigned int tQHS_ps = 0;
unsigned int temp1, temp2;
unsigned int additive_latency = 0;
#if !defined(CONFIG_FSL_DDR3)
const unsigned int mclk_ps = get_memory_clk_period_ps();
unsigned int lowest_good_caslat;
unsigned int not_ok;
debug("using mclk_ps = %u\n", mclk_ps);
#endif
temp1 = 0;
for (i = 0; i < number_of_dimms; i++) {
/*
* If there are no ranks on this DIMM,
* it probably doesn't exist, so skip it.
*/
if (dimm_params[i].n_ranks == 0) {
temp1++;
continue;
}
if (dimm_params[i].n_ranks == 4 && i != 0) {
printf("Found Quad-rank DIMM in wrong bank, ignored."
" Software may not run as expected.\n");
temp1++;
continue;
}
/*
* check if quad-rank DIMM is plugged if
* CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
* Only the board with proper design is capable
*/
#ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
if (dimm_params[i].n_ranks == 4 && \
CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
printf("Found Quad-rank DIMM, not able to support.");
temp1++;
continue;
}
#endif
/*
* Find minimum tCKmax_ps to find fastest slow speed,
* i.e., this is the slowest the whole system can go.
*/
tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps);
/* Either find maximum value to determine slowest
* speed, delay, time, period, etc */
tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps);
tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps);
tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps);
tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps);
tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps);
tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps);
tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps);
tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps);
tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps);
tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps);
tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps);
tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps);
tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps);
tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps);
tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps);
refresh_rate_ps = max(refresh_rate_ps,
dimm_params[i].refresh_rate_ps);
/*
* Find maximum tDQSQ_max_ps to find slowest.
*
* FIXME: is finding the slowest value the correct
* strategy for this parameter?
*/
tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps);
}
outpdimm->ndimms_present = number_of_dimms - temp1;
if (temp1 == number_of_dimms) {
debug("no dimms this memory controller\n");
return 0;
}
outpdimm->tCKmin_X_ps = tCKmin_X_ps;
outpdimm->tCKmax_ps = tCKmax_ps;
outpdimm->tCKmax_max_ps = tCKmax_max_ps;
outpdimm->tRCD_ps = tRCD_ps;
outpdimm->tRP_ps = tRP_ps;
outpdimm->tRAS_ps = tRAS_ps;
outpdimm->tWR_ps = tWR_ps;
outpdimm->tWTR_ps = tWTR_ps;
outpdimm->tRFC_ps = tRFC_ps;
outpdimm->tRRD_ps = tRRD_ps;
outpdimm->tRC_ps = tRC_ps;
outpdimm->refresh_rate_ps = refresh_rate_ps;
outpdimm->tIS_ps = tIS_ps;
outpdimm->tIH_ps = tIH_ps;
outpdimm->tDS_ps = tDS_ps;
outpdimm->tDH_ps = tDH_ps;
outpdimm->tRTP_ps = tRTP_ps;
outpdimm->tDQSQ_max_ps = tDQSQ_max_ps;
outpdimm->tQHS_ps = tQHS_ps;
/* Determine common burst length for all DIMMs. */
temp1 = 0xff;
for (i = 0; i < number_of_dimms; i++) {
if (dimm_params[i].n_ranks) {
temp1 &= dimm_params[i].burst_lengths_bitmask;
}
}
outpdimm->all_DIMMs_burst_lengths_bitmask = temp1;
/* Determine if all DIMMs registered buffered. */
temp1 = temp2 = 0;
for (i = 0; i < number_of_dimms; i++) {
if (dimm_params[i].n_ranks) {
if (dimm_params[i].registered_dimm) {
temp1 = 1;
printf("Detected RDIMM %s\n",
dimm_params[i].mpart);
} else {
temp2 = 1;
printf("Detected UDIMM %s\n",
dimm_params[i].mpart);
}
}
}
outpdimm->all_DIMMs_registered = 0;
outpdimm->all_DIMMs_unbuffered = 0;
if (temp1 && !temp2) {
outpdimm->all_DIMMs_registered = 1;
} else if (!temp1 && temp2) {
outpdimm->all_DIMMs_unbuffered = 1;
} else {
printf("ERROR: Mix of registered buffered and unbuffered "
"DIMMs detected!\n");
}
temp1 = 0;
if (outpdimm->all_DIMMs_registered)
for (j = 0; j < 16; j++) {
outpdimm->rcw[j] = dimm_params[0].rcw[j];
for (i = 1; i < number_of_dimms; i++) {
if (!dimm_params[i].n_ranks)
continue;
if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
temp1 = 1;
break;
}
}
}
if (temp1 != 0)
printf("ERROR: Mix different RDIMM detected!\n");
#if defined(CONFIG_FSL_DDR3)
if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
return 1;
#else
/*
* Compute a CAS latency suitable for all DIMMs
*
* Strategy for SPD-defined latencies: compute only
* CAS latency defined by all DIMMs.
*/
/*
* Step 1: find CAS latency common to all DIMMs using bitwise
* operation.
*/
temp1 = 0xFF;
for (i = 0; i < number_of_dimms; i++) {
if (dimm_params[i].n_ranks) {
temp2 = 0;
temp2 |= 1 << dimm_params[i].caslat_X;
temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
/*
* FIXME: If there was no entry for X-2 (X-1) in
* the SPD, then caslat_X_minus_2
* (caslat_X_minus_1) contains either 255 or
* 0xFFFFFFFF because that's what the glorious
* __ilog2 function returns for an input of 0.
* On 32-bit PowerPC, left shift counts with bit
* 26 set (that the value of 255 or 0xFFFFFFFF
* will have), cause the destination register to
* be 0. That is why this works.
*/
temp1 &= temp2;
}
}
/*
* Step 2: check each common CAS latency against tCK of each
* DIMM's SPD.
*/
lowest_good_caslat = 0;
temp2 = 0;
while (temp1) {
not_ok = 0;
temp2 = __ilog2(temp1);
debug("checking common caslat = %u\n", temp2);
/* Check if this CAS latency will work on all DIMMs at tCK. */
for (i = 0; i < number_of_dimms; i++) {
if (!dimm_params[i].n_ranks) {
continue;
}
if (dimm_params[i].caslat_X == temp2) {
if (mclk_ps >= dimm_params[i].tCKmin_X_ps) {
debug("CL = %u ok on DIMM %u at tCK=%u"
" ps with its tCKmin_X_ps of %u\n",
temp2, i, mclk_ps,
dimm_params[i].tCKmin_X_ps);
continue;
} else {
not_ok++;
}
}
if (dimm_params[i].caslat_X_minus_1 == temp2) {
unsigned int tCKmin_X_minus_1_ps
= dimm_params[i].tCKmin_X_minus_1_ps;
if (mclk_ps >= tCKmin_X_minus_1_ps) {
debug("CL = %u ok on DIMM %u at "
"tCK=%u ps with its "
"tCKmin_X_minus_1_ps of %u\n",
temp2, i, mclk_ps,
tCKmin_X_minus_1_ps);
continue;
} else {
not_ok++;
}
}
if (dimm_params[i].caslat_X_minus_2 == temp2) {
unsigned int tCKmin_X_minus_2_ps
= dimm_params[i].tCKmin_X_minus_2_ps;
if (mclk_ps >= tCKmin_X_minus_2_ps) {
debug("CL = %u ok on DIMM %u at "
"tCK=%u ps with its "
"tCKmin_X_minus_2_ps of %u\n",
temp2, i, mclk_ps,
tCKmin_X_minus_2_ps);
continue;
} else {
not_ok++;
}
}
}
if (!not_ok) {
lowest_good_caslat = temp2;
}
temp1 &= ~(1 << temp2);
}
debug("lowest common SPD-defined CAS latency = %u\n",
lowest_good_caslat);
outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
/*
* Compute a common 'de-rated' CAS latency.
*
* The strategy here is to find the *highest* dereated cas latency
* with the assumption that all of the DIMMs will support a dereated
* CAS latency higher than or equal to their lowest dereated value.
*/
temp1 = 0;
for (i = 0; i < number_of_dimms; i++) {
temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
}
outpdimm->highest_common_derated_caslat = temp1;
debug("highest common dereated CAS latency = %u\n", temp1);
#endif /* #if defined(CONFIG_FSL_DDR3) */
/* Determine if all DIMMs ECC capable. */
temp1 = 1;
for (i = 0; i < number_of_dimms; i++) {
if (dimm_params[i].n_ranks &&
!(dimm_params[i].edc_config & EDC_ECC)) {
temp1 = 0;
break;
}
}
if (temp1) {
debug("all DIMMs ECC capable\n");
} else {
debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
}
outpdimm->all_DIMMs_ECC_capable = temp1;
#ifndef CONFIG_FSL_DDR3
/* FIXME: move to somewhere else to validate. */
if (mclk_ps > tCKmax_max_ps) {
printf("Warning: some of the installed DIMMs "
"can not operate this slowly.\n");
return 1;
}
#endif
/*
* Compute additive latency.
*
* For DDR1, additive latency should be 0.
*
* For DDR2, with ODT enabled, use "a value" less than ACTTORW,
* which comes from Trcd, and also note that:
* add_lat + caslat must be >= 4
*
* For DDR3, we use the AL=0
*
* When to use additive latency for DDR2:
*
* I. Because you are using CL=3 and need to do ODT on writes and
* want functionality.
* 1. Are you going to use ODT? (Does your board not have
* additional termination circuitry for DQ, DQS, DQS_,
* DM, RDQS, RDQS_ for x4/x8 configs?)
* 2. If so, is your lowest supported CL going to be 3?
* 3. If so, then you must set AL=1 because
*
* WL >= 3 for ODT on writes
* RL = AL + CL
* WL = RL - 1
* ->
* WL = AL + CL - 1
* AL + CL - 1 >= 3
* AL + CL >= 4
* QED
*
* RL >= 3 for ODT on reads
* RL = AL + CL
*
* Since CL aren't usually less than 2, AL=0 is a minimum,
* so the WL-derived AL should be the -- FIXME?
*
* II. Because you are using auto-precharge globally and want to
* use additive latency (posted CAS) to get more bandwidth.
* 1. Are you going to use auto-precharge mode globally?
*
* Use addtivie latency and compute AL to be 1 cycle less than
* tRCD, i.e. the READ or WRITE command is in the cycle
* immediately following the ACTIVATE command..
*
* III. Because you feel like it or want to do some sort of
* degraded-performance experiment.
* 1. Do you just want to use additive latency because you feel
* like it?
*
* Validation: AL is less than tRCD, and within the other
* read-to-precharge constraints.
*/
additive_latency = 0;
#if defined(CONFIG_FSL_DDR2)
if (lowest_good_caslat < 4) {
additive_latency = (picos_to_mclk(tRCD_ps) > lowest_good_caslat)
? picos_to_mclk(tRCD_ps) - lowest_good_caslat : 0;
if (mclk_to_picos(additive_latency) > tRCD_ps) {
additive_latency = picos_to_mclk(tRCD_ps);
debug("setting additive_latency to %u because it was "
" greater than tRCD_ps\n", additive_latency);
}
}
#elif defined(CONFIG_FSL_DDR3)
/*
* The system will not use the global auto-precharge mode.
* However, it uses the page mode, so we set AL=0
*/
additive_latency = 0;
#endif
/*
* Validate additive latency
* FIXME: move to somewhere else to validate
*
* AL <= tRCD(min)
*/
if (mclk_to_picos(additive_latency) > tRCD_ps) {
printf("Error: invalid additive latency exceeds tRCD(min).\n");
return 1;
}
/*
* RL = CL + AL; RL >= 3 for ODT_RD_CFG to be enabled
* WL = RL - 1; WL >= 3 for ODT_WL_CFG to be enabled
* ADD_LAT (the register) must be set to a value less
* than ACTTORW if WL = 1, then AL must be set to 1
* RD_TO_PRE (the register) must be set to a minimum
* tRTP + AL if AL is nonzero
*/
/*
* Additive latency will be applied only if the memctl option to
* use it.
*/
outpdimm->additive_latency = additive_latency;
debug("tCKmin_ps = %u\n", outpdimm->tCKmin_X_ps);
debug("tRCD_ps = %u\n", outpdimm->tRCD_ps);
debug("tRP_ps = %u\n", outpdimm->tRP_ps);
debug("tRAS_ps = %u\n", outpdimm->tRAS_ps);
debug("tWR_ps = %u\n", outpdimm->tWR_ps);
debug("tWTR_ps = %u\n", outpdimm->tWTR_ps);
debug("tRFC_ps = %u\n", outpdimm->tRFC_ps);
debug("tRRD_ps = %u\n", outpdimm->tRRD_ps);
debug("tRC_ps = %u\n", outpdimm->tRC_ps);
return 0;
}
|