1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
|
/*
* arch/powerpc/cpu/ppc4xx/44x_spd_ddr.c
* This SPD DDR detection code supports IBM/AMCC PPC44x cpu with a
* DDR controller. Those are 440GP/GX/EP/GR.
*
* (C) Copyright 2001
* Bill Hunter, Wave 7 Optics, williamhunter@attbi.com
*
* Based on code by:
*
* Kenneth Johansson ,Ericsson AB.
* kenneth.johansson@etx.ericsson.se
*
* hacked up by bill hunter. fixed so we could run before
* serial_init and console_init. previous version avoided this by
* running out of cache memory during serial/console init, then running
* this code later.
*
* (C) Copyright 2002
* Jun Gu, Artesyn Technology, jung@artesyncp.com
* Support for AMCC 440 based on OpenBIOS draminit.c from IBM.
*
* (C) Copyright 2005-2007
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/* define DEBUG for debugging output (obviously ;-)) */
#if 0
#define DEBUG
#endif
#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <asm/ppc4xx.h>
#include <asm/mmu.h>
#include "ecc.h"
#if defined(CONFIG_SPD_EEPROM) && \
(defined(CONFIG_440GP) || defined(CONFIG_440GX) || \
defined(CONFIG_440EP) || defined(CONFIG_440GR))
/*
* Set default values
*/
#ifndef CONFIG_SYS_I2C_SPEED
#define CONFIG_SYS_I2C_SPEED 50000
#endif
#define ONE_BILLION 1000000000
/*
* Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
*/
void __spd_ddr_init_hang (void)
{
hang ();
}
void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
/*-----------------------------------------------------------------------------+
| General Definition
+-----------------------------------------------------------------------------*/
#define DEFAULT_SPD_ADDR1 0x53
#define DEFAULT_SPD_ADDR2 0x52
#define MAXBANKS 4 /* at most 4 dimm banks */
#define MAX_SPD_BYTES 256
#define NUMHALFCYCLES 4
#define NUMMEMTESTS 8
#define NUMMEMWORDS 8
#define MAXBXCR 4
#define TRUE 1
#define FALSE 0
/*
* This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
* region. Right now the cache should still be disabled in U-Boot because of the
* EMAC driver, that need it's buffer descriptor to be located in non cached
* memory.
*
* If at some time this restriction doesn't apply anymore, just define
* CONFIG_4xx_DCACHE in the board config file and this code should setup
* everything correctly.
*/
#ifdef CONFIG_4xx_DCACHE
#define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
#else
#define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
#endif
/* bank_parms is used to sort the bank sizes by descending order */
struct bank_param {
unsigned long cr;
unsigned long bank_size_bytes;
};
typedef struct bank_param BANKPARMS;
#ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM
extern const unsigned char cfg_simulate_spd_eeprom[128];
#endif
static unsigned char spd_read(uchar chip, uint addr);
static void get_spd_info(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void check_mem_type(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void check_volt_type(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_cfg0(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_cfg1(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_rtr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_tr0(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_tr1(void);
static unsigned long program_bxcr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
/*
* This function is reading data from the DIMM module EEPROM over the SPD bus
* and uses that to program the sdram controller.
*
* This works on boards that has the same schematics that the AMCC walnut has.
*
* BUG: Don't handle ECC memory
* BUG: A few values in the TR register is currently hardcoded
*/
long int spd_sdram(void) {
unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
unsigned long dimm_populated[sizeof(iic0_dimm_addr)];
unsigned long total_size;
unsigned long cfg0;
unsigned long mcsts;
unsigned long num_dimm_banks; /* on board dimm banks */
num_dimm_banks = sizeof(iic0_dimm_addr);
/*
* Make sure I2C controller is initialized
* before continuing.
*/
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
/*
* Read the SPD information using I2C interface. Check to see if the
* DIMM slots are populated.
*/
get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* Check the memory type for the dimms plugged.
*/
check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* Check the voltage type for the dimms plugged.
*/
check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
#if defined(CONFIG_440GX) || defined(CONFIG_440EP) || defined(CONFIG_440GR)
/*
* Soft-reset SDRAM controller.
*/
mtsdr(SDR0_SRST, SDR0_SRST_DMC);
mtsdr(SDR0_SRST, 0x00000000);
#endif
/*
* program 440GP SDRAM controller options (SDRAM0_CFG0)
*/
program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program 440GP SDRAM controller options (SDRAM0_CFG1)
*/
program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program SDRAM refresh register (SDRAM0_RTR)
*/
program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program SDRAM Timing Register 0 (SDRAM0_TR0)
*/
program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program the BxCR registers to find out total sdram installed
*/
total_size = program_bxcr(dimm_populated, iic0_dimm_addr,
num_dimm_banks);
#ifdef CONFIG_PROG_SDRAM_TLB /* this define should eventually be removed */
/* and program tlb entries for this size (dynamic) */
program_tlb(0, 0, total_size, MY_TLB_WORD2_I_ENABLE);
#endif
/*
* program SDRAM Clock Timing Register (SDRAM0_CLKTR)
*/
mtsdram(SDRAM0_CLKTR, 0x40000000);
/*
* delay to ensure 200 usec has elapsed
*/
udelay(400);
/*
* enable the memory controller
*/
mfsdram(SDRAM0_CFG0, cfg0);
mtsdram(SDRAM0_CFG0, cfg0 | SDRAM_CFG0_DCEN);
/*
* wait for SDRAM_CFG0_DC_EN to complete
*/
while (1) {
mfsdram(SDRAM0_MCSTS, mcsts);
if ((mcsts & SDRAM_MCSTS_MRSC) != 0)
break;
}
/*
* program SDRAM Timing Register 1, adding some delays
*/
program_tr1();
#ifdef CONFIG_DDR_ECC
/*
* If ecc is enabled, initialize the parity bits.
*/
ecc_init(CONFIG_SYS_SDRAM_BASE, total_size);
#endif
return total_size;
}
static unsigned char spd_read(uchar chip, uint addr)
{
unsigned char data[2];
#ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM
if (chip == CONFIG_SYS_SIMULATE_SPD_EEPROM) {
/*
* Onboard spd eeprom requested -> simulate values
*/
return cfg_simulate_spd_eeprom[addr];
}
#endif /* CONFIG_SYS_SIMULATE_SPD_EEPROM */
if (i2c_probe(chip) == 0) {
if (i2c_read(chip, addr, 1, data, 1) == 0) {
return data[0];
}
}
return 0;
}
static void get_spd_info(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long dimm_found;
unsigned char num_of_bytes;
unsigned char total_size;
dimm_found = FALSE;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
num_of_bytes = 0;
total_size = 0;
num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
if ((num_of_bytes != 0) && (total_size != 0)) {
dimm_populated[dimm_num] = TRUE;
dimm_found = TRUE;
debug("DIMM slot %lu: populated\n", dimm_num);
} else {
dimm_populated[dimm_num] = FALSE;
debug("DIMM slot %lu: Not populated\n", dimm_num);
}
}
if (dimm_found == FALSE) {
printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
spd_ddr_init_hang ();
}
}
static void check_mem_type(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned char dimm_type;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
switch (dimm_type) {
case 7:
debug("DIMM slot %lu: DDR SDRAM detected\n", dimm_num);
break;
default:
printf("ERROR: Unsupported DIMM detected in slot %lu.\n",
dimm_num);
printf("Only DDR SDRAM DIMMs are supported.\n");
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
break;
}
}
}
}
static void check_volt_type(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long voltage_type;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
if (voltage_type != 0x04) {
printf("ERROR: DIMM %lu with unsupported voltage level.\n",
dimm_num);
spd_ddr_init_hang ();
} else {
debug("DIMM %lu voltage level supported.\n", dimm_num);
}
break;
}
}
}
static void program_cfg0(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long cfg0;
unsigned long ecc_enabled;
unsigned char ecc;
unsigned char attributes;
unsigned long data_width;
/*
* get Memory Controller Options 0 data
*/
mfsdram(SDRAM0_CFG0, cfg0);
/*
* clear bits
*/
cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK |
SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD |
SDRAM_CFG0_DMWD_MASK |
SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP);
/*
* FIXME: assume the DDR SDRAMs in both banks are the same
*/
ecc_enabled = TRUE;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
ecc = spd_read(iic0_dimm_addr[dimm_num], 11);
if (ecc != 0x02) {
ecc_enabled = FALSE;
}
/*
* program Registered DIMM Enable
*/
attributes = spd_read(iic0_dimm_addr[dimm_num], 21);
if ((attributes & 0x02) != 0x00) {
cfg0 |= SDRAM_CFG0_RDEN;
}
/*
* program DDR SDRAM Data Width
*/
data_width =
(unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) +
(((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8);
if (data_width == 64 || data_width == 72) {
cfg0 |= SDRAM_CFG0_DMWD_64;
} else if (data_width == 32 || data_width == 40) {
cfg0 |= SDRAM_CFG0_DMWD_32;
} else {
printf("WARNING: DIMM with datawidth of %lu bits.\n",
data_width);
printf("Only DIMMs with 32 or 64 bit datawidths supported.\n");
spd_ddr_init_hang ();
}
break;
}
}
/*
* program Memory Data Error Checking
*/
if (ecc_enabled == TRUE) {
cfg0 |= SDRAM_CFG0_MCHK_GEN;
} else {
cfg0 |= SDRAM_CFG0_MCHK_NON;
}
/*
* program Page Management Unit (0 == enabled)
*/
cfg0 &= ~SDRAM_CFG0_PMUD;
/*
* program Memory Controller Options 0
* Note: DCEN must be enabled after all DDR SDRAM controller
* configuration registers get initialized.
*/
mtsdram(SDRAM0_CFG0, cfg0);
}
static void program_cfg1(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long cfg1;
mfsdram(SDRAM0_CFG1, cfg1);
/*
* Self-refresh exit, disable PM
*/
cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN);
/*
* program Memory Controller Options 1
*/
mtsdram(SDRAM0_CFG1, cfg1);
}
static void program_rtr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long bus_period_x_10;
unsigned long refresh_rate = 0;
unsigned char refresh_rate_type;
unsigned long refresh_interval;
unsigned long sdram_rtr;
PPC4xx_SYS_INFO sys_info;
/*
* get the board info
*/
get_sys_info(&sys_info);
bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12);
switch (refresh_rate_type) {
case 0x00:
refresh_rate = 15625;
break;
case 0x01:
refresh_rate = 15625/4;
break;
case 0x02:
refresh_rate = 15625/2;
break;
case 0x03:
refresh_rate = 15626*2;
break;
case 0x04:
refresh_rate = 15625*4;
break;
case 0x05:
refresh_rate = 15625*8;
break;
default:
printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n",
dimm_num);
printf("Replace the DIMM module with a supported DIMM.\n");
break;
}
break;
}
}
refresh_interval = refresh_rate * 10 / bus_period_x_10;
sdram_rtr = (refresh_interval & 0x3ff8) << 16;
/*
* program Refresh Timer Register (SDRAM0_RTR)
*/
mtsdram(SDRAM0_RTR, sdram_rtr);
}
static void program_tr0(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long tr0;
unsigned char wcsbc;
unsigned char t_rp_ns;
unsigned char t_rcd_ns;
unsigned char t_ras_ns;
unsigned long t_rp_clk;
unsigned long t_ras_rcd_clk;
unsigned long t_rcd_clk;
unsigned long t_rfc_clk;
unsigned long plb_check;
unsigned char cas_bit;
unsigned long cas_index;
unsigned char cas_2_0_available;
unsigned char cas_2_5_available;
unsigned char cas_3_0_available;
unsigned long cycle_time_ns_x_10[3];
unsigned long tcyc_3_0_ns_x_10;
unsigned long tcyc_2_5_ns_x_10;
unsigned long tcyc_2_0_ns_x_10;
unsigned long tcyc_reg;
unsigned long bus_period_x_10;
PPC4xx_SYS_INFO sys_info;
unsigned long residue;
/*
* get the board info
*/
get_sys_info(&sys_info);
bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
/*
* get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
*/
mfsdram(SDRAM0_TR0, tr0);
tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK |
SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK |
SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK |
SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK);
/*
* initialization
*/
wcsbc = 0;
t_rp_ns = 0;
t_rcd_ns = 0;
t_ras_ns = 0;
cas_2_0_available = TRUE;
cas_2_5_available = TRUE;
cas_3_0_available = TRUE;
tcyc_2_0_ns_x_10 = 0;
tcyc_2_5_ns_x_10 = 0;
tcyc_3_0_ns_x_10 = 0;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15);
t_rp_ns = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2;
t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2;
t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30);
cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
for (cas_index = 0; cas_index < 3; cas_index++) {
switch (cas_index) {
case 0:
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
break;
case 1:
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
break;
default:
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
break;
}
if ((tcyc_reg & 0x0F) >= 10) {
printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n",
dimm_num);
spd_ddr_init_hang ();
}
cycle_time_ns_x_10[cas_index] =
(((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F);
}
cas_index = 0;
if ((cas_bit & 0x80) != 0) {
cas_index += 3;
} else if ((cas_bit & 0x40) != 0) {
cas_index += 2;
} else if ((cas_bit & 0x20) != 0) {
cas_index += 1;
}
if (((cas_bit & 0x10) != 0) && (cas_index < 3)) {
tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
cas_index++;
} else {
if (cas_index != 0) {
cas_index++;
}
cas_3_0_available = FALSE;
}
if (((cas_bit & 0x08) != 0) || (cas_index < 3)) {
tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index];
cas_index++;
} else {
if (cas_index != 0) {
cas_index++;
}
cas_2_5_available = FALSE;
}
if (((cas_bit & 0x04) != 0) || (cas_index < 3)) {
tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
cas_index++;
} else {
if (cas_index != 0) {
cas_index++;
}
cas_2_0_available = FALSE;
}
break;
}
}
/*
* Program SD_WR and SD_WCSBC fields
*/
tr0 |= SDRAM_TR0_SDWR_2_CLK; /* Write Recovery: 2 CLK */
switch (wcsbc) {
case 0:
tr0 |= SDRAM_TR0_SDWD_0_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDWD_1_CLK;
break;
}
/*
* Program SD_CASL field
*/
if ((cas_2_0_available == TRUE) &&
(bus_period_x_10 >= tcyc_2_0_ns_x_10)) {
tr0 |= SDRAM_TR0_SDCL_2_0_CLK;
} else if ((cas_2_5_available == TRUE) &&
(bus_period_x_10 >= tcyc_2_5_ns_x_10)) {
tr0 |= SDRAM_TR0_SDCL_2_5_CLK;
} else if ((cas_3_0_available == TRUE) &&
(bus_period_x_10 >= tcyc_3_0_ns_x_10)) {
tr0 |= SDRAM_TR0_SDCL_3_0_CLK;
} else {
printf("ERROR: No supported CAS latency with the installed DIMMs.\n");
printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
printf("Make sure the PLB speed is within the supported range.\n");
spd_ddr_init_hang ();
}
/*
* Calculate Trp in clock cycles and round up if necessary
* Program SD_PTA field
*/
t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION;
plb_check = ONE_BILLION * t_rp_clk / t_rp_ns;
if (sys_info.freqPLB != plb_check) {
t_rp_clk++;
}
switch ((unsigned long)t_rp_clk) {
case 0:
case 1:
case 2:
tr0 |= SDRAM_TR0_SDPA_2_CLK;
break;
case 3:
tr0 |= SDRAM_TR0_SDPA_3_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDPA_4_CLK;
break;
}
/*
* Program SD_CTP field
*/
t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION;
plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns);
if (sys_info.freqPLB != plb_check) {
t_ras_rcd_clk++;
}
switch (t_ras_rcd_clk) {
case 0:
case 1:
case 2:
tr0 |= SDRAM_TR0_SDCP_2_CLK;
break;
case 3:
tr0 |= SDRAM_TR0_SDCP_3_CLK;
break;
case 4:
tr0 |= SDRAM_TR0_SDCP_4_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDCP_5_CLK;
break;
}
/*
* Program SD_LDF field
*/
tr0 |= SDRAM_TR0_SDLD_2_CLK;
/*
* Program SD_RFTA field
* FIXME tRFC hardcoded as 75 nanoseconds
*/
t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75);
residue = sys_info.freqPLB % (ONE_BILLION / 75);
if (residue >= (ONE_BILLION / 150)) {
t_rfc_clk++;
}
switch (t_rfc_clk) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
tr0 |= SDRAM_TR0_SDRA_6_CLK;
break;
case 7:
tr0 |= SDRAM_TR0_SDRA_7_CLK;
break;
case 8:
tr0 |= SDRAM_TR0_SDRA_8_CLK;
break;
case 9:
tr0 |= SDRAM_TR0_SDRA_9_CLK;
break;
case 10:
tr0 |= SDRAM_TR0_SDRA_10_CLK;
break;
case 11:
tr0 |= SDRAM_TR0_SDRA_11_CLK;
break;
case 12:
tr0 |= SDRAM_TR0_SDRA_12_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDRA_13_CLK;
break;
}
/*
* Program SD_RCD field
*/
t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION;
plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns;
if (sys_info.freqPLB != plb_check) {
t_rcd_clk++;
}
switch (t_rcd_clk) {
case 0:
case 1:
case 2:
tr0 |= SDRAM_TR0_SDRD_2_CLK;
break;
case 3:
tr0 |= SDRAM_TR0_SDRD_3_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDRD_4_CLK;
break;
}
debug("tr0: %lx\n", tr0);
mtsdram(SDRAM0_TR0, tr0);
}
static int short_mem_test(void)
{
unsigned long i, j;
unsigned long bxcr_num;
unsigned long *membase;
const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55}};
for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (bxcr_num << 2));
if ((mfdcr(SDRAM0_CFGDATA) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) {
/* Bank is enabled */
membase = (unsigned long*)
(mfdcr(SDRAM0_CFGDATA) & SDRAM_BXCR_SDBA_MASK);
/*
* Run the short memory test
*/
for (i = 0; i < NUMMEMTESTS; i++) {
for (j = 0; j < NUMMEMWORDS; j++) {
/* printf("bank enabled base:%x\n", &membase[j]); */
membase[j] = test[i][j];
ppcDcbf((unsigned long)&(membase[j]));
}
for (j = 0; j < NUMMEMWORDS; j++) {
if (membase[j] != test[i][j]) {
ppcDcbf((unsigned long)&(membase[j]));
return 0;
}
ppcDcbf((unsigned long)&(membase[j]));
}
if (j < NUMMEMWORDS)
return 0;
}
/*
* see if the rdclt value passed
*/
if (i < NUMMEMTESTS)
return 0;
}
}
return 1;
}
static void program_tr1(void)
{
unsigned long tr0;
unsigned long tr1;
unsigned long cfg0;
unsigned long ecc_temp;
unsigned long dlycal;
unsigned long dly_val;
unsigned long k;
unsigned long max_pass_length;
unsigned long current_pass_length;
unsigned long current_fail_length;
unsigned long current_start;
unsigned long rdclt;
unsigned long rdclt_offset;
long max_start;
long max_end;
long rdclt_average;
unsigned char window_found;
unsigned char fail_found;
unsigned char pass_found;
PPC4xx_SYS_INFO sys_info;
/*
* get the board info
*/
get_sys_info(&sys_info);
/*
* get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
*/
mfsdram(SDRAM0_TR1, tr1);
tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK |
SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK);
mfsdram(SDRAM0_TR0, tr0);
if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) &&
(sys_info.freqPLB > 100000000)) {
tr1 |= SDRAM_TR1_RDSS_TR2;
tr1 |= SDRAM_TR1_RDSL_STAGE3;
tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
} else {
tr1 |= SDRAM_TR1_RDSS_TR1;
tr1 |= SDRAM_TR1_RDSL_STAGE2;
tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
}
/*
* save CFG0 ECC setting to a temporary variable and turn ECC off
*/
mfsdram(SDRAM0_CFG0, cfg0);
ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK;
mtsdram(SDRAM0_CFG0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON);
/*
* get the delay line calibration register value
*/
mfsdram(SDRAM0_DLYCAL, dlycal);
dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
max_pass_length = 0;
max_start = 0;
max_end = 0;
current_pass_length = 0;
current_fail_length = 0;
current_start = 0;
rdclt_offset = 0;
window_found = FALSE;
fail_found = FALSE;
pass_found = FALSE;
debug("Starting memory test ");
for (k = 0; k < NUMHALFCYCLES; k++) {
for (rdclt = 0; rdclt < dly_val; rdclt++) {
/*
* Set the timing reg for the test.
*/
mtsdram(SDRAM0_TR1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt)));
if (short_mem_test()) {
if (fail_found == TRUE) {
pass_found = TRUE;
if (current_pass_length == 0) {
current_start = rdclt_offset + rdclt;
}
current_fail_length = 0;
current_pass_length++;
if (current_pass_length > max_pass_length) {
max_pass_length = current_pass_length;
max_start = current_start;
max_end = rdclt_offset + rdclt;
}
}
} else {
current_pass_length = 0;
current_fail_length++;
if (current_fail_length >= (dly_val>>2)) {
if (fail_found == FALSE) {
fail_found = TRUE;
} else if (pass_found == TRUE) {
window_found = TRUE;
break;
}
}
}
}
debug(".");
if (window_found == TRUE) {
break;
}
tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
rdclt_offset += dly_val;
}
debug("\n");
/*
* make sure we find the window
*/
if (window_found == FALSE) {
printf("ERROR: Cannot determine a common read delay.\n");
spd_ddr_init_hang ();
}
/*
* restore the orignal ECC setting
*/
mtsdram(SDRAM0_CFG0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp);
/*
* set the SDRAM TR1 RDCD value
*/
tr1 &= ~SDRAM_TR1_RDCD_MASK;
if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) {
tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
} else {
tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
}
/*
* set the SDRAM TR1 RDCLT value
*/
tr1 &= ~SDRAM_TR1_RDCT_MASK;
while (max_end >= (dly_val << 1)) {
max_end -= (dly_val << 1);
max_start -= (dly_val << 1);
}
rdclt_average = ((max_start + max_end) >> 1);
if (rdclt_average < 0) {
rdclt_average = 0;
}
if (rdclt_average >= dly_val) {
rdclt_average -= dly_val;
tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
}
tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average);
debug("tr1: %lx\n", tr1);
/*
* program SDRAM Timing Register 1 TR1
*/
mtsdram(SDRAM0_TR1, tr1);
}
static unsigned long program_bxcr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long bank_base_addr;
unsigned long cr;
unsigned long i;
unsigned long j;
unsigned long temp;
unsigned char num_row_addr;
unsigned char num_col_addr;
unsigned char num_banks;
unsigned char bank_size_id;
unsigned long ctrl_bank_num[MAXBANKS];
unsigned long bx_cr_num;
unsigned long largest_size_index;
unsigned long largest_size;
unsigned long current_size_index;
BANKPARMS bank_parms[MAXBXCR];
unsigned long sorted_bank_num[MAXBXCR]; /* DDR Controller bank number table (sorted by size) */
unsigned long sorted_bank_size[MAXBXCR]; /* DDR Controller bank size table (sorted by size)*/
/*
* Set the BxCR regs. First, wipe out the bank config registers.
*/
for (bx_cr_num = 0; bx_cr_num < MAXBXCR; bx_cr_num++) {
mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (bx_cr_num << 2));
mtdcr(SDRAM0_CFGDATA, 0x00000000);
bank_parms[bx_cr_num].bank_size_bytes = 0;
}
#ifdef CONFIG_BAMBOO
/*
* This next section is hardware dependent and must be programmed
* to match the hardware. For bamboo, the following holds...
* 1. SDRAM0_B0CR: Bank 0 of dimm 0 ctrl_bank_num : 0 (soldered onboard)
* 2. SDRAM0_B1CR: Bank 0 of dimm 1 ctrl_bank_num : 1
* 3. SDRAM0_B2CR: Bank 1 of dimm 1 ctrl_bank_num : 1
* 4. SDRAM0_B3CR: Bank 0 of dimm 2 ctrl_bank_num : 3
* ctrl_bank_num corresponds to the first usable DDR controller bank number by DIMM
*/
ctrl_bank_num[0] = 0;
ctrl_bank_num[1] = 1;
ctrl_bank_num[2] = 3;
#else
/*
* Ocotea, Ebony and the other IBM/AMCC eval boards have
* 2 DIMM slots with each max 2 banks
*/
ctrl_bank_num[0] = 0;
ctrl_bank_num[1] = 2;
#endif
/*
* reset the bank_base address
*/
bank_base_addr = CONFIG_SYS_SDRAM_BASE;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3);
num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
num_banks = spd_read(iic0_dimm_addr[dimm_num], 5);
bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
debug("DIMM%ld: row=%d col=%d banks=%d\n", dimm_num,
num_row_addr, num_col_addr, num_banks);
/*
* Set the SDRAM0_BxCR regs
*/
cr = 0;
switch (bank_size_id) {
case 0x02:
cr |= SDRAM_BXCR_SDSZ_8;
break;
case 0x04:
cr |= SDRAM_BXCR_SDSZ_16;
break;
case 0x08:
cr |= SDRAM_BXCR_SDSZ_32;
break;
case 0x10:
cr |= SDRAM_BXCR_SDSZ_64;
break;
case 0x20:
cr |= SDRAM_BXCR_SDSZ_128;
break;
case 0x40:
cr |= SDRAM_BXCR_SDSZ_256;
break;
case 0x80:
cr |= SDRAM_BXCR_SDSZ_512;
break;
default:
printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
dimm_num);
printf("ERROR: Unsupported value for the banksize: %d.\n",
bank_size_id);
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
}
switch (num_col_addr) {
case 0x08:
cr |= SDRAM_BXCR_SDAM_1;
break;
case 0x09:
cr |= SDRAM_BXCR_SDAM_2;
break;
case 0x0A:
cr |= SDRAM_BXCR_SDAM_3;
break;
case 0x0B:
cr |= SDRAM_BXCR_SDAM_4;
break;
default:
printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
dimm_num);
printf("ERROR: Unsupported value for number of "
"column addresses: %d.\n", num_col_addr);
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
}
/*
* enable the bank
*/
cr |= SDRAM_BXCR_SDBE;
for (i = 0; i < num_banks; i++) {
bank_parms[ctrl_bank_num[dimm_num]+i].bank_size_bytes =
(4 << 20) * bank_size_id;
bank_parms[ctrl_bank_num[dimm_num]+i].cr = cr;
debug("DIMM%ld-bank %ld (SDRAM0_B%ldCR): "
"bank_size_bytes=%ld\n",
dimm_num, i,
ctrl_bank_num[dimm_num] + i,
bank_parms[ctrl_bank_num[dimm_num] + i].bank_size_bytes);
}
}
}
/* Initialize sort tables */
for (i = 0; i < MAXBXCR; i++) {
sorted_bank_num[i] = i;
sorted_bank_size[i] = bank_parms[i].bank_size_bytes;
}
for (i = 0; i < MAXBXCR-1; i++) {
largest_size = sorted_bank_size[i];
largest_size_index = 255;
/* Find the largest remaining value */
for (j = i + 1; j < MAXBXCR; j++) {
if (sorted_bank_size[j] > largest_size) {
/* Save largest remaining value and its index */
largest_size = sorted_bank_size[j];
largest_size_index = j;
}
}
if (largest_size_index != 255) {
/* Swap the current and largest values */
current_size_index = sorted_bank_num[largest_size_index];
sorted_bank_size[largest_size_index] = sorted_bank_size[i];
sorted_bank_size[i] = largest_size;
sorted_bank_num[largest_size_index] = sorted_bank_num[i];
sorted_bank_num[i] = current_size_index;
}
}
/* Set the SDRAM0_BxCR regs thanks to sort tables */
for (bx_cr_num = 0, bank_base_addr = 0; bx_cr_num < MAXBXCR; bx_cr_num++) {
if (bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes) {
mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (sorted_bank_num[bx_cr_num] << 2));
temp = mfdcr(SDRAM0_CFGDATA) & ~(SDRAM_BXCR_SDBA_MASK | SDRAM_BXCR_SDSZ_MASK |
SDRAM_BXCR_SDAM_MASK | SDRAM_BXCR_SDBE);
temp = temp | (bank_base_addr & SDRAM_BXCR_SDBA_MASK) |
bank_parms[sorted_bank_num[bx_cr_num]].cr;
mtdcr(SDRAM0_CFGDATA, temp);
bank_base_addr += bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes;
debug("SDRAM0_B%ldCR=0x%08lx\n",
sorted_bank_num[bx_cr_num], temp);
}
}
return(bank_base_addr);
}
#endif /* CONFIG_SPD_EEPROM */
|